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Chapter 1

Introduction

Explicit model checking' is a well established tech-
nique used for verification of concurrent asynchronous
processes. As multithreaded environments are com-
mon in those days the need to test and verify concur-
rent processes is increasing. Common testing meth-
ods such as unit testing are failing in this case as
asynchronous concurrency comes with nondetermin-

ntroduction to explicit model checking and automata based
approach to LTL verification can be found in [6]. Also section 1.1
gives information about model checking that is necessary for this
thesis.



CHAPTER 1. INTRODUCTION 2

ism (which is caused by independently scheduled pro-
cesses). Therefore their testing is inefficient, for exam-
ple unit tests may terminate successfully even though
failing run exists (and it may be less probable than
succeeding runs). Explicit model checking has ability
to solve this issue — it can verify that there does not
exist run violating given property (such as assertion
violation or LTL property).

However model checking comes with problem called
state-space explosion, cased by need to verify all runs
of system. Despite permanently growing sizes of ran-
dom access memory available for contemporary 64-bit
computers, state-space explosion is still a major limi-
tation to explicit model checking.

This limitation may become even more severe when
verifying unmodified programs (in languages such as C
and C++), as in case described by [2]. Although so-
phisticated reduction techniques (such as those in [14])
can be applied to reduce state-state explosion caused
by interleaving in multithreaded programs, state-space
of real-world programs is still generally large, for exam-
ple due to dynamic memory structures and recursion
stack or due to usage of unnecessarily large integral
data types.
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Several state-space compression methods that could]]
be used to handle this problem were introduced and
applied to explicit model checking, for example Huff-
man compression, COLLAPSE [8], and modeling lan-
guage independent tree compression [11].

The aim of this work is to introduce version of tree
compression capable of substantially reducing mem-
ory requirements of large state-spaces. This technique
is general, in can be applied in modeling-language-
independent setting with good memory saving. At
the same time it can be optimized for specific need
of modeling language to provide even better results.
Proposed tree compression technique can also be ap-
plied to parallel LTL model checking.

In this work we will describe tree compression and
provide implementation of it in terms of parallel LTL
model checker DIVINE, which is being developed in
ParaDiSe laboratory of Faculty of Informatics Masarykll
University. Finally this work also includes experimen-
tal results of our tree compression.
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1.1 Model checking

Model checking is an formal method of verification
that given system satisfies given property. Once sys-
tem and property are stated the verification can be
performed automatically by model-checker, that is soft-Jj
ware tool for model checking.

The system can be viewed as computer program in
some programming language, traditionally there exist
languages designed specially for model checking, but
model checking can be performed even on programs in
some general-purpose language such as C and C++.

Property is a formula in temporal logic. Com-
monly used logics to describe properties are LTL, CTL
and CTL*. Typical properties used in model checking
are for example assertion safety, deadlock freedom, re-
sponse properties and many other.

1.2 Explicit model checking

Explicit model checking uses the fact that system in
given moment of execution can be fully described by
the memory it is using — its state. Therefore run of
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system can be viewed as sequence of such states. As
verified systems are usually non-deterministic — either
as a result of asynchronous parallelism or as a fea-
ture of programming language — all possible runs of
such system can be naturally expressed by graph of
all reachable states, connected by oriented transitions
whenever one state can change to another without any
intermediate state which can be observed as different
by program. This graph is called state-space graph of
system.

Explicit model-checker builds this graph and searchesj
it for runs violating property. Similarly to many other
graph traversing algorithms, set of already visited states]
(so called closed-set) need to be used. As state-space
graph can be vast, storing this set gives the problem of
state space explosion — that is memory requirements
of model checking are much larger than memory re-
quirements of single run of system.
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Existing state-space
reduction methods

As state-spaces for explicit model checking of asyn-
chronous parallel communicating processes can be vast, ]
several methods for reducing its memory consumption
were introduced. This chapter reviews some of those
methods, their relationship to tree compression and
some notable implementations.
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2.1 Partial order reduction

Partial order reduction exploits fact that many of sys-
tem executions are equivalent with respect to the ver-
ified property [1]. Using this observation, state-space
can be reduced by omitting some states in a way which
preserves property.

Since reductions achieved by partial order reduc-
tion are orthogonal to reductions of tree compression
it can be combined to provide even better state-space
reduction.

DI1VINE has implementation of parallel partial or-
der reduction [1].

2.2 Compact state-space represen-|
tation

In this section I want to present some techniques used
to decrease memory consumption incurred by storing
state-space in explicit model-checkers without reduc-
ing number of processed states. Most of this tech-
niques are trying to represent closed-set compactly,
sometimes the same representation can also be used
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for open-set.

The only of following methods implemented in DIVINE[
is hash compaction. Please note that not all methods
can be directly applied to DIVINE as some of them
are implementing only insertion and membership test
but DIVINE requires that additional information can
be associated with state and fetched for given state
(such information may include for example predeces-
sor count).

2.2.1 Automata representation

As presented in [10], minimized deterministic automatalj
can be used to represent whole state-space of explicit
model-checker. This approach views state-space as set
of words over alphabet ¥, that is S C ¥*.

The approach presented in aforementioned paper
expects fixed state sizes, therefore can not be directly
applied to DIVINE which does not have fixed length of
states (in LLVM verification). For this reason, another
method of encoding would be needed.

Furthermore algorithms implemented in DIVINE
require closed-set to behave as associative map, which
is not easy to represent by automata.
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2.2.2 Huffman compression

This well known generic method of compression can be
applied to state-space reduction, either with statically
defined compression tables or in setup with learning
runs.

This method was already implemented in DIVINE
in past [15], but it is not supported in DIVINE 3.0. Tt
was also implemented in SPIN model-checker 9] with
even better results [8].

Despite its expected memory savings we decided
not to implement Huffman compression for DIVINE as
tree compression promises similar memory advantage
with better speed and easier integration in our envi-
ronment.

2.2.3 COLLAPSE and recursive indexing

In [8] several compression methods are described and
evaluated with respect to SPIN model-checker. No-
tably two versions of lossless COLLAPSE compression
method.

