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Abstract

The computer industry is undergoing a paradigm shift. Chip manufacturers are shift-
ing development resources away from single-core chips to a new generation of multi-
core or even many-core chips. Huge clusters of multi-core workstations are easily ac-
cessible everywhere, external memory devices, such as hard disks or solid state disks,
are getting more powerful both in terms of capacity and access speed. This fundamen-
tal technological shift in core computing architectures requires a fundamental change
in how we ensure the quality of software. The key issue is that the verification tech-
niques need to undergo a similarly deep technological transition to catch up with the
complexity of software designed for the new hardware. It is, therefore, inevitable to
come up with new techniques that allow full exploitation of the power offered by the
new computer hardware to make the automated verification techniques capable of
handling next-generation computer systems. In particular, this thesis demonstrates
how the automated formal verification procedures, such as explicit LTL model check-
ing or decomposition of a directed graph into strongly connected components, can
be adapted to employ the computational power of clusters, multi-cored workstations,
disks or graphics processing units.

The thesis is conceived as a collection of articles. The collection contains thirteen tech-
nical papers published in journals or conference proceedings, and six tool papers de-
scribing software tools released under the supervision of the author of this thesis. The
author contributed to the collection mainly by formulating the ideas of results pub-
lished in the articles of the collection, but also by performing numerous analyses and
interpretations of experimental measurements, by writing down significant parts of
texts, and by implementing parts of released software tools.
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Abstrakt

Počı́tačový průmysl procházı́ výraznou změnou výpočetnı́ho paradigmatu. Výrobci
čipů se nadále nezaměřujı́ na výrobu jednojaderných čipů, ale na výrobu vı́cejaderných
nebo dokonce mnohojaderných čipů. I dı́ky tomu jsou dnes běžně dostupné obrovské
výpočetnı́ klastry vı́cejaderných uzlů. Rostou také výkonostnı́ parametry jako ka-
pacita, nebo přı́stupová doba, všech externı́ch paměťových médiı́. Tento fundamentálnı́
technologický posun v kvalitě výpočetnı́ch architektur sebou nese také posun ve způso-
bu, jakým je třeba zajišťovat kvalitu produkovaných výpočetnı́ch systémů. Klı́čovým
aspektem je zejména to, aby verifikačnı́ techniky podstoupily podobný technologický
posun, a byly tak schopny zachytit komplexnost soudobých systémů. Je nezbytné
vyvinout nové techniky, které umožnı́ plně využı́t sı́lu soudobých a nadcházejı́cı́ch
výpočetnı́ch systémů. V této habilitačnı́ práci je konkrétně demonstrováno, jakým
způsobem je možné adaptovat techniky automatizované formálnı́ verifikace, jmen-
ovitě proces ověřovánı́ modelu pro logiky lineárnı́ho času a proces dekompozice ori-
entovaného grafu na silně souvislé komponenty tak, aby tyto techniky využily výpo-
četnı́ sı́ly klastrů, vı́cejaderných pracovnı́ch statnic, disků, nebo grafických karet.

Tato habilitačnı́ práce je koncipována jako soubor uveřejněných vědeckých pracı́ (§72
odst. 3 pı́smena b zákona o vysokých školách). Soubor obsahuje třináct článků pub-
likovaných v časopisech nebo konferenčnı́ch sbornı́cı́ch a šest článků popisujı́cı́ch pro-
gramové nástroje, které vznikly pod supervizı́ autora této habilitačnı́ práce. Přı́spěvek
autora do souboru uveřejněných pracı́ tkvı́ zejména ve formulaci publikovaných myš-
lenek, ale také v prováděnı́ nesčetných analýz a interpretacı́ experimentálnı́ch měřenı́,
v psanı́ textu samotných článků a v implementaci částı́ zveřejněných softvérových
nástrojů.
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First of all, I would like to thank to Luboš Brim for being my supervisor. I would never
be where I am without his guidance, support and the courage to start the parallel
model checking topic. I appreciate all the fruitful discussions, tiring squash matches,
and even rare quarrels we had.

I also wish to thank all my coauthors and acknowledge all the work they did. Espe-
cially, I thank all the students participating in the development of DiVinE tool and all
its spin-offs and branches.

Many thanks should also go to my wife and our daughters for their endless patience
and moral support.

vii





Contents

I Commentary 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Focus of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7
2.1 Parallel Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 State Space Generation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Beyond State Space Generation . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Shared-Memory Architectures . . . . . . . . . . . . . . . . . . . . 8
2.1.4 GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Parallel Symbolic Model Checking . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Embarrassingly Parallel Model Checking . . . . . . . . . . . . . . . . . . 10
2.4 SCC Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Model Checking with Disks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Thesis Contribution 13
3.1 Parallel and Distributed-Memory LTL Model Checking . . . . . . . . . . 13
3.2 I/O Efficient Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 SCC Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Verification of Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . 16
3.5 Tools and Tool Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Bibliography 19

II Collection of Articles 31

5 Journal and Conference Papers 33
5.1 Shared Hash Tables in Parallel Model Checking . . . . . . . . . . . . . . 35
5.2 Scalable shared memory LTL model checking . . . . . . . . . . . . . . . . 49
5.3 Efficient Large-Scale Model Checking . . . . . . . . . . . . . . . . . . . . 65
5.4 Optimal On-the-Fly Parallel Algorithm for Weak LTL . . . . . . . . . . . 77
5.5 CUDA accelerated LTL Model Checking . . . . . . . . . . . . . . . . . . . 97
5.6 Parallel Algorithms for Finding SCCs . . . . . . . . . . . . . . . . . . . . 105
5.7 Distributed Algorithms for SCC Decomposition . . . . . . . . . . . . . . 121

ix



x CONTENTS

5.8 I/O Efficient Accepting Cycle Detection . . . . . . . . . . . . . . . . . . . 143
5.9 Can Flash Memory Help in Model Checking . . . . . . . . . . . . . . . . 157
5.10 Revisiting Resistance Speeds Up LTL Model Checking . . . . . . . . . . . 173
5.11 Cluster-Based I/O Efficient LTL Model Checking . . . . . . . . . . . . . . 189
5.12 Local Quantitative LTL Model Checking . . . . . . . . . . . . . . . . . . . 195
5.13 Model Checking of Systems with Degradation . . . . . . . . . . . . . . . 211

6 Tool Papers 221
6.1 DiVinE – A Tool for Distributed Verification . . . . . . . . . . . . . . . . . 223
6.2 DiVinE Multi-Core – A Parallel LTL Model-Checker . . . . . . . . . . . . 227
6.3 DiVinE-CUDA: A Tool for GPU Accelerated LTL MC . . . . . . . . . . . 233
6.4 DiVinE 2.0: High-Performance Model Checking . . . . . . . . . . . . . . 239
6.5 ProbDiVinE: A Parallel Qualitative LTL Model Checker . . . . . . . . . . 241
6.6 ProbDiVinE-MC: Model Checker for Probabilistic Systems . . . . . . . . 243



Part I

Commentary

1





Chapter 1

Introduction

1.1 Motivation

The computing power of computers has increased by a factor of a million over the
past couple of decades. As a matter of fact, the development effort, both in industry
and in academia, has gone into developing bigger, more powerful and more complex
applications. Due to various factors such as continuing miniaturization, parallel and
distributed computing, etc., we may still expect a similar rate of growth in the next
few decades. With the increase in complexity of computer systems, it became even
more important to develop formal methods for ensuring their quality and reliability.
Various techniques for automated and semi-automated analysis and verification have
been designed and successfully applied to small real-life systems. However, many
of these techniques are computationally demanding and memory-intensive in general
and their applicability to large and complex systems routinely seen in practice these
days is limited. The major hampering factor is the state space explosion problem due to
which large industrial models cannot be efficiently handled unless more sophisticated
and scalable methods are used.

A lot of attention has been paid to the development of approaches to fight the
state space explosion problem [58] in the field of automated formal verification [125].
Many techniques, such as a state compaction [75], compression [94], state space re-
duction [124, 56, 68], symbolic state space representation [45], etc., are used to reduce
the memory requirements needed to handle the verification problem with a standard
sequential software tool. Employing these techniques allows user to process larger
systems with the same computing power. A complementary approach suggests to
employ more computational power. To that end, various verification and analysis
techniques that can efficiently utilize the power of combined hardware resources have
been studied. Some of the techniques are general and applicable across a broad range
of computing platforms, some of them are tailored to the specific capabilities of a
particular hardware architectures. Examples include techniques to fight the mem-
ory limits with an efficient utilization of external memory devices [134], techniques
that introduce cluster-based algorithms to employ the aggregate power of network-
interconnected computers [133, 115, 73, 7], techniques to speed-up the verification
process on multi-core processors [96, 14, 113], etc. An inevitable aspect of employ-
ing combined hardware resources is parallel processing. Unfortunately, it is not the
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4 CHAPTER 1. INTRODUCTION

case that all the sequential solutions that are used for serial processing can be easily
applied in parallel setting. On the contrary, many sequential solutions and algorithms
are practically ineffective when used to utilize combined hardware resources. As a
result, different solutions must have been and must be devised in order to facilitate
parallel processing.