The first method suggests identifying components
of state vector such as processes and communication
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channels and storing them in separate hash-table. State]]
itself is then represented as global data plus indices of
separately-stored components. As stated in aforemen-
tioned paper a shortcoming of this method is that an
upper-bound on the largest index for the state compo-
nents must be known. Also implementing this method
with growing hash-table would pose further challenges.

Improved version of the COLLAPSE method is also
discussed and evaluated in the aforementioned work,
this method is also called recursive indexing. This
improved version is allowing index sizes to vary be-
tween states by saving index sizes in global compo-
nent of state, which is now stored indirectly by index
too. While recursive application of this method to pro-
cesses and communicating channels is suggested in [8]
it is not benchmarked here.

Please note that COLLAPSE is using knowledge of
state layout to achieve its results, therefore it requires
interface between state-space generator and storage.
This may be complication in cases where this inter-
face is not present, for example when using external
generating algorithm as in DIVINE CESMI.
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2.2.4 Tree compression

In [11] recursive state compression or tree compression
is presented together with evaluation in LTSmin [12].
This technique is basically modification of COLLAPSE
method with states being partitioned recursively. In
their implementation state is partitioned into slots of
fixed size. Tuples of slots are then stored in fixed size
hash-table, forming leaves of tree while references to
those tuples are again grouped as tuples and stored
and so on.

The method we propose in this work combines this
approach with COLLAPSE’s ability to use state layout
and with growing hash-tables used in DIVINE.

2.2.5 Hash compaction

Hash compaction, presented for example in [3| is method]]
which trades completeness of model checking for mem-
ory. Instead of storing full states in hash-set it stores
only hashes of visited states and, if necessary, asso-
ciated information. If implemented carefully it can
lead to algorithm which does not give false-negative
answers, that is if algorithm finds counterexample than
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this counterexample witnesses violation of verified prop-Jj
erty. However algorithm can miss some counterexam-
ple as some states (with equal hash) can be merged
during verification.

Since hash compaction tackles state-space explo-
sion by omitting state information it can be viewed as
lossy compression and as such it cannot be used to-
gether with tree compression. Please note that since
successors are generated from open-set hash compactionl]
cannot be used for open-set compression.

2.3 Modeling language aware meth-}
ods

In some cases better reductions can be achieved us-
ing methods which exploits specific nature of modeling
formalism, such a reductions are used for example in
LLVM interpreter in DIVINE and presented in [14].

Similarly to partial order reduction, those tech-
niques are usually reducing number of states and there-
fore are orthogonal to tree compression and can be well
combined.
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2.4 Distributed verification

Network connected workstations can be used to bring
more space and computing power for verification of
large systems. This approach was actually the original
motivation for first version of DIVINE and is still sup-
ported in DIVINE 3.0, despite the fact that availability
of 64 bit multicore processors and therefore comput-
ers with large RAM and vast computing power in one
machine allowed verification of bigger systems without
this extension.

As distributed memory access is much slower than
local (shared) memory access it is necessary to apply
tree compression only inside one workstation. Com-
munication between workstations then occurs with un-
compressed states. Although tree compression will get
less efficient in distributed memory environment it is
still possible to combine those approaches. However
this combination is not part of this thesis.
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DIVINE

The DIVINE model-checker [4] is explicit model-checker]]
designed to utilize parallelism of in both shared mem-
ory and distributed memory setting. It supports both
safety and LTL properties and currently supports sev-
eral input formats such as DVE, LLVM bytecode (which]]
can be automatically created from C or C++ source
by DIVINE using CLANG compiler), UPPAAL timed
automata format, and Coln. It also provides CESMI
interface which allows representing models as shared li-
brary which is loaded by DIVINE at runtime and used
to generate state-space — this allows easy integration of

14
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new input formalisms, possibly by external developers.

Source codes of DIVINE are freely available from
DIVINE repository! and from web page of DIVINE [5],
under BSD licence.

3.1 Architecture

The DIVINE is written in C++ and since version 3.0
it utilises C++11 language features. Architecture is
modular, with modules connected together using C+-+
templates as opozit to quite common approach us-
ing inheritance and virtual calls. This design allows
tighter integration of components that happens during
compile time, allowing more code to be inlined which
results in faster operation.

The DIVINE consists of several algorithms, each
represented as separate module, itself using other mod-
ules such as visitor modules and store modules. Visitor
modules are implementing several graph traversal al-
gorithms such as DFS, BFS, and pseudo BFS. Pseudo
BFS is used for parallel verification algorithms, it does

'DIVINE repository is available on
http://divine.fi.muni.cz/darcs/mainline/
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not guarantee particular order of traversal and is not
deterministic. Store modules are used by visitor mod-
ules and algorithms to represent closed set in graph
traversal. Each store is hash-table-like module, sup-
porting insertion and retrieval of states and several
supportive operations.

Since implementation of tree compression required
some changes in the architecture of DIVINE, several
technical aspects of DIVINE 3.0 will now be presented.
Those aspects are necessary for understanding of changes|
required by tree compression.

All the following sections are based on sources of
DiVINE 3.0 if not explicitly stated otherwise. Sources
are available in DIVINE 3.0 repository?.

3.1.1 Generators

As input formats for DIVINE are usually programs in
some formalism, it is necessary to generate state-space
for explicit model checking from them. This genera-
tion is performed on-the-fly from initial state by graph

2DIVINE 3.0 repository is located on
http://divine.fi.muni.cz/darcs/branch-3.0/
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generator. With exception of CESMI generator® all
generators are input format specific. They are provid-
ing common interface, notably functions successors
and isAccepting which are responsible for generating
successors of given state and deciding whether state
is accepting respectively. Currently all input formats
are implicit, that is state-space has to be generated by
those functions, it is not stored as part of input.

Each state (that is vertex of state-space graph) is
represented by object of type Blob, which is flat piece
of memory that can be read and written on given lo-
cation, and size can be detected. State memory is
separated in two parts (where the first is optional):
slack and state of model. While slack is used only by
algorithms and never touched by generator, the oppo-
site holds for state of model. Also only state of model
is hashed when storing state. State of model never
changes once the state is generated.