The idea of using combined resources to increase the computational power is far
from being new. Attempts to use hard drives or parallel computers for verification of
large systems have appeared in the very early years of the automated formal verifi-
cation era. However, the inaccessibility of cheap parallel computers with sufficiently
fast external memory devices together with the negative theoretical complexity results
excluded these approaches from the main stream in formal verification. Moreover,
thanks to the Moore’s law, the performance of software tools kept improving contin-
uously for years as the power of a single cored CPU grew. The situation changed
dramatically with oncoming of multi core CPU chips. The progress in computer de-
sign over the past decades had measured several orders of magnitude with respect to
various physical parameters such as power consumption, efficiency, physical size or
cost. As a result, it became more efficient for chip producers to introduce multiple CPU
cores on a single chip rather than to increase the speed of a single core. As the speed of
a single core virtually stopped growing, every piece of software that was built upon a
serial algorithm could not take the advantage of technological progress anymore. The
focus of parallel and distributed-memory computing community shifted away from
unique massively parallel systems competing for world records towards smaller and
more cost effective systems built up from small and cheap personal computer parts.
Suddenly, the need for parallel processing become rather general and wide spread in
all science fields relying on complex computation operations, automated formal veri-
fication being not an exception.

Besides the parallel processing, the interest of formal verification community in
specific hardware platforms has widen to graphics processing units and NVIDIA’s
CUDA technology, but also to contemporary external memory devices, such as solid
state disks. As a matter of fact, the interest in the platform-dependent formal verifica-
tion has been revived.

1.2 Focus of the Thesis

One particularly successful approach to automated formal verification is model check-
ing [57, 5]. It builds upon an automated procedure that takes a model of a system and
decides whether the model satisfies a given property or not. This thesis focuses, in
particular, on platform dependent techniques and algorithms for model checking of
formulas of Linear Temporal Logic (LTL) [127].

Articles included in the thesis describe results that allow implementation of scal-
able parallel LTL model checking algorithms. Upon the theoretical results presented
in the thesis, software tools that are capable of efficient usage of aggregate computa-
tion resources of shared-memory and distributed-memory parallel architectures are
presented. Thesis also describes new, the so called I/O efficient, algorithms for LTL
model checking with external memory devices. Besides the LTL model checking prob-
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lem, parallel algorithms for decomposing a directed graph into strongly connected
components (SCCs) are described. SCC decomposition problem is inherently present
in the core of many automated formal verification procedures. Finally, the platform-
dependent verification of discrete nondeterministic systems is carried on to discrete
probabilistic systems and systems with degradation.

1.3 Preliminaries

Given a model of a system, the model checking problem is to decide whether the
model meets a given specification or not. For model checking purposes, the spec-
ification needs to be formalized by means of temporal logic, LTL in our case. An
efficient automated procedure to decide LTL model checking problem has been intro-
duced [138]. It employs the theory of automata over infinite words, in particular, it
exploits the fact that every set of executions expressible by an LTL formula is an ω-
regular set and as such can be described by a Büchi automaton. The approach suggests
to express all the system executions by a system automaton and all the executions vio-
lating the given LTL formula by a property or negative claim automaton. These automata
are combined into their synchronous product in order to check for the existence of
system executions that violate the property. The language recognized by the product
automaton is empty if and only if no system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as an accept-
ing cycle detection problem in a graph. Each Büchi automaton can be naturally identified
with an automaton graph which is a directed graph G = (V,E, s,A) where V is the set
of vertices (n = |V |), E is a set of edges (m = |E|), s is an initial vertex, and A ⊆ V

is a set of accepting vertices. We say that a cycle in G is accepting if it contains an
accepting vertex. Let A be a Büchi automaton and GA the corresponding automaton
graph. Then A recognizes a nonempty language iff GA contains an accepting cycle
reachable from s. The LTL model-checking problem is thus reduced to the accepting
cycle detection problem in the automaton graph.

Optimal sequential algorithms for accepting cycle detection use depth-first search
strategy. The individual algorithms differ in their space requirements, length of the
counterexample produced, and other aspects [137]. The typical algorithm used is the
Nested DFS algorithm [61]. The idea of the algorithm is to use two interleaved depth-
first searches, where the first one discovers accepting states reachable from the initial
state, while the second one – the nested, checks for a self-reachability of all accepting
states revealed by the first (outer) search. Several modifications of the algorithm have
been suggested to remedy some of its disadvantages [76]. The well known model
checker built on the Nested DFS algorithm is model checker SPIN [94, 93, 132].

The optimality of the Nested DFS algorithm is achieved due to the particular order
in which the graph is processed. The order guarantees that no vertices of the graph
are visited more than twice. In fact, all the best-known algorithms rely on the same
exploring principle, namely the postorder as computed by the depth-first search [60].
Unfortunately, deciding the postorder is P -complete problem [130] and as such it is in-
herently sequential, which means that any algorithmic solution relying on the depth-
first search postorder will have difficulties to efficiently employ contemporary parallel
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hardware architectures. A work-optimal scalable parallel algorithm for accepting cy-
cle detection problem is unknown and, due to Reif [130], it is unlikely to exist.

An inseparable task of the model checking procedure is the so called state space
generation problem. When specifying the system to be verified, the system is typically
given by an initial configuration (initial state) and a function describing how the sys-
tem evolves from one configuration into one or more succeeding ones. The is carried
out by the so called next-state function. Such a definition of a system is referred to
as an implicit definition. The state space generation problem is then a problem of
enumerating all states (configurations) reachable from the initial state (initial configu-
ration) using the next-state function. Performing the state space generation basically
amounts to performing a graph traversal procedure. To guarantee termination for
cyclic graphs, a graph traversal procedure keeps track of vertices (states) that have
been traversed (generated). Due to the huge number of states (configurations) a sys-
tem can reach, the state space generation procedure is time and memory demanding.
The number of states a system can reach tends to grow exponentially with the size of
the next-state function description. This is the so called state space explosion problem.
Due to the state space explosion the amount of memory needed to store all reachable
states for a real-life system typically exceeds the memory available to the algorithm, in
which case the particular model checking procedure terminates incomplete. Verifica-
tion approaches that are capable of detecting a violation of the verified property prior
the full state space is generated are generally referred to as on-the-fly approaches.



Chapter 2

State of the Art

2.1 Parallel Model Checking

The need of parallel processing in automated formal verification stemmed from the
desire to fight the state space explosion problem by employing aggregate memory
of multiple network interconnected workstations. The crucial aspect studied at first
was how to partition the state space (the set of visited states) among individual parts
of the distributed-memory platform in order to take advantage of aggregate memory
and parallel processing at the same time.

2.1.1 State Space Generation

Based on a parallel algorithm for state space generation [46] a static partitioning scheme
relying on a hash function was suggested [52]. As observed by multiple researchers,
the hash-based partitioning yields better space locality if only parts of the state de-
scriptor are used as the input to the partitioning function. While there were ap-
proaches requiring the user of the tool to specify the concrete parts of the state de-
scriptor to be used for partitioning [52, 115], other approaches employed automated
or semi-automated techniques to do it [121, 122]. Techniques to load balance the set
of visited states, also known as repartitioning techniques, have been suggested as
well [2, 116, 111]. State space generation schemes employing probability aspects were
also introduced [107, 106].

The first known public implementation of a distributed memory tool for veri-
fication of communication protocols was the parallel implementation of the Murϕ
tool [63, 133]. Active messages were used later on to improve the efficiency of the
distributed-memory parallel processing with Murϕ [141]. After the successful story of
the Murϕ tool, the distributed-memory state space generation appeared in many other
verification tools, such as SPIN [115, 116], CADP [73], UPPALL [31], etc. Distributed-
memory state space generation as a technique of automated formal verification also
appeared in the context of Petri Nets [52, 88] and Markov chains [87, 86].

2.1.2 Beyond State Space Generation

The explicit model checking procedure is typically bound to linear time logic. Due
to Vardi and Wolper [139], the LTL model checking problem reduces to the problem

7
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of emptiness of Büchi automata, hence to the problem of accepting cycle detection in
a directed graph. Several parallel and distributed-memory algorithms for accepting
cycle detection were introduced. The first implementation [17] employed the so called
dependency structure to record the reachability relation among accepting states of a
distributed graph and applied the topological sort algorithm [105] to detect the pres-
ence of a self-reachable accepting state. Other parallel algorithms are built upon var-
ious ideas: negative cycle detection [43, 41], property automaton decomposition [8],
symbolic SCC hull detection [47], value propagation [42], or back-level edges as pro-
duced by a breadth-first search procedure [9, 10]. According to experimental evalu-
ations, practically the best algorithm to be used for parallel accepting cycle detection
combines the ideas of symbolic SCC hull detection and value propagation [15].

Besides the LTL model checking, parallel and distributed-memory algorithms for
other formal verification procedures were designed. Explicit parallel and distributed-
memory algorithms for verification of µ-calculus [37, 38, 91] or alternation-free boolean
equation systems [103] are known. Parallel explicit CTL model checking have been in-
troduced as well [44, 40]. Techniques of state space reduction have been studied in the
context of parallel processing as well. Approaches to reduce the state space mod-
ulo strong bisimulation were designed [34, 35] as well as a distributed-memory tool
LTSmin to perform signature-based bisimulation reduction for strong and branching
bisimulation [36]. Grid-enabled version of probabilistic model checker PRISM [112]
has been reported too [143].

2.1.3 Shared-Memory Architectures

Most techniques and results known from the distributed-memory setting are straight-
forwardly applicable also to shared-memory architectures. However, scalability of
distributed-memory solutions is often limited in shared-memory setting [12]. There-
fore, shared-memory specific techniques have been developed to improve the effi-
ciency and scalability of many parallel solutions leading in some cases almost to an
optimal scalability [113]. The shared-memory specific techniques include, for exam-
ple, shared communication data structures [98, 13], specific termination detection tech-
niques [13], dual-core algorithms [96] or quite unique partitioning schemes [95].

2.1.4 GPU Computing

After NVIDIA’s CUDA technology [62] was introduced, a lot of computational de-
manding task have been accelerated by GPU-aware algorithms. Examples of GPU
accelerated procedures include, but are not limited to sorting procedure [77], reduce
operation [85], or numerous biological and physical simulations, such as protein fold-
ing [101]. As for graph theory, successful adaptation of graph traversal algorithms
were reported [83, 84] demonstrating the computational power of the CUDA device.
Nevertheless, to achieve overall speedup in processing the graph to be traversed with
a CUDA accelerated algorithm has to be stored in suitable data format, adjacency ma-
trix for example.

The CUDA technology as a computing platform attracted also researches in the
field of automated formal verification. The key challenge for which no satisfactory so-
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lution is known yet is how to CUDA accelerate the generation of the state space graph
from the implicit definition. Preliminary attempts to do so relate to explicit model
checking approach. They suggest to employ massively parallel check for enabledness
of transitions emanating from the states on the frontier of the search and massively
parallel execution of all the enabled transitions [66, 67].

Once the state space is generated and represented in appropriate sparse matrix like
structure, many verification tasks could be accelerated using CUDA technology. This
has been successfully demonstrated, for example, for explicit LTL model checking [23,
22], or verification of probabilistic systems [39].

2.2 Parallel Symbolic Model Checking

Symbolic approach to model checking [104] is definitely one of the most important
milestones achieved in automated formal verification. The key idea of the approach
is to replace the space demanding explicit enumeration of the set of states by signif-
icantly more succinct representation, and at the same time, allow for traversing of
multiple edges in the state space graph at once rather than handling them one by one
as done in the explicit/enumerative approach. Both goals could be achieved if the
set of visited states and the next-state functions are encoded using Binary Decision
Diagrams (BDDs), see e.g. [57]. The model checking procedure than reduces to ma-
nipulation of BDD structures. Unlike the explicit approach, the size of a BDD does not
necessarily grow with the number of states stored in the set represented with the BDD,
but rather with the irregularity of the set. For regular set of states, as produced e.g.
by synchronous systems, the symbolic approach is unbeatable, but for irregular state
spaces as produced typically by asynchronous systems BDDs are not that efficient.

Symbolic model checking can be adapted to parallel processing in various ways.
The first option is to run a serial model checking algorithm that calls to parallel BDD
manipulation routines. Such parallel BDD manipulation approaches were success-
fully applied to accelerate operations over large BDDs [119, 129, 135].

The second approach to adapt the symbolic model checking procedure to parallel
processing mimics the state space partitioning as known from the explicit approach.
To that end BDD slicing was introduced [90, 32, 89]. The set of states is a priory parti-
tioned according to the value of BDD control variables (BDD internal nodes) and the
BDD is sliced into multiple BDDs that are maintained by individual computation par-
ticipating workstations. The static partitioning was found inefficient because of the
network communication overhead rendered necessarily even for small verification in-
stances. Therefore, dynamic adaptive BDD slicing were introduced later on [80]. Still
the model checking process did not exhibited the expected speed-up which was, as
identified later, due to the synchronous execution of individual BDD operations. This
has been overcome by introducing virtually asynchronous processing over distributed
BDD slices [79] that lead to up to ten-fold speedup compared to the synchronous ver-
sion.

A different approach to symbolic state space generation and model checking is
saturation [53, 54]. The idea of it is to avoid encoding of the transition function with
a decision diagram, and thus, avoid slightly unpredictable operations over the two
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decision diagrams. Instead, the set of states reachable from a given set of states en-
coded by a BDD or an MDD (multi-valued decision diagram) is computed by direct
manipulation of the internal nodes of the decision diagram representing the set of
states reached so far. Unfortunately, the order in which the internal nodes of BDD or
MDD are manipulated, is strictly given. The order resembles depth-first search pos-
torder, hence, satisfactory scalable parallel technique to saturate a given BDD or MDD
has not been found yet [55], some researchers even suggest to optimize the sequential
algorithms rather than to parallelize them [71]. Nevertheless, horizontal partition-
ing [129] was employed for building up a parallel saturation procedure [49] that was
improved later on with static [51] and dynamic pattern [50] for speculative execution
of system transitions.

Beyond the state space generation, symbolic parallel approach to handle the veri-
fication of µ-calculus formulas has been introduced as well [78].

2.3 Embarrassingly Parallel Model Checking

The model checking task can be viewed as one big and computation demanding proce-
dure that is a natural candidate for being solved by means of parallel processing. The
parallel solutions mentioned so far introduce multiple parallel agents that process the
input data and communicate intensively to achieve the desired goal. However, this
is not the only option. The whole model checking procedure can be viewed also as a
bunch of many independent tasks that can be executed solely in parallel, i.e. without
any communication. Such a parallel solution is generally referred to as an embarrass-
ingly parallel approach. The difference can be nicely demonstrated on the LTL model
checking problem. While the classical parallel approaches suggest to employ multi-
ple communicating agents to detect the presence of an accepting cycle in the directed
graph, the embarrassingly parallel approach suggests to take individual system ex-
ecutions and check every single one for its conformance with the verified property.
The number of executions of a system may, however, be infinite, which renders the
embarrassingly parallel approach incomplete. Therefore, the embarrassingly parallel
solutions could rather be viewed as fast bug finding techniques. Examples of embar-
rassingly parallel approaches include parallel randomized state space search [64] or
parallel guided counter-example generation [131].

Regarding the LTL model checking procedure, the order in which the vertices of
the product automaton graph are explored plays significant role provided the graph
contains an error state or accepting cycle to be discovered. With good traverse order
the discovery of an error is a matter of relatively small number of steps of the un-
derlying algorithm. An embarrassingly parallel approach to LTL model checking that
instanciates multiple standard sequential procedures in parallel each with a randomly
modified order of exploration has been introduced [97].

2.4 SCC Decomposition

The problem of decomposition of a directed graph into its strongly connected compo-
nents is a fundamental graph problem inherently present in many scientific and com-
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mercial applications. The problem is defined as follows. Let G be a directed graph,
i.e. G is a pair (V , E), where V is a set of vertices, and E ⊆ V × V is a set of edges.
Let E∗ be a transitive and reflexive closure of E and s, t ∈ V two vertices. We say
that vertex t is reachable from vertex s if (s, t) ∈ E∗. A set of vertices C ⊆ V is strongly
connected, if for any vertices u, v ∈ C, we have that v is reachable from u. A strongly
connected component (SCC) is a maximal strongly connected C ⊆ V , i.e. such that no C ′

with C ( C ′ ⊆ V is strongly connected. The problem of SCC decomposition is the
problem of identification of all strongly connected components for a given graph.

As for the automated formal verification, the SCC decomposition problem is used
as a subroutine in many algorithmic solutions. For example, the SCC decomposition
algorithm is employed for verification of probabilistic systems, state space reduction
by τ -confluence, verification of systems with fairness constraints, or verification of
liner time properties given by other than Büchi automata. SCC-based algorithms can
also be used directly for LTL model checking. While Nested DFS is more space effi-
cient, SCC-based algorithms produce shorter counterexamples in general [69].

An efficient algorithmic solution to this problem is due to Tarjan [136], who showed
that, given a graph with n vertices and m edges, it is possible to identify and list all
strongly connected components of the graph inO(n+m) time andO(n) space. Unfor-
tunately, the Tarjan’s solution builds upon the depth-first search postorder and as such
it is limited to sequential computing paradigms, hence inappropriate for contempo-
rary parallel computing platforms. The existence of an work-optimal scalable parallel
algorithm for SCC decomposition is an open problem. All the so far known parallel
solutions to the problem exhibit unoptimal time complexity.