3CESMI generator is used as interface to external generator
provided by shared library.
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3.1.2 Parallelization of algorithms

In DIVINE algorithms are parallelized using visitors
which provide pseudo-BF'S traversal of graph to algo-
rithms. Currently two types of parallel visitors are
available, partitioned visitor and shared visitor.

Partitioned visitor is working with static partition-
ing of states to threads using hash of state. Most oper-
ations are then performed in thread local fashion, for
example each thread has its own hash-table. In this
setting threads are communicating using IPC queues of
edges (queues are transferring from state and to state
of edge). This setting can be extended to multiple ma-
chines using MPI. The disadvantage of this approach
is that static partitioning may cause different loads for
different threads.

Shared visitor is new experimental feature of DIVINE]
which is under heavy development [16]. It facilitates
shared queue and shared hash-table to allow faster par-
allel pseudo BFS exploration. Currently it cannot be
combined with MPI.



CHAPTER 3. DIVINE 19

3.1.3 Interface between visitor and al-
gorithm

Since all algorithms implemented in DIVINE share com-}j
mon basic way of graph traversal, that is they are, for
particular states, looking at outgoing edges and then
(if necessary) to states on the other side of edge, this
usage is abstracted in interface between visitor and al-
gorithm. This interface works as follows: graph is be-
ing traversed in order specified by used visitor (DFS,
BF'S or pseudo BF'S order) and each edge (leading from
already processed state denoted by from to its target
state denoted by to) is processed:
1. edge is processed by function transitionHint
provided usually by visitor itself,
2. if edge is not ignored, to state is fetched from
store (if it is already stored),
3. edge is processed by function transition pro-
vided by algorithm,
4. if transition is not ignored, to state is stored in
store,
5. if transition is to be followed, to state is passed
to expansion function provided by algorithm,
6. finally slack of to state is saved to hash-table if
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necessary (used by hash compaction).

Each of aforementioned functions is a static func-
tion of algorithm or visitor, and working instance of
algorithm is passed as first argument to all algorithm
calls.

This mechanism is implemented using C+-+ tem-
plates, allowing both maximal code reusal at design
time and maximal optimization at compile time.

3.1.4 Memory management

Memory management in DIVINE 3.0 is quite straight-
forward, each state of graph is either temporary or
permanent and its state is marked by single bit inside
Blob. State is generated as temporary and it becomes
permanent once stored in store. Permanent states are
never deallocated during run of DIVINE and their lo-
cation in memory never changes.

This memory management is simple, imposes vir-
tually no overhead and was sufficient for most use cases
as of version 3.0. The fact that permanent states are
freed only on termination does not incur any overhead
as single run of DIVINE can verify only one property
of one model.
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3.1.5 Stores

D1VINE 3.0 supports three types of store: partitioned
store, shared store and hash-compacted store. The
partitioned store is original version used by partitioned
visitor. It has one hash-table for each thread and stor-
ing is full states. Shared store is experimental ver-
sion used by shared visitor. It is optimized for shared
memory, with one hash-table which is shared across
threads. Hash-compacted store is derived from par-
titioned store and is implementing hash compaction
[3], the method of lowering space requirements of ex-
plicit model checking by storing only hashes of states
in closed set. Hash-compacted store does not support
counterexample generation and is currently only suit-
able for reachability analysis.

3.1.6 Counterexample generation

Counterexamples are in DIVINE 3.0 generated using
parent pointers saved into slack of state by algorithms.
When algorithm finishes and detects property viola-
tion it starts counterexample generation, passing ei-
ther accepting state (in case of reachability analysis)
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or state on accepting cycle (in case of LTL verification)
to counterexample generating algorithm.

In reachability case (where counterexample is just
a path to state violating property) it is sufficient to
track parent pointers back to initial state and save
each state into counterexample.

In algorithms for LTL verification, counterexam-
ples have lasso shape containing cycle going through
accepting state of product automaton and path from
initial state to this cycle (in case implemented in DIVINE]
path leads to accepting state on this cycle). Those
counterexamples are generated in two phases. First
path from accepting state to initial state is traced as
in reachability case. Then parallel BFS is run again
from accepting state and parent pointers are updated.
Finally parent pointers are traced from accepting state
back to itself giving cycle part of counterexample.

Note that this approach requires parent pointers to
be valid when searching for counterexample. This as-
sumption holds for classical uncompressed store present]j
in DIVINE 3.0 as from states are already saved in hash-
table (and therefore permanent) when their pointer is
saved into to state.
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Tree compression

With traditional hash-table approach to explicit model
checking, full states are saved. However this is not nec-
essary as in most cases only small part of state changes
from one state to its successors. Several methods to
take advantage of this fact were introduces, for exam-
ple COLLAPSE in SPIN [8] and tree compression with
binary tree in LTSmin [11].

Method described in this thesis is inspired by both
aforementioned methods while at the same time it in-
tegrates well with DIVINE and is optimized for vast
state-spaces.

23
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Figure 4.1: Tree representation of state.

4.1 Representation of states

Instead of traditional method which represents states
as byte vectors, tree compression represents them as
tree with parts of state vector in leaves. As both leaves
and internal nodes of tree are saved in hash-table they
can be naturally reused, leading to memory efficient
representation of state-space where leaves and internal
nodes of tree can be shared between trees of different
states (or even inside state).

In this implementation tree representation of state
can have arbitrary branching and trees can store states
with different sizes. The latter is required by LLVM
interpreter used in DIVINE.
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Figure 4.1 is showing layout of single state repre-
sented as tree. We store roots of tree, internal nodes
and leaves in distinct tables, marked as roots, forks and
leaves in the figure. This allows as to connect unam-
biguously each state with corresponding root and store
associative information in root. Associative informa-
tion cannot be saved separately from root as correct-
ness of DIVINE’s algorithms relies on this information
being state-local (and information is changed during
verification). Size of state is not saved in root as that
would be redundant information since all leaves must
know their size and leaves can be unambiguously iden-
tified in the tree.

Figure 4.2 is illustrating subtree sharing between
states. Note that there are no limits for subtree reusal
in our tree compression, subtrees can be reused even
inside one state or across states with different sizes
(therefore tree compression is actually misleading name]]
as states are represented as acyclic oriented graphs).
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Figure 4.2: Subtree sharing in tree compression.