Different approaches suitable for parallel processing have been considered. See
e.g. [74, 59, 3] for algorithm that works inO(log2n) time, but requiresO(n2.376) parallel
processors, or [142] for randomized parallel algorithm for the problem. Another par-
allel algorithm for SCC decomposition exploits the fact that it is possible to efficiently
compute in parallel the set of vertices reachable from a certain vertex or set of ver-
tices [72]. The general idea of the algorithm is to repeatedly pick a vertex of the graph
and identify the component to which it belongs, by using the forward and a back-
ward parallel reachability procedures. The algorithm proved to be efficient enough
in practice, which resulted in several theoretical improvements of it [123, 117]. The
worst time complexity of the algorithm is O(n · (n+m)). Nevertheless, the algorithm
exhibits O(m · log n) expected time [72]. A completely different strategy to detect SCC
in parallel was introduced in [123]. The algorithm employs value forward value prop-
agation to partition the graph into subgraphs respecting the SCCs. Each subgraph as
computed by the algorithm is rooted, hence subsequent backward reachability identi-
fies exactly the leading component of the subgraph. The algorithm performs well for
graphs with many small components, however, for graphs with large components it
is easily outperformed by other parallel algorithms.

2.5 Model Checking with Disks

Efficient usage of memory hierarchies is an established research topic [118]. Special-
ized algorithms were devised to efficiently utilize external-memory block devices. The
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efficiency is of such the algorithms is typically measured using the so called I/O (in-
put/output) complexity [1]. First of all, general graph traversal algorithms (state space
generation, in the context of formal verification) were adapted to become I/O effi-
cient. To that end the delayed duplicate detection was introduced [48] and further
improved [144, 6, 81] or specialized for undirected graphs [108, 109].

Employing disk to fight the state explosion problem in formal verification has
started by the disk extension of the verification tool Murϕ [134, 126]. The external
devices were also used to reconstruct the counterexample when applying the sweep-
line heuristics search [110].

As for problems beyond the state space generation. First results published em-
ploy a generic reduction of model checking problem to the reachability problem [33].
Unfortunately, such a reduction resulted in a quadratic grow in the space demands,
which effectively eliminated the possibility of complete search. There were heuristics
used instead trying to prove the existence of a counterexample. We have seen random
walks strategy [102], or iterative deepening and A∗ algorithms to be used [99, 100].
Another incomplete model checking approach suggested builds on the fact that new
transitions tend to lead to new states or to a states in recent breadth-first search lev-
els [114].

The quadratic space overhead in the I/O efficient LTL model checking was avoided
later on [24] and further improved by introducing the so called merge omissions [26]
that allowed for more efficient delayed duplicate detection in the later stages of the
computation. Various formulas for actual omissions were introduced [70]. A com-
pletely different technique for trading time for space has been suggested and is now
referred to as the semi-external approach to LTL model checking problem [65].

A problem related to I/O efficient verification, delayed duplicate detection in par-
ticular, exists and is known as the streaming state space problem [92].



Chapter 3

Thesis Contribution

This habilitation thesis is conceived as a collection of articles. Summary of results
achieved is given in four sections. Each section groups together results with a common
research topic and lists the concrete percentage of contribution by the author of this
thesis for each relevant article in the collection. An extra section is then devoted to the
related software tools that were solely supervised and partly developed by the author
of this thesis.

3.1 Parallel and Distributed-Memory LTL Model Checking

Achieved results

Distributed-Memory LTL Model Checking Parallel LTL model checker DiVinE [18]
has been successfully adapted to various contemporary hardware platforms. Initially
the tool was intended to aggregate computational power and system memory of mul-
tiple network interconnected workstations (clusters) in order to facilitate the verifi-
cation of large model checking instances [17, 7]. We demonstrated that the tool suc-
ceeded the mission in terms of both the speedup achieved due to parallel processing
and the ability of processing large model checking problem instances [140].

Shared-Memory LTL Model Checking In the light of technological shift towards
shared-memory systems, we described relative advantages and disadvantages of shared
versus private hash tables [29]. These were evaluated, both theoretically and practi-
cally, in a prototype implementation [14]. Later we have further improved the scala-
bility of the tool and were able to demonstrate that the parallel processing even with
an unoptimal algorithm outperforms highly efficient work-optimal sequential model
checker SPIN [12].

On-the-fly Parallel Algorithm for LTL Model Checking Though, the optimality of
the algorithm employed for parallel processing is an issue. There is an important
subclass of LTL for which optimal scalable parallel algorithm exists [47]. However,
this algorithm suffers from not being an on-the-fly algorithm. Since the on-the-fly
verification is an important practical aspect, we have devised a modification of this
algorithm that allows for on-the-fly verification in most verification instances [15].

13
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CUDA Accelerated LTL Model Checking Finally, recent technological advancements
in GPU computing made available a new rather specific computing platform – the
NVIDIA’s CUDA technology [62]. It allows for acceleration of computation intensive
applications with GPU hardware. We have succeeded to adapt algorithms for accept-
ing cycle detection to CUDA framework and demonstrated significant speedup of the
LTL model checking process with CUDA technology [23].

Articles in Collection

[29] J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. ENTCS,
198(1):79–91, 2008.

Author’s contribution: 50%, significant part of the writing, main idea.

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):139–153,
2010.

Author’s contribution: 33%, significant part of the writing, analysis of experi-
mental results and formulation of conclusions.

[140] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Check-
ing. In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS
2009). IEEE, 2009.

Author’s contribution: 25%, DiVinE architecture consultant, marginal part of
writing.

[15] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

Author’s contribution: 70%, most of the writing, main idea, implementation,
and experimental validation.

[23] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL Model Check-
ing. In 15th International Conference on Parallel and Distributed Systems (ICPADS
2009), pages 34–41. IEEE Computer Society, 2009.

Author’s contribution: 25%, most of the writing, main ideas.

3.2 I/O Efficient Verification

Achieved results

I/O Efficient LTL Model Checking Due to the state space explosion problem, the
graph to be searched for the presence of an accepting cycle tends to be extremely
large. For that reason the LTL model checking verification procedure suffers from
limited applicability w.r.t the size of model checking instance if performed on a sin-
gle workstation. Reduction techniques [57, 5] are simply not strong enough to solve
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the problem. To move the frontier of still tractable systems a little bit further exter-
nal memory devices (disks) are an option. We were first to show that the LTL model
checking process can be done I/O efficiently with the same space complexity as the
standard pure in memory solution [24].

Improved Delayed Duplicate Detection Technique The idea of LTL model check-
ing with external memory devices is to keep the track of vertices that have been ex-
plored by the algorithm on the external memory. Unfortunately, in order to access
the external memory efficiently, the standard work-flow of a graph traversal algo-
rithm has to be modified. This modification is referred to as the delayed duplicate de-
tection [108, 109, 120, 134]. According to our experimental measurements, the stan-
dard delayed duplicate detection technique becomes rather ineffective once the graph
traversal procedure is about to complete the search. We have, therefore, defined an
improved version of the work-flow and demonstrated its positive impact on I/O ef-
ficient verification [26]. Unfortunately, not all the parallel graph traversal algorithms
that are suitable for in memory computing are compatible with our new work-flow
modification. Hence, we have also defined a criterion for deciding the compliance of
a graph traversal algorithm with our modification – the so called revisiting resistance.

Parallel I/O Efficient Model Checking We have also investigated how parallel disks
can be combined to further improve the I/O efficient LTL model checking proce-
dure [25] and whether the recent introduction of flash memory disks have some im-
plications on the field of I/O efficient processing [11].

Articles in Collection

[24] J. Barnat, L. Brim, and P. Šimeček. I/O Efficient Accepting Cycle Detection. In
Computer Aided Verification, volume 4590 of LNCS, pages 281–293. Springer, 2007.

Author’s contribution: 33%, analyses of experimental results, significant part of
writing.

[11] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory
Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS
2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

Author’s contribution: 25%, analyses of experimental results, formulation of
conclusions, significant part of writing.

[26] J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting Resistance Speeds Up
I/O-Efficient LTL Model Checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS)., volume 4963 of LNCS, pages 48–62. Springer,
2008.

Author’s contribution: 25%, revisiting resistant work-flow identification, analy-
ses of experimental results, formulation of conclusions, significant part of writ-
ing.
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[25] J. Barnat, L. Brim, and P. Šimeček. Cluster-Based I/O Efficient LTL Model
Checking. In 24th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2009), pages 635–639. IEEE Computer Society, 2009.

Author’s contribution: 33%, analyses of experimental results, formulation of
conclusions, significant part of writing.

3.3 SCC Decomposition

Achieved results

OBF Graph Decomposition Procedure We have developed a new parallel technique
to partition a directed graph into multiple SCC respecting parts – the so called OBF
technique [28]. The technique is unique as it can partition the graph into a number
of subgraphs in linear time. A such it combines the good properties of the forward-
backward strategy [72] that works in linear time but produces only a constant number
of subgraphs, and the value propagation approach [123] that identifies a number of
subgraphs, but requires quadratic time.