4.2 Requirements

In DIVINE it was required that tree compression will
integrate well with most already supported features
such as parallel verification, counterexample genera-
tion or partial order reduction. Also it is supposed
to work without special setting by user (with excep-
tion of enabling it). Therefore it is important that
tree compression must allow closed set to be growing,
as DIVINE supports growing hash-sets in parallel ver-
ification as opposed to some model-checkers such as
SPIN who are requiring user to provide upper bound
of number of states.
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When compared to implementation of tree com-
pression in LTSmin we wanted to relax its behavior by
allowing trees to be not only binary but with arbitrary
branching. Furthermore we wanted support for gener-
ators to provide hints how to partition states well (for
example cutting states on process bounds), whereas
above mentioned solution partitioned states to fixed
size chunks.

It must also be possible to integrate tree compres-
sion with verification using shared growing hash-table
which is developed in the same time as tree compres-
sion (more about shared growing hash-table in DIVINE
can be found in [16]).

Finally tree compression in DIVINE is required to
work well with very large state-spaces (that is tenths
of millions of states to billions and further). Such a big
state-spaces cannot be usually (without compression)
explicitly verified by one single-cpu workstation since
they require hundreds of gigabytes of RAM, or even
more.
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4.3 Design and implementation

Because of aforementioned requirements tree compres-
sion was written from scratch, not using any imple-
mentation of similar technique.

The compression support itself consists of two main
parts, the tree-compressed hash-set and tree-compressed]j
store. Tree-compressed hash-set is itself based on ar-
bitrary hash-set which is providing insertHinted and
getHinted operations. This design choose allowed me
both to fully reuse current implementation of hash-set
used for partitioned verification as well as easy support
for experimental version of shared hash-set.

Following sections are summarizing implementa-
tion of tree compression in DIVINE 3.1. As those
changes were performed inside DIVINE’s main reposi-
tory (so called mainline'), which is constantly chang-
ing, I created branch capturing state of this repository
at the time of writing those sections. It is included
with this thesis and available online?.

'DIVINE  mainline  repository is  available on
http://divine.fi.muni.cz/darcs/mainline/

2DIVINE 3.1 Darcs repository with tree compres-
sion implemented as of this thesis is available on


http://divine.fi.muni.cz/darcs/mainline/
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Implementation of tree compression showed some
weaknesses of current workflow in DIVINE. Namely
memory management had to be improved to facilitate
changes in counterexample generation. Those changes
allowed generating counterexamples with both tree com-Jj
pression and hash compaction. As a by-product of
those changes system of stores was reworked. Similarly
when integrating tree compression to instantiation of
algorithms, limits of current system were reached and
therefore new, more flexible system of instantiation
was created?.

4.3.1 Tree-compressed hash-set

Tree-compressed hash-set, represented by class NTreeHashSet ||
is the core of tree compression. It implements com-

http://paradise.fi.muni.cz/ xstill /darcs/divine31 _thesis/
3Since instantiation of algorithms is largely un-
related to tree compression it will not be described
here. Curious readers will find instantiation in
divine/instantiate/ directory inside mainline reposi-
tory (most notably divine/instances/instantiate.h and
divine/instances/definitions.h, previous versions can be
found in history of repository.
4divine/toolkit/ntreehashset.h


http://paradise.fi.muni.cz/~xstill/darcs/divine31_thesis/
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pression itself exporting interface similar to hash-sets
already present in DIVINE.

The header of NTreeHashSet declaration looks as
follows:

template< template< typename, typename >I
class HashSet ,
typename Item , typename Hasher >I
struct NTreeHashSet;

It is parametrized by underlying hash-set it is using,
by type of item being stored and by class providing
hashing and equality tests for objects of type Item.
It should be noted that Item type must provide sev-
eral methods, currently supported only by Blob type.
Those methods are size and data returning size of ob-
ject in bytes and its content as pointer of type charx
respectively.

Tree-compressed hash-set utilizes three hash-sets
(of base type given by its HashSet parameter). Those
hash-sets are used to store different parts of tree — roots
of tree including slack are stored in roots set, internal
nodes are stored in forks set and finally leaves of tree
are in leaves set. This setting allows maximal reusal
of internal nodes and leaves already created by previ-



CHAPTER 4. TREE COMPRESSION 31

ous inserts, while at the same time gives tighter type
control (those tables are storing pointer to different
types as each of type of tree nodes requires different
metainfomation).

Each state is stored as tree identified by instance
of class Root. Instances of this class support direct
access to slack (subsection 3.1.1) and they can also be
reassembled without further support of NTreeHashSet
instance. For internal purposes roots also support enu-
meration of leaves of tree, which is currently unused
outsize NTreeHashSet but it can be used for example
for serialization of compressed states over MPI.

If by chance the model state is shorter than given
lower limit for compression (given by generator), it is
stored entirely in roots table — in this situation tree
compression is actually incurring space overhead as it
has to store additional information in root of tree as
well as the state itself in uncompressed way. In prac-
tice this situation will usually imply that model itself is
quite small and can be easily verified without tree com-
pression and the overhead of tree compression enabled
will not matter (also those models are not primary in-
terest of tree compression as mentioned above).

In all other cases model state is partitioned and
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stored using all three hash-tables. States are inserted
using function insertHinted with following header:

template < typename Generator >
std :: tuple< Rootx, bool > insertHinted ( Item item
hash t hash, Generator& generator ),I

This function requires state, its hash, and generator
responsible for state and it is returning tuple of root
and boolean flag denoting whether state was freshly
inserted or already present. The generator (subsec-
tion 3.1.1) is used to provide hints on desired parti-
tioning of state. The interface between generator and
NTreeHashSet is provided by following functions im-
plemented by generator:

template< typename Yield >

void splitHint ( Node n, Yield yield );

template< typename Yield >

void splitHint( Node n, int form, int length,l
Yield yield );

The first of those function overloads is basically short-
cut for top-level splitting of entire model state, there-
fore we can focus only on the second one. The splitHint]]
function is using generator pattern, expecting its yield]]
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parameter to be callable object’. A range from n to-
gether with flag indicating whether this range is to be
stored as leaf and number of remaining partitions is
passed to yield. All other arguments of splitHint
are pretty self-explanatory. Default implementation
of splitHint is provided in divine/graph/graph.h,
this implementation is creating balanced binary tree
and is generator-agnostic. Specialized versions can be
implemented in particular generator and will be used
automatically if available.

Inside insertHinted, splitHint is called and lambdal}
function is passed as yield argument, allowing easy
recursive generation of n-ary tree defined by genera-
tor. Advantage of this approach is that tree is created
on-the-fly, without any supportive data structure (the
overhead of recursive calls is presumably small as C++
compilers are performing massive inlining and depth of
tree should be at most logarithmic to size of state in
good implementation of splitHint). Using recursion,
splitHint is called until it reaches bottom of desired

5In C+-+11 callable objects are functions, objects implement-
ing operator (), lambda functions and several others such as
results of calls to std: :bind.
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tree. In this moment Leaf instance is allocated and
given range is copied to it from state. Leaf is then
inserted into leaf set, which returns equivalent perma-
nent leaf. This permanent leaf is used on upper level
of recursion to construct fork (pointers to permanent
leaves or forks are saved in forks), and forks are saved
into forks table in similar fashion. As recursion back-
tracks to root entire tree is created and finally root
is inserted. Each time element is inserted to one of
the tables, the original element is discarded if it was
already present in the table (if element is not present
prior insertion it is equivalent to permanent element
and therefore cannot be freed). Finally permanent
root element is returned together with flag indicat-
ing whether it was already present (state is present
in NTreeHashSet if and only if corresponding root is
present here).

As an optimization roots are saved using hash of
entire model state, not the binary representation of
Root object. This allows fetching roots from NTreeHashSet|}
by state, without repeating aforementioned construc-
tion of tree which is allocation heavy (state can be
compared to tree representation almost without allo-
cation — only stack for tree traversal has to be allocated
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— but tree is constructed from state with allocation at
least as big as state itself).

As already mentioned vertices of tree are connected
with pointers, leading in direction from root to leaves.
This approach has obvious disadvantage of memory
overhead incurred by 64 bit pointers (as DIVINE is usu-
ally run in 64 bit environment). On the other hand it
allows easy integration of tree compression with grow-
ing hash-tables as well as reconstruction of state from
tree without assistance of hash-table. Using indices
to hash-table would require trees to be recreated each
time any of tables is resized, slowing down resizing
and complicating design (tree compression would had
to be tightly integrate with hash-table, whereas in
this approach any table with given interface can be
used). Furthermore leveraging advantage of shorter
indices compared to pointers would require trees to be
parametrized by size of index. Finally (as mentioned
in section 4.2) we are aiming at vast state-spaces, pos-
sibly with billions of states, this would either require
indices to be stored in variables whose size is not power
of two (which is quite impractical) or in 64 bit vari-
ables, therefore gaining nothing on memory efficiency.
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4.3.2 Memory management and stores

As mentioned in subsection 3.1.4, memory manage-
ment in DIVINE 3.0 is quite simple. However it is
using some assumptions that no longer holds for com-
pressed states. In particular it is assumed that when
from state is processed by algorithm in transition
(item 3 in subsection 3.1.3) it is permanent and its
memory location can be saved inside to state of tran-
sition for further use in counterexample generation.
This assumption no longer holds for compressed states
as state is no longer saved in one unchanged piece but
is still processed this way by algorithms and visitor
(therefore state visible in algorithms is temporary).
Note that this is the problem which caused hash com-
paction to be unable to provide counterexamples in
DIVINE 3.0.

To solve those issues and allow easy integration of
new types of compression two new types wrapping
state were introduced. Those types are dependent
upon type of store and generator and they are im-
plemented as nested types of store. They are having
common interface independent of store type.

Vertex represents both (possibly temporary) full state]]
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suitable for successor generation and permanent
state saved in hash-table. It is passed to algo-
rithms when processing transitions and states
of model. All uses of slack must be accessing
stack in permanent part of state. Objects of type
Vertex must be convertible to VertexId.

VertexId represents permanent state. It contains slack,Jj
and provides access to it. VertexIds are pro-
cessed by algorithms when iterating over whole
hash-table (used by OWCTY and MAP). Ob-
jects of type VertexId are generally not suitable
for successor generation but support for their
conversion to Vertex may be provided (if com-
pression is lossless). Objects of this type must
be unique and therefore comparable by identity.

Implementation of aforementioned objects for tra-
ditional uncompressed store is quite trivial, they are
simple wrappers around state type used by generator.

For tree compression, VertexId is wrapper around
pointer to root of tree (which is stored in roots ta-
ble inside NTreeHashSet and it provides conversion
to Vertex as tree compression is lossless). Vertex is
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then containing both uncompressed state as provided
by generator and pointer to root of tree.

For hash compaction, VertexId is object contain-
ing just slack and hash of node, while Vertex adds
full state to it. As hash compaction is lossy compres-
sion, conversion from VertexId to Vertex cannot be
provided for hash compaction versions.

Algorithms were modified so that they are always
accessing slack via version saved in hash-table and,
when they need to save identifier of other state (for ex-
ample for predecessor tracking), they must save VertexId.|j
This incurs no memory overhead as VertexId is con-
taining single pointer — same as Blob object used to
represent state in all current generators.

4.3.3 Compressed queues

Compression of closed-set as mentioned above would
certainly help to reduce memory requirements. But
left alone there would still be much space wasted.
This is caused by queues used as open-set for most
algorithms. Those queues can get quite long as they
can be upper bounded by number of states, or more
precisely by width of state-space graph. Queues were
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originally saving full states but in presence of tree com-
pression this is not necessary. For IPC queues from
state can be compressed and local queues can be fully
compressed (as they are saving only from states).

Compression is activated by store, which defines
type QueueVertex, which is type alias for either Vertex}jj
or VertexId. It is required that QueueVertex can be
converted to Vertex and vice versa. For tree compres-
sion QueueVertex is defined as alias of VertexId as
it can be decompressed. For hash compaction it must
be defined as alias of Vertex because hash compaction
is lossy compression. Decompression is performed on-
the-fy in queue.