Recursive OBF Algorithm for Parallel SCC Decomposition The OBF technique has
been further improved and used recursively to build a new standalone parallel algo-
rithm for SCC decomposition – Recursive OBF [27]. According to our experimental
evaluation over various types of directed graphs, the new algorithm outperforms all
the known parallel SCC decomposition algorithms known so far.

Articles in Collection

[28] Jiřı́ Barnat and Pavel Moravec. Parallel Algorithms for Finding SCCs in Implic-
itly Given Graphs. In Formal Methods: Applications and Technology, volume 4346
of LNCS, pages 316–330. Springer, 2006.

Author’s contribution: 60%, OBF technique, complete writing.

[27] J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC
Decomposition. Journal of Logic and Computation Advance Access, 2010.

Author’s contribution: 50%, Recursive OBF algorithm idea.

3.4 Verification of Probabilistic Systems

Achieved results

Parallel Quantitative LTL Model Checking Quantitative analysis of probabilistic
systems has been studied mainly from the global model checking point of view. In the
global model checking problem, the goal of the verification is to decide the probabil-
ity of satisfaction of a given property for all reachable states in the state space of the
system under investigation. On the other hand, in the local model checking approach
the probability of satisfaction is computed only for the set of initial states. We devised
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parallel local model checking procedure and demonstrated that with the platform de-
pendent local model checking procedure we were able to reduce the runtime needed
for verification from days to minutes [20].

Degradation Concept The quantitative model checking procedure was extended
also to the systems with degradation [30]. Under some condition, systems with degra-
dation may be viewed as the standard probabilistic systems – Markov Decision Pro-
cesses (MDP’s) [128]. Rather theoretical result we obtained was that the degradation
properties can distinguish probabilistic systems (MDP’s) that are indistinguishable by
means of the standard probabilistic logics such as LTL, PCTL [82] or PCTL∗ [4].

Articles in Collection

[20] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Local Quantitative LTL
Model Checking. In Formal Methods for Industrial Critical Systems (FMICS 2008),
volume 5596 of LNCS, pages 53–68. Springer-Verlag, 2008.

Author’s contribution: 20%, analyses of experimental results, algorithmics, for-
mulation of conclusions, significant part of writing.

[30] J. Barnat, I. Černá, and J. Tůmová. Quantitative Model Checking of Systems
with Degradation. In Proceeding of the Sixth International Conference on Quantita-
tive Evaluation of Systems (QEST 2009), pages 21–30. IEEE, 2009.

Author’s contribution: 33%, concept of degradation, relation to probabilistic sys-
tems, writing.

3.5 Tools and Tool Papers

In this section we describe software tools that were solely supervised and partly de-
veloped by the author of this thesis.

DiVinE, DiVinE Cluster LTL model checker built over the MPI standard allowing
efficient utilization of computational resources of a cluster of workstations (Obsolete).

DiVinE-MC Clone of DiVinE dedicated for usage solely on multi-cored CPUs with
shared memory architecture (Obsolete).

DiVinE-CUDA Clone of DiVinE dedicated for usage with NVIDIA’s CUDA tech-
nology on workstations with appropriate graphics processing units.

DiVinE 2.x New implementation of parallel LTL model checker with the combined
capabilities of previous DiVinE versions. With the release of DiVinE 2.x tool DiVinE
and DiVinE-MC became obsolete.
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ProbDiVinE Tool for qualitative model checking of probabilistic systems capable of
employing aggregate computational power of a cluster of workstations.

ProbDiVinE-MC Tool for quantitative model checking of probabilistic systems ca-
pable of efficient utilization of multiple cores on a shared-memory platform.

Articles in Collection

[18] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE –
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

Author.’s contribution: 40%, Overall concept of the tool, implementation of mul-
tiple parallel accepting cycle detection algorithms.

[14] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis (ATVA 2008), vol-
ume 5311 of LNCS, pages 234–239. Springer, 2008.

Author’s contribution: 33%, LTL model checking algorithmics.

[22] J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.

Author’s contribution: 40%, algorithmics, algorithm engineering.

[16] Jiřı́ Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance Model
Checking. In 2009 International Workshop on High Performance Computational Sys-
tems Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

Author’s contribution: 33%, tool road-map, processing of precompiled models.

[19] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE: A Parallel
Qualitative LTL Model Checker. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST’07), pages 215–216. IEEE Computer Society,
2007.

Author’s contribution: 20%, algorithmics, tool distribution.

[21] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Probdivine-mc: Multi-core
ltl model checker for probabilistic systems. In QEST ’08: Proceedings of the 2008
Fifth International Conference on Quantitative Evaluation of Systems, pages 77–78,
Washington, DC, USA, 2008. IEEE Computer Society.

Author’s contribution: 20%, algorithmics.
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Faculty of Informatics, Masaryk University,

Brno, Czech Republic
barnat,xrockai@fi.muni.cz

Abstract

In light of recent shift towards shared-memory systems in parallel explicit model checking, we explore
relative advantages and disadvantages of shared versus private hash tables. Since usage of shared state
storage allows for techniques unavailable in distributed memory, these are evaluated, both theoretically and
practically, in a prototype implementation. Experimental data is presented to assess practical utility of
those techniques, compared to static partitioning of state space, more traditional in distributed memory
algorithms.

Keywords: Hash tables, locking schemes, parallel

1 Introduction

Much of the extensive research on the parallelisation of model checking algorithms
followed the distributed-memory programming model [5,4,12] and the algorithms
were parallelised for networks of workstations, largely due to easy access to net-
works of workstations. Recent shift in architecture design toward multi-cores has
intensified research pertaining to shared-memory paradigm as well.

A mostly straightforward transformation of distributed-memory algorithm into
a shared-memory one, using several tailored techniques, is explored in [2]. In this
paper, we intend to build on these results, further augmenting the selected dis-
tributed algorithms with extensions specific to shared-memory systems, especially
those based on using a single shared storage for the explored graph.

For the experimental implementation, we have used DiVinE [3], specifically the
multi-threaded, shared-memory version – as created for [2] – using the original DVE
state-space generator. The code has been modified for the purposes of this paper.

1 This work has been partially supported by the Grant Agency of Czech Republic grant No. 201/06/1338
and the Academy of Sciences grant No. 1ET408050503.
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1.1 Shared-Memory Platform

Since in the paper, we will work with several assumptions about the targeted hard-
ware architecture, we will describe it briefly first.

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local storage
to store thread-private data. Our working environment is POSIX, with its imple-
mentation of threads as lightweight processes. Switching contexts among different
threads is cheaper than switching contexts among full-featured processes with sep-
arate address spaces, so using more threads than there are CPUs in the system
incurs only a minor penalty.

Critical Sections, Locking and Lock Contention. In a shared-memory
setting, access to memory, that may be used for writing by more than a single thread,
has to be controlled through use of mutual exclusion, otherwise, race conditions will
occur. This is generally achieved through use of a “mutual exclusion device”, so-
called mutex. A thread wishing to enter a critical section has to lock the associated
mutex, which may block the calling thread if the mutex is locked already by some
other thread. An effect called resource or lock contention is associated with this
behaviour. This occurs, when two or more threads happen to need to enter the
same critical section (and therefore lock the same mutex), at the same time. If
critical sections are long or they are entered very often, contention starts to cause
observable performance degradation, as more and more time is spent waiting for
mutexes.

Processor Cache: Locality and Coherence. There are currently two main
architectures in use for Level 2 cache. One is that each processing unit has its
completely private Level 2 cache (for the Symmetric Multiprocessing case) or there
is a shared Level 2 cache for a package of 2 cores (designs with a Level 2 cache
shared among 4 cores are not commercially available as of this writing). In bigger
shared-memory computer systems, it is usual to encounter split cache, since they
often contain on the order of 8-64 cores attached to a single memory block. In
recent hardware, the basic building units are dual-core CPUs with shared cache,
but among the different units, the caches are still separate. This idiosyncrasy of
these architectures has important effects on performance and these will be discussed
later in more detail.

Shared Memory Bus. Since the memory in SMP machines is attached to a
single shared memory bus, the RAM access from different processors needs to be
serialized. This caps total memory throughput of the system and at some point,
the available memory bandwidth becomes the bottleneck of computation. This
is an important factor for memory-intensive workloads, to which model-checking
definitely belongs.

1.2 Algorithms

The algorithms used are not the main concern of this paper, but we nevertheless
summarise OWCTY, as it was used in the implementation. Also, since we are using
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the algorithm in somewhat non-standard setting, we have slightly modified some
of its non-vital aspects – more details on those modifications will be described in
Section 3.3. Short description of the original algorithm follow.