Prior to this optimization queues were (in presence
of tree compression) containing full states which were
not saved in store leading to large memory overhead.
Now queues are storing just VertexIds, each of size of
single pointer.

Please note that this optimization is easily appli-
cable to BFS based exploration strategies (which are
used by all algorithms in DIVINE with exception of
NestedDFS). Application to DFS would require suc-
cessors to be saved in closed-set before they are pushed
to stack which would require modification of DFS al-
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gorithm used in DIVINE.

In presence of distributed verification using MPI it
would be necessary to decompress QueueVertex when
sending it to other machine as compressed represen-
tation is just a pointer and therefore would be invalid
when sent to different machine.

4.3.4 Interface between visitor and al-
gorithm

Slight modification of interface between visitor and al-
gorithm was required as algorithms must have access
to VertexId for both from and to states of transition.
The new workflow looks like this:

1. edge is processed by function transitionFilter
provided by visitor,

2. if transition is marked to be ignored its process-
ing is abandoned,

3. to state is inserted to store, store returns Vertex
associated with this state and boolean flag de-
noting if vertex was already present,

4. edge is processed by function transition pro-
vided by algorithm (passing inside Vertex object
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for both from and to states),

5. if transition is to be followed, Vertex associated
with fo state is passed to expansion function
provided by algorithm.

The main difference is that to state is saved prior to
transition function is being called. Also only one call
to store is now necessary as storing procedure returns
up-to-date version of Vertex and all modifications of
slack are performed directly in version stored in table.

4.3.5 Counterexample generation

As mentioned in subsection 3.1.6 counterexample gen-
eration algorithm in DIVINE 3.0 used some assump-
tions, which no longer holds for compressed state-space.|j

The new algorithm created for DIVINE 3.1 takes
advantage of VertexIds as guaranteed permanent iden-Jj
tifiers of state which are saved in place of parent point-
ers.

The algorithm has to cope with fact that coun-
terexample is generated from sequence of full states,
whereas VertexIds are just identifiers of those states.
It would be possible to use only slightly modified ver-
sion of original algorithm which would first reassemble
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VertexId to Vertex and than continue with full state.
However this approach would not be suitable for hash
compaction.

The new algorithm is generating each trace in two
phases. First it traces VertexIds back to initial state
(they can be traced as parent’s VertexId is saved in-
side slack which is accessible from VertexId). Com-
parison to initial state must be performed on thread
responsible for given state, that is the thread which
has it saved in its hash-table. Output of this first
phase is sequence of VertexIds from initial state to
target state. In second phase counterexample consist-
ing of full states is generated using this sequence. This
can be done by starting in the initial state (which can
be always generated again by generator) and following
path marked by sequence of VertexIds. Each succes-
sor in trace is compared to matching VertexId and
successors leading outside trace are ignored. Please
note that comparison to VertexId must again happen
on thread owning given state.

Cycle traces can be generated in similar fashion,
main difference is that accepting state is used instead
of initial vertex of graph (this is again preceded by par-
allel BFS with update of parent pointers as in original
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algorithm).

4.4 Integration with parallel vis-
itors

As mentioned above the standard way of parallel ver-
ification in DIVINE is using partitioned setup, that
means states are statically partitioned to threads (us-
ing their hash), this setup can be optionally extended
to network of workstation.

In this setup tree compression can work only on
per-thread basis, compressing inside each partitioned
hash-tables independently (as hash tables are not thread}j
safe in this setup). This means tree compression will
get less efficient as number of threads used for verifi-
cation rises.

Additional memory overhead will be incurred by
IPC queues which cannot be compressed fully as to
states are not stored yet (and they belong to different
thread and therefore cannot be saved prior to their
sending to IPC queue).

This disadvantage will be eliminated in future re-
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leases of DIVINE as new mode of verification using
growing hash-table shared by all threads on machine
is being developed in this time [16]. Experimental im-
plementation of shared hash-table was integrated with
tree compression for the purpose of experiments.

The Figure 4.3 shows schematics of two worker
threads running partitioned visitor. Each of threads
hast its own local queue and it also has IPC queue for
each other worker including itself. While local queue
contains only from states, IPC queue contains whole
transitions, that is from and to edges. Arrows in fig-
ure are showing pointers to data’, on the top there
are temporary data, tree compression hash-tables are
in bottom of figure while queues are in between. ¢
and g2 are local queues and ¢ 1, 12,921 and gz 2 are
IPC queues. Note that from states of IPC queue be-
longs to hash-table of their owner — for example from
states in g9 are processed by worker 2 but they are
compressed and saved by worker 1. Therefore it must

6There is actually small simplification as hash-table does not
store data directly and compressed queues points not to hash-
table but to memory location of data itself, but it can be viewed
as accessible through hash-table as there exist at most one in-
stance of each compressed state in each worker.
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42,2 42,1 H qro

Figure 4.3: Partitioned visitor with tree compression
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be possible to decompress state without direct access
to hash-tables of other workers (otherwise all work-
ers would need to have access to all hash-table, which
would be complicating design).
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Experiments

5.1 Settings

Several measurements were performed comparing tree
compression implementation in DIVINE to default ver-
ification mode of DIVINE, that is hash-table without
compression. If not sated otherwise all memory us-
ages are peak virtual memory as stated by DIVINE
in Memory-Used of report, that is maximal amount
of memory addressable from run of DIVINE on given
model, and time is value of Wall-Time of report, that

47
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is real time of running.
If not stated otherwise DIVINE was executed as
follows

$ divine verify <algorithm> -r --max-memory=<M> -w 1 \Jj
[ --compression=ntree ] <model>

where algorithm is one of supported algorithms (--reachability,|]
--owcty, --map, --nested-dfs), M is memory bound

for run and -w 1 signifies that DIVINE is running with

one thread (to show maximal compression, more about

threading with tree compression in section 4.4).

Models for experimental evaluation originated from
several sources:

D1VINE distribution tarball several examples are
includes in DIVINE itself, mostly LLVM and timed}j
automata examples were used,

BEEM database large database of DVE models of
different sizes [13], some bigger models were used, ]

Modifications of above in most cases models could
have been extended to bigger instances
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5.2 Timed automata

Timed automata input in UPPAAL format are sup-
ported by DIVINE as described in [7]. Jan Havlicek
also kindly provided implementation of splitHint for
timed automata allowing optimized partitioning of states.|j

Figure 5.1 shows impact of tree compression on
model of Fischer’s mutual exclusion protocol relative
to number of processes.

Figure 5.2 shows measurements of reachability (in
this case property is deadlock freedom) on computer
with 8GB of RAM, memory limit was set to 7GB. For
all finished examples with exception of boxes.xml and
fixer.xml property holds.

It can be seen that impact of tree compression rises
with state space sizes. As Timed automata has quite
large states, impact is significant for instances having
roughly half a milion states and more, those instances
can be checked with minimal time overhead.

Figure 5.3 shows measurements of MAP algorithm
for LTL verification. MAP algorithm was used in-
stead of OWCTY (which is asymptotically faster) be-
cause it integrates with tree compression better. With
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OWCTY IPC queues are used even in single threaded
case, in manner which pushes whole spate space into
them (as to vertices, therefore uncompressed). Obvi-
ously this mitigates any savings of tree compression.
OWCTY running with shared visitor does not have
this drawback.

Only for models bridge and fisher9 property holds,
for other models most of memory requirements is causedjj
by counterexample generation. The reason state space
sizes are different when compression is running can be
tracked to implementation of MAP algorithm — it in-
ternally orders states of product automaton by their
location in memory, which is different if states are com-
pressed.

Note that in DIVINE running LTL verification, samel
system state is generated repeatedly, with different
state of property automaton, therefore compression
ratio is better when verifying LTL properties, as over-
head of multiple states is reduced to overhead of mul-
tiple instances or tree root and part of state which
contains position in property automaton.
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5.3 LLVM - C and C++ programs]
with threads

LLVM interpreter is used by DIVINE for verification of
parallel C and C++ programs which are automatically
translated to LLVM bytecode [14, 2|. Thanks to reduc-
tions described in [14], most LLVM models in DIVINE
distribution are quite small to be considered as candi-
dates for compression, despite that all instances were
tested, table is divided into two parts, first shows mod-
els, that cannot be verified in less than 1GB when not
compressed, smaller models are in second part.

Experiments showed that for LLVM, even models
with tens of thousands of states can benefit from tree
compression and with millions of states the benefit
is massive. Also time penalty is small. No particu-
lar limits were set for those tests, but airlines model
failed to terminate within more than one day so it
was omitted (tests were performed on 8 socket server
aura.fi.muni.cz with 440GB of RAM).
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5.4 DVE

DVE models are models of parallel communicating fi-
nite automata, this formalism was designed by DIVINE
authors. Abundance of DVE models can be found in
BEEM database. As BEEM contains hundreds of mod-
els, most of them small, models were chosen in this
way: first larger instances of models were chosen (in-
stances with more than 5 workers if at least of them
were available, otherwise two biggest), then models
were verified with memory limit of 7GB without par-
tial order reduction. Models requiring at least 1GB
of memory (in uncompressed verification) were finally
benchmarked. Results can be seen in Figure 5.5.

It can be seen that for DVE tree compression does
not achieve very good results. Overall compression
gives moderate improvement in memory consumption
while having quite large tome overhead. This is caused
by fact that DVE models have quite small states. Also
DVE generator is far faster than Timed automata and
LLVM generators. If we analyse the worst achieved
result (for at.5) we can see that average memory re-
quirement per one state is roughly 93 bytes in uncom-
pressed verification (computed as ratio of overall mem-
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ory and number of states). Of course this is just upper
bound, including overhead of all data structures used
by DIVINE (such as hash-table itself, queues and many
other), the real size of state is 46 bytes in this case.
Obviously tree compression with default leaf size of 32
bytes cannot help much in this case and other methods
such as Huffman compression would presumably give
better results.
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[MB] compressed | 185 | 211 | 321 | 826 | 2916 | 19420
millions of states 0.12 | 0.55 | 2.4 | 11.1 | 48.8 | 212.9

Figure 5.1: Memory requirements of verification of Fis-
cher’s mutual exclusion protocol. relative to number

of processes.
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memory [MB] time |s] #

normal | ntree | ratio | normal | ntree | ratio sta

boxes 160 176 | 110.0% 0 0 113.3% | 8.9
bridge 156 172 | 110.3% 0 0 74.1% 20¢
fischer 156 172 | 110.3% 0 0 107.3% | 5.8
fischer8 296 188 | 63.4% 6 6 108.3% | 122.
fischer9 954 228 | 23.9% 38 38 101.4% | 555.
fischer10 4517 410 9.1% 201 212 | 105.7% | 2.5
fischerll - 1174 - - 1262 - 11.1
fischer12 — 4163 - - 7810 - 48.¢
fischer13 - - - - - - -
fixer 164 176 | 107.3% 1 2 135.4% | 205.
train-gate8 445 256 | 57.6% 24 27 | 111.6% | 726.
train-gate9 3420 1249 | 36.5% 218 289 | 132.7% | 6.5
train-gatel( - - - - - - -

Figure 5.2: Timed automata — compression with mem-
ory limit of 7GB.
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memory [MB] time [s] #

normal | ntree ratio normal | ntree ratio stat

bridge 129 164 | 126.9% 0 0 130.2% 1.6

fischer9 2575 344 13.4% 1001 1693 | 169.1% 1.7]
fischer10 3599 345 9.6% 206 349 169.8% | 31K
fischerll - 1044 - - 2298 - 117.4
fischer12 - 4005 - - 12921 — 195.¢
fischer13 - — — — — — —
fixer 3604 3150 | 87.4% 446 644 144.6% | 214K-