The algorithm [8] is an extended enumerative version of the One Way Catch
Them Young Algorithm [11]. The idea of the algorithm is to repeatedly remove
vertices from the graph that cannot lie on an accepting cycle. The two removal rules
are as follows. First, a vertex is removed from the graph if it has no successors in
the graph (the vertex cannot lie on a cycle), second, a vertex is removed if it cannot
reach an accepting vertex (a potential cycle the vertex lies on is non-accepting).
The algorithm performs removal steps as far as there are vertices to be removed.
In the end, either there are some vertices remaining in the graph meaning that
the original graph contained an accepting cycle, or all vertices have been removed
meaning that the original graph had no accepting cycles.

The time complexity of the algorithm is O(h · m) where h = h(G). Here the
factor m comes from the computation of elimination rules while the factor h relates
to the number of global iterations the removal rules must be applied. Also note, that
an alternative algorithm is obtained if the rules are replaced with their backward
search counterparts.

2 Hash Tables in Model Checking

One of the traditional approaches, when exploring the state-space of an implicitly
specified model, is that the algorithm starts from the initial state and using a
transition function, generates successors of every explored state. Visited states are
stored in a hash-table, to facilitate quick insertion of newly visited states and quick
lookup of states that already have been visited.

The usual approach in distributed algorithms is to partition the state space
statically, using a partition function [7,9] (which is usually in turn based on a
hash function over the state representation). This partition function unambiguously
assigns each state to one of the computation nodes. Same approach can be leveraged
in shared-memory computation, where each thread of control assumes ownership of
a private hash table, and potentially also a private memory area for storing actual
state representations.

The described configuration is often the only feasible option, when dealing with
distributed memory system, since cross-node memory access has to be either manu-
ally simulated using message passing, or even if available, is prohibitively expensive.

However, the situation in shared-memory systems is somewhat different, since
all processors (and therefore threads of control) share a single continuous block
of local memory, with uniform accessibility from all the CPUs and/or cores. This
gives us two new options, compared to situation in distributed environment, namely,
if several hash tables are used, threads can look into tables they don’t own, and
second, probably more interesting option is to have a single shared hash table, used
by all the threads.
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2.1 Implementation

The threaded version of DiVinE implements an internal collision resolution hash ta-
ble with quadratic probing. The table is dynamically-sized with exponential growth
(i.e., the size of the table doubles every time more space is needed). Originally, the
threshold triggering table growth has been set as half-full, which gives minimum
overhead of 2 key-sized cells per valid item, where in our case the key is a single
pointer. Growing the table starts with allocating a new, double-sized table, iterat-
ing over all entries in the old table and rehashing them into the new, bigger one.
This is a linear-time operation, amortised over insertions into the table. However,
this property may have more far-fetched consequences in a setting where the table
is shared among multiple threads.

A somewhat different approach for triggering the growth of the table has been
implemented as part of the work on shared hash tables. The conditions are now
twofold, first is that table is 75% full, the second is that there have been too many
collisions upon insert, where too many is defined as 32+sqrt(size)/16. This param-
eter may be subject to further adujstment, although we haven’t observed significant
impact. This latter trigger produces more tighly packed tables, which may some-
times save time, especially since during the growth, all other processing is halted.
Another possibility to reduce the number of grows is to increase the growth factor
(this is an user-overridable setting and subject to empirical tuning).

2.2 Region Locking

There is a need for locking when multiple threads perform concurrent reads and
updates of the table. Since the table is accessed very frequently, it is completely
unfeasible to lock the whole table for each access, as this would lead to very high
lock contention and, consequently, reduced performance. Therefore, a region locking
scheme is devised, to only lock the region within which the update or lookup takes
place. Special precautions are necessary for growing the table, since no updates at
all are allowed during this window. The regions are fixed-size, so the number of
regions grows linearly with the table size. There are two other options on how to
organise locking, one being of fixed number of locks, which means the locking unit
increases linearly with the hash table size, the second being a square-root based
growth of both region size and number of locks.

Theoretical benefits of the first approach are that lock granularity and therefore
contention should remain very low throughout program execution. Fixed number
of locks makes competition for any given lock higher, although in theory, it should
remain constant, as long as number of competing threads is constant. The square-
root approach is a compromise between those two. All the methods are evaluated
in the experimental section.

2.3 Lockless Shared Table

If implemented with no locking at all, an insertion may silently fail, i.e. it may
be overwritten by a subsequent insert to a colliding position due to a race condi-
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tion. However, this is not a fatal problem for reachability analysis, as observed
in [17]. We have implemented a lockless hash table, but we have encountered severe
scalability problems with large, statically sized tables (as opposed to dynamically
growing tables). Since growing a lockless table is not implemented, this makes it
hard to compare against the locking implementations, which can resize tables and
therefore don’t suffer from the large table problem. However, even lock-based ta-
bles, when statically sized, are highly detrimental to any scalability the system may
be exhibiting. As of this writing, we haven’t found the cause of the scalability issues
with pre-sized tables, therefore more investigation is due.

3 State Space Partitioning

To distribute the workload of graph exploration (in case of safety checking) or cycle
detection (in case of liveness checking), the state space is divided into parts, one
for each of the worker threads (in the case of distributed computation, one for each
cluster node).

3.1 Static Partitioning

The original shared-memory implementation used a partitioning scheme coming
directly from the distributed world. Each state is uniquely assigned to a thread,
based solely on the state representation. This means, that every time a state is
generated, it is assigned to the same thread. Consequently, each thread can maintain
its private hash table, where it stores all states it owns. This has an important side-
effect of the thread being able to operate on the table without resorting to locking
or critical sections. Same goes for the auxiliary state data (like predecessor count
in OWCTY elimination) – no locking is necessary.

Another benefit is highly efficient use of processor cache, by making the ra-
tio of hash table size to processor cache size much more favourable, than in the
case of shared hash table. This consequently reduces memory load and improves
throughput.

3.2 Dynamic Partitioning

The above static partitioning scheme suffers from high communication overhead,
since as threads are added, number of cross-transitions (transitions that require
inter-thread communication, because one of the states belongs to different thread
than the other) grows rapidly.

A scheme using a different partitioning approach may be devised, when we are
dealing with a single, shared table. Since the shared table allows any thread to
lookup or update any state, it is no longer necessary to maintain the rule requiring
each state to be unambiguously assigned to one of the threads. Instead, the thread
that is examining a transition can decide on-the-fly whether to process it locally, or
send it over to another CPU.
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Fig. 1. Illustration of handoff partitioning scheme.

Modular partitioning. There are several possible approaches on how to par-
tition the state space. A näıve implementation is to make every n-th transition a
cross-transition, i.e. send it to a different thread. This makes for a great way to
control the amount of cross transitions (and therefore explicit communication over-
head). However, there are two problems with this approach. First, it reduces cache
locality drastically, compared to that provided by static partitioning. In addition
to losing the benefit of smaller hash tables (due to using a single big hash table), it
also assigns states to threads virtually randomly, so it causes access to single state
from different threads very often. This again reduces cache efficiency.

Handoff partitioning. This partitioning technique useful with DFS-based
reachability analysis proposed in [13] is based on sending transitions to next thread
when a certain “handoff depth” (depth of local DFS stack) is reached. This ef-
ficiently limits the amount of cross-transitions encountered, as they only appear
every N levels of the pseudo-DFS tree, where N is the handoff depth or threshold.
The actual threshold value is an option that needs to be empirically determined.

The technique has a much better state locality than the previous one, i.e. the
chance that a given state is visited from a single thread several times is much higher.
In Figure 1, a scheme of the resulting state distribution may be seen.

Another remarkable benefit of this scheme is the possibility to implement fairly
efficient partial order reduction [15,16], as claimed in [13]. However, we have no such
implementation and no comparison with other partial order reduction techniques,
like [1,6].

Shared queue. Another possibility is to distribute states not using a partition
function, but place them in a single shared BFS queue. This approach should
achieve optimum load-balancing, although compromises may be necessary to strike
a balance with locking overhead and contention.
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3.3 Algorithm Impact

Through use of proper locking, all distributed algorithms can be used unmodified
with shared hash table. However, the individual partitioning schemes place addi-
tional requirements on the algorithms, specifically on the visit order. The handoff
technique requires a DFS stack and shared queue is specific to BFS.

Both the algorithms we have implemented are independent of order of visits,
so can be run in both BFS and DFS order. These are reachability and OWCTY,
although several other distributed algorithms share this property and could be there-
fore used in this setting. The parallel versions of Nested DFS [10] are not considered,
since they do not use partitioning at all.

4 Experiments

Since there are no satisfactory profiling tools available for the kind of parallel work-
load we work with, we are mostly limited to measuring overall runtime of the algo-
rithm implementations on various models using different parameters.

4.1 Methodology

The main testing machine we have used is a 16-way AMD Opteron 885 (8 CPU units
with 2 cores each). All timed programs were compiled using gcc 4.1.2 20060525 (Red
Hat 4.1.1-1) in 32-bit mode, using -O2. This limits addressable memory to 3GB,
which was enough for our testing. The machine has 64GB of memory installed,
meaning that none of the runs were affected by swapping.