Figure 5.3: Timed automata — LTL verification with
limit of 7GB, using MAP algorithm.
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memory [MB] time [s]
normal | ntree | ratio | normal | ntree ratio

airlines - - - - - -
elevator 5191 772 14.9% 4238 4417 | 104.2%
elevator2 75963 | 1792 | 2.4% 91575 | 91430 | 99.8%
pt_ barrier 9247 1126 | 12.2% 4583 5052 | 110.2%
pt_rwlock 25191 | 1845 7.3% 19604 | 22811 | 116.4%
anderson 218 269 | 123.7% 0 1 151.0%
at 414 285 68.8% 115 174 151.0%
bakery 254 305 | 120.3% 2 3 133.7%
bridge 160 205 | 127.8% 0 0 247.8%
collision 600 596 | 99.2% 97 196 | 203.2%
cyclic_sched 607 427 | 70.2% 202 255 | 126.2%
elevator _plan 170 207 | 121.9% 1 1 109.4%
fifo 255 306 | 120.1% 2 2 111.6%
fischer 334 289 | 86.6% 74 121 | 163.0%
global 193 243 | 125.6% 0 0 136.7%
lamport 824 315 38.2% 334 362 | 108.2%
lamport_nl 247 299 | 120.8% 4 5 116.5%
lamport n2 215 267 | 123.9%% 0 0 109.7%
lead-uni_b 481 433 | 90.0% 217 250 | 115.4%
lead-uni_ dkr 294 345 | 117.5% 2 2 116.5%
lead-uni_pt 458 452 | 98.6% 84 91 108.9%
peterson 191 241 | 125.7% 1 1 119.7%
pt-showcase 465 517 | 111.0% 2 3 120.0%
pt_cond_vars 361 412 | 114.2% 10 12 118.8%
pt__mutex 203 255 | 125.3% 0 0 129.7%
ring 187 239 | 127.5% 3 3 115.9%
szymanski 280 331 | 118.4% 3 4 116.2%

Figure 5.4: LLVM compression.
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memory [MB] time [s]

normal | ntree | ratio | normal | ntree ratio |
anderson.5 5590 | 6847 | 122.5% 156 433 | 277.1% | ¢
anderson.6 1484 1510 | 101.7% 66 197 | 299.5% |
anderson.7 - - - - - -
at.b 2841 | 4285 | 150.8% 153 312 | 204.4% | «
at.6 - - - - - -
bakery.8 1706 1377 | 80.7% 86 199 | 232.2% | :
exit.4 1506 1493 | 99.2% 67 139 | 207.5% | :
firewire tree.5 | 3151 834 | 26.5% 195 452 | 231.7%
hanoi.3 1963 | 2920 | 148.7% 52 156 | 299.7% | :
hanoi.4 — - - — — —
iprotocol.5 3403 2489 | 73.1% 89 266 | 297.9% | :
iprotocol.6 4008 | 2483 | 61.9% 139 339 | 244.1% | ¢
iprotocol.7 6680 | 4810 | 72.0% 244 499 | 204.7% | ¢
lamport.7 2939 | 3450 | 117.4% 122 367 | 299.4% | «
leader _elect.5 1444 655 | 45.4% 44 173 | 391.7%
leader elect.6 - 5863 - - 1661 - .
leader filt.6 1588 1359 | 85.5% 44 133 | 304.8% | :
mcs.H 5535 | 5262 | 95.1% 198 614 | 310.3% | ¢
phils.6 1054 935 | 88.7% 34 145 | 429.0%
phils.7 - - - — - -
phils.8 2457 | 1702 | 69.3% 127 430 | 339.3% | 1
plc.4 1092 825 | 75.6% | 23503 | 23647 | 100.6%
prod cell.6 1970 | 1428 | 72.5% 50 163 | 328.0% |
sokoban.3 — 4831 - — 1215 — |
sorter.4 1674 1381 | 82.5% 182 227 | 125.0% | 1
szymanski.b 6449 | 4853 | 75.3% 334 1110 | 332.4% | °
telephony.6 - - - - - -
telephony.7 1658 1858 | 112.1% 137 301 | 220.3% | :
telephony.8 - - - - - -

Figure 5.5: DVE — compression with memory limit of

=R
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Conclusion

We proposed improved version of tree compression, a
method of mitigating state-space explosion in explicit
model checking. It works by replacing standard hash-
table by compressed hash-table which is reusing parts
of states that are already saved.

The aim was to provide memory efficient storage
for model checking of programs with vast state spaces,
such as real world programs in C and C++. Those
state-spaces are big in both number of states as well
as in size of particular state, which may contain for
example dynamically allocated data. Also, such a pro-

29
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grams have variable size of state and we support this
in our tree compression.

The proposed tree compression can work in gen-
eral way, not depending on particular modeling lan-
guage and state space generator. In fact it could be
used in different environments than model checking as
a general hash-map as well. At the same time this
tree compression can be easily integrated with specific
state-space generator to further improve memory effi-
ciency by specifying optimal shape of tree representa-
tion.

Tree compression was implemented in DIVINE model-}}
checker and integrated with most of its functionality
(currently with only exception of distributed MPI ver-
ification). Tree compression is being used for compres-
sion of BFS queues as well, and for partial compression
of DFS stack.

Results of tree compression on LLVM (which is
used for verification of C and C++) programs and
timed automata are very good memory saving (best
achieved compression ratio for LLVM examples is 2.4%
of memory requirements of uncompressed run) with
minimal impact to verification time. As a result of this
efficiency, feasibility of LLVM examples shifted (mem-
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ory wise) from multi-socket servers or network of work-
stations to single desktop or laptop computer. This is
a starting point to verification of instances for which
standard approach would require several terabytes of
memory. Also memory overhead of LTL verification
can be efficiently mitigated by tree compression.
Integration with parallel verification is supported
however it looses some efficiency with partitioned setuplf
used traditionally by DIVINE. This downside will be
mitigated by use of new shared memory verification
approach being developed in [16] at this time.

6.1 Future work

In future we would like to combine tree compression
with distributed verification using MPI, allowing states}
to be compressed inside each workstation to facilitate
verification of even larger state-spaces.

Memory efficiency of tree compression could be fur-
ther improved by allowing to save certain parts of state
explicitly in root of tree. Such parts would include
short and heavily changing fragments, such as posi-
tions in property automaton when verifiing LTL or
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program counters in LLVM.

As speed of verification with tree compression may
become limiting factor in some cases, we would like
to work on methods to improve time efficiency, while
retaining its memory efficiency.

Finally combination of tree compression with other
compression techniques such as Huffman compression
is interesting field which may further push limits of
state-of-the art explicit LTL model checking.
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