For this paper, our main concern is speed and scalability, therefore we focus
on these two parameters. Measurement was done using standard UNIX time com-
mand, which measures real and cpu times used by program. The real runtime is of
particular interest, since this is the figure describing how long will the user wait for
their results.
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Acronym Description Property (LTL formula)
elevator Motivated by elevator promela model

from distribution of SPIN. The cab
controller chooses the next floor to be
served as the next requested floor in
the direction of the last cab movement.
If there is no such floor then the con-
troller consider the oposite direction.
(3 floors)

If level 0 is requested, the cab passes
the level without serving it at most
once.

G(r0 =⇒ (¬l0U(l0U

(¬l0U(l0U

(l0 ∧ open))))))

leader Leader election algorithm based on fil-
ters. A filter is a piece of code that
satisfy the two following conditions: a)
if m processes enter the filter, then at
most m/2 processes exit; b) if some
process enter the filter, then at least
one of them exits. (5 processes)

Eventually a leader will be elected.

F (leader)

rether Software-based, real-time Ethernet
protocol whose purpose is to provide
guaranteed bandwidth and determin-
istic, periodic network access to mul-
timedia applications over commodity
Ethernet hardware. It is a contention-
free token bus protocol for the datalink
layer of the ISO protocol stack. (5
Nodes)

Infinitely many NRT actions of Node
0.

G(F (nact0))

peterson Peterson’s mutual exclusion protocol
for N processes. (N=4)

Someone is in critical section infinitely
many times.

G(F (SomeoneInCS))

anderson Anderson’s mutual exlusion protocol
for N processes. (N=6) N/A

Table 1
Models and verified properties.

All the models we have used are listed in Table 1 including the verified properties.
The models come from the BEEM database [14] that contains the models in DiVinE-
native modeling language.

4.2 Comparison of Partitioning Methods

First, we have measured reachability timings for the model peterson1 using four
approaches: BFS with static partitioning, BFS with modular partitioning, DFS
with handoff partitioning and DFS with handoff partitioning and preallocated hash
table (5 million cells, to accomodate the model easily). Also note that since the
separate hash tables for BFS get smaller as the number of threads increases, the
growth overhead drops slightly. We have also measured runtimes of OWCTY on the
same model using analogical conditions. The results may be seen in Figure 2. From
the figures, we see that for small number of cores, the dynamic partitioning schemes
perform better, but are consistently “outscaled” by the statically partitioned BFS.
Surprizingly, the modular partitioning scheme is not as far behind handoff as we
have expected in some cases, although it still is the slowest and least scalable one.
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Fig. 2. Comparing scalability of reachability and OWCTY, using static and dynamic partitioning. BFS1
uses static partitioning, BFS2 uses modular partitioning, DFS1 uses handoff partitioning and finally DFS2
uses handoff with preallocation. Model used is peterson1.

4.3 Effect of Handoff Threshold

To determine the practical effect of handoff threshold on actual runtimes of the
algorithms, we have measured runtimes of reachability and OWCTY with a matrix
of parameter combinations using DFS and handoff partitioning. Figures 4 and 5
visualise data from the smaller model (peterson, on the order of 2 million states).
We observe, that handoff does not affect the runtime significantly, unless set to very
high – around 200, it starts to negatively affect scalability, being unable to provide
sufficient load balancing.

We have also tried with a bigger model (anderson, on the order of 18 million
states) using reachability. The results are available in Figure 6. Here, handoff
depths up to 4096 seem to manage to spread the load evenly across threads, while
at very low handoff (1-4), the number of cross-transitions slows the computation
down significantly.

4.4 Effect of Locking Scheme

In Figure 7, we present the behaviour of DFS reachability using various locking
schemes, on top of a shared storage, using handoff partitioning (using default hand-
off depth of 50). All locking schemes were evaluated both using preallocated hash
table and a growing hash table. From the picture, we see that the locking scheme
basically does not affect runtime in any significant way.
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Fig. 3. Comparing scalability of reachability and OWCTY, using static and dynamic partitioning. BFS
uses static partitioning, DFS1 uses handoff partitioning.

5 Conclusions

We have implemented several techniques dealing with use of shared hash tables in
shared-memory parallel model checking. They have been compared, both theoreti-
cally and practically, to approaches known from distributed world.
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Fig. 4. Measuring effect of different handoff depths at runtimes and scalability of reachability on a small
model (peterson1). Note that the handoff axis is reversed!

Fig. 5. Measuring effect of different handoff depths at runtimes and scalability of OWCTY on a small model
(peterson1). Note that the handoff axis is reversed!

In an environment with fairly low communication overhead, the different schemes
did not vary as much as we have originally anticipated. The motivation behind the
research was to improve performance and scalability of our parallel, shared-memory
model checking platform based on DiVinE. However, the results have been less than
convincing.

Although the schemes based on shared hash table, depth-first traversal and
handoff partitioning have performed better on smaller number of threads (in the
range of 1-8 threads), their utility in improving scalability over 8 cores is basically
nonexistent. Breadth-first traversal with static partitioning, as used in distributed-
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Fig. 6. Measuring effect of different handoff depths at runtimes and scalability of reachability. Big model
(anderson). The handoff scale is logarithmic.

Fig. 7. Comparing locking methods on a reachability run over anderson and rether.

memory systems, out-scales them in these situations, by a not insignificant margin
in some cases.

The main results therefore are, that communication overhead plays a role less im-
portant in scalability of shared-memory implementation, than previously believed.
Second, that approaches known from distributed-memory architectures may be of
practical utility to projects pursuing scalable shared-memory model-checking tool.

Since the results hint at a different source of limited scalability in shared memory
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systems than pure communication overhead, we will pursue further research on this
problem. The candidates for investigation include suboptimal implementation (eg.
false sharing or locking problems) and hardware architecture limitations.

We have already identified and mitigated several problems impeding scalability
in various scenarios, including false sharing and excessive thread migration among
available cores caused by kernel scheduler. The general pattern we have observed is,
that improvements in scalability are gradual and that there is no proverbial silver
bullet, that would solve all the scalability issues at once.
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[2] Barnat, J., L. Brim and P. Ročkai, Scalable Multi-Core LTL Model-Checking, in: Proc. of SPIN 2007,
to appear, LNCS 4595 (2007), pp. 197–203.
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[6] Brim, L., I. Černá, P. Moravec and J. Šimša, Distributed Partial Order Reduction of State Spaces, in:
3rd International Workshop on Parallel and Distributed Methods in verifiCation, 2004.

[7] Caselli, S., G. Conte and P. Marenzoni, Parallel state space exploration for GSPN models, in:
G. de Michelis and M. Diaz, editors, Applications and Theory of Petri Nets 1995, LNCS 935 (1995),
pp. 181–200.
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R., BEEM: BEnchmarks for Explicit Model checkers, http://anna.fi.muni.cz/models/index.html
(2007).

[15] Peled, D., Ten years of partial order reduction, in: Proceedings of the 10th International Conference
on Computer Aided +Verification (1998), pp. 17–28.

[16] Valmari, A., Stubborn set methods for process algebras, in: Proceedings of the DIMACS workshop on
Partial order methods in +verification (1997), pp. 213–231.

[17] Weber, M., private communication (2007).
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Abstract Recent development in computer hardware has
brought more widespread emergence of shared memory,
multi-core systems. These architectures offer opportunities
to speed up various tasks—model checking and reachability
analysis among others. In this paper, we present a design for
a parallel shared memory LTL model checker that is based
on a distributed memory algorithm. To improve the scalabil-
ity of our tool, we have devised a number of implementation
techniques which we present in this paper. We also report
on a number of experiments we conducted to analyse the
behaviour of our tool under different conditions using vari-
ous models. We demonstrate that our tool exhibits significant
speedup in comparison with sequential tools, which improves
the workflow of verification in general.

Keywords Parallel · Shared memory · Formal verification ·
LTL model checking

1 Introduction

With the arrival of 64-bit technology, the traditional space
limitations in formal verification are diminishing in impor-
tance. The time required for a verification run is becoming an
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important bottleneck instead. This naturally raises interest in
using parallelism to improve the performance of many formal
verification tools.

Much of the extensive research on the parallelisation of
model checking algorithms followed the distributed memory
programming model which stemmed from the necessity to
fight the memory constraints of a single computer system.
Networks of workstations are easily accessible and they pro-
vide the desired computational power, aggregated memory
in particular. Parallel, distributed memory techniques have
been successfully applied to explicit-state (or enumerative)
model checking [2,4,41], symbolic model checking [25,26],
analysis of stochastic [27] and timed [9] systems, equiva-
lence checking [12] and other related problems [10,13,22].
For a survey on parallel LTL model checking algorithms we
refer to [6].

A recent shift in architecture design toward multi-cores
with large amounts of local RAM has intensified research
pertaining to shared memory paradigm as well. In [29]
Holzmann and Bosnacki proposed an extension of the SPIN
model checker for multicore machines. They suggested two
different parallel algorithms for verification of safety and
liveness properties. While the algorithm for checking safety
properties scales well to N-core systems, the algorithm for
liveness checking, which is based on SPIN’s original nested
depth-first search (DFS) algorithm, has scalability limited to
dual-core systems. It is still an open problem to do scalable
verification of general liveness properties on N-cores with
time complexity linear in the size of the product automaton.

A different approach to shared memory model checking
is presented in [31], based on CTL∗ translation to Hesi-
tant Alternating Automata. The proposed algorithm uses a
so-called non-emptiness game for deciding validity of the
original formula and is, therefore, largely unrelated to the
algorithms based on fair cycle detection.
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In this paper, we propose a design for a parallel shared
memory model checking tool that is based on known distrib-
uted memory algorithms. For the prototype implementation,
we considered the algorithm by Černá and Pelánek [18]. This
algorithm is linear for properties expressible as weak Büchi
automata, which comprise the majority of LTL properties
encountered in practice. Although the worst-case complexity
is quadratic, the algorithm exhibits very good performance
with real-life verification problems. To achieve good scala-
bility, we have devised several implementation techniques,
as presented in this paper, and applied them to the algorithm.
We expect that application of the proposed implementation
approaches to other distributed memory algorithms for LTL
model checking may bring about similar improvements in
scalability on multi-core systems.

We have published a tool based on the presented results,
under the name DiVinE Multi- Core. Its full source code
is available from [3], together with the instructions on com-
pilation and usage. The tool is meant to be used on shared
memory multi-processor and multi-core computers, and it
is capable of performing reachability analysis and OWCTY-
based LTL model checking both on N-core systems.

In Sect. 2 we summarise the existing parallel algo-
rithms for LTL model checking (accepting cycle detection).
In Sect. 3, we give an overview of implementation tech-
niques that were applied to multi-core implementations of
the selected algorithms. In Sect. 4, we give a broad selec-
tion of experimental data on scalability and performance. A
comparison to the most recent multi-core-capable version
(5.1.4) of SPIN is given as well. Moreover, the effect of
several optimisations on both performance and scalability is
measured.

2 Parallel LTL model-checking algorithms

An efficient parallel solution to many problems often requires
approaches radically different from those used to solve
the same problems sequentially. Classical examples are list
rankings, connected components, and depth-first search in
planar graphs. In the area of LTL model checking, the best-
known enumerative sequential algorithms based on fair cycle
detection are the Nested DFS algorithm [20,30] (imple-
mented, e.g., in the model checker SPIN [28]) and SCC-
based algorithms originating in Tarjan’s algorithm for the
decomposition of the graph into strongly connected compo-
nents (SCCs) [39]. These optimal sequential algorithms dif-
fer in their space requirements, length of the counter-example
produced, and other aspects. For a recent survey we refer
to [40]. The main idea of the Nested DFS algorithm is to
use two interleaved searches to detect reachable accepting
cycles. The first search discovers accepting states while the
second one, the nested one, checks for self-reachability. Sev-
eral modifications of the algorithm have been suggested to

remedy some of its disadvantages. References [23,24] have
proposed modifications of Tarjans algorithm, whose com-
mon feature is that they recognise an accepting cycle as soon
as all transitions on the cycle are explored. For a survey and
detailed comparison we refer to [37].

However, both types of algorithms rely on inherently
sequential depth-first search (DFS) postorder. Unfortunately,
it is not known how the DFS postorder can be computed effi-
ciently in parallel. Therefore, it is difficult to adapt known
DFS-based LTL model checking algorithms to parallel archi-
tectures. This is also the reason why the parallel algorithm
of SPIN is limited to dual-core platforms. In particular, the
algorithm performs two nested depth-first searches while the
outer search must preserve the DFS postorder on backtracked
states. As a result, the outer search cannot be executed in par-
allel and the algorithm cannot efficiently use more than two
cores.

Consequently, different techniques and algorithms are
needed for a parallel verification. Unlike the LTL model
checking, the reachability analysis is a verification problem
for which an efficient parallel solution is available. The rea-
son is that the exploration of the state space is independent
of the search order. In the following, we sketch four paral-
lel algorithms for enumerative LTL model checking that are,
more or less, based on performing multiple parallel reach-
ability procedures to detect a reachable accepting cycle. The
reader is kindly asked to consult the original sources for the
details.

MAP. The main idea of the Maximal Accepting Pre-
decessor Algorithm [14,16] is based on the fact that every
accepting vertex lying on an accepting cycle is its own pre-
decessor. An algorithm that is directly derived from the idea,
would require expensive computation as well as space to store
all proper accepting predecessors of all (accepting) vertices.
To overcome this obstacle, the MAP algorithm stores only
a single representative of all proper accepting predecessor
for every vertex. The representative is chosen as the maximal
accepting predecessor accordingly to a presupposed linear
ordering ≺ of vertices (given, for example, by their mem-
ory representation). Clearly, if an accepting vertex is its own
maximal accepting predecessor, it lies on an accepting cycle.
Unfortunately, it can happen that all the maximal accept-
ing predecessor lie outside accepting cycles. In that case,
the algorithm removes all accepting vertices that are maxi-
mal accepting predecessors of some vertex, and recomputes
the maximal accepting predecessors. This is repeated until
an accepting cycle is found, or there are no more accepting
vertices in the graph.

The time complexity of the algorithm is O(a2 · m), where
a is the number of accepting vertices and m is the number of
edges. One of the key aspects influencing the overall perfor-
mance of the algorithm is the underlying ordering of vertices
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used by the algorithm. Computing the optimal ordering is,
however, difficult to parallelise; hence, heuristics for com-
puting a suitable vertex ordering are used. ��

OWCTY. The next algorithm [18] is an extended enu-
merative version of the One Way Catch Them Young Algo-
rithm [21]. The idea of the algorithm is to repeatedly remove
vertices from the graph that cannot lie on an accepting cycle.
The two removal rules are as follows: First, a vertex is
removed from the graph if it has no successors in the graph
(the vertex cannot lie on a cycle), and second, a vertex is
removed if it cannot reach an accepting vertex (a potential
cycle the vertex lies on is non-accepting). The algorithm per-
forms removal steps as far as there are vertices to be removed.
In the end, either there are some vertices remaining in the
graph meaning that the original graph contained an accept-
ing cycle, or all vertices have been removed meaning that the
original graph has no accepting cycles.

The time complexity of the algorithm is O(h · m), where
h is the height of the SCC quotient graph. Here, the factor m
comes from the computation of elimination rules while the
factor h relates to the number of global iterations required for
application of the removal rules. Also note that an alterna-
tive algorithm is obtained if the rules are replaced with their
backward search counterparts.

OWCTY is the algorithm we have chosen as a primary
one for the tool, in part due to its favourable time complex-
ity and also thanks to its performance and scaling behaviour
observed in practice. This choice does not preclude the use of
the presented techniques with any other distributed memory
algorithm, although we do not expect their performance to
be an improvement over OWCTY. ��

NEGC. The idea behind the Negative Cycle Algo-
rithm [15] is a transformation of the LTL model checking
problem to the problem of negative cycle detection. Every
edge of the graph outgoing from a non-accepting vertex is
labelled with 0 while every edge outgoing from an accept-
ing vertex is labeled with −1. Clearly, the graph contains a
negative cycle if and only if it has an accepting cycle.

The algorithm exploits the walk to root strategy to detect
the presence of a negative cycle. The strategy involves con-
struction of the so-called parent graph that keeps the shortest
path to the initial vertex for every vertex of the graph. The
parent graph is repeatedly checked for the existence of the
path. If the shortest path does not exist for a given vertex,
then the vertex is part of a negative (and therefore accepting)
cycle. The worst-case time complexity of the algorithm is
O(n · m), where n is the number of vertices and m is the
number of edges. ��

BLEDGE. An edge (u, v) is called a back-level edge if it
does not increase the distance of the target vertex v form the

initial vertex of the graph. The key observation connecting
the cycle detection problem with the back-level edge con-
cept, as used in the Back-Level Edges Algorithm [1], is that
every cycle contains at least one back-level edge. Back-level
edges are therefore used as triggers to start a procedure that
checks whether the edge belongs to an accepting cycle. How-
ever, this is too expensive to be done completely for every
back-level edge. Therefore, several improvements and heu-
ristics are suggested and integrated within the algorithm to
decrease the number of tested edges and speed up the cycle
test.

The BFS procedure which detects back-level edges runs
in time O(m + n). In the worst case, each back-level edge
may trigger a search for accepting cycle, which requires lin-
ear time O(m + n) as well. Since there is at most m back-
level edges, the overall time complexity of the algorithm is
O(m.(m + n)). ��

All the algorithms allow for a scalable parallel imple-
mentation based on partitioning the graph (its vertices) into
disjoint parts. Suitable partitioning is an important factor in
overall efficiency of the parallelisation.

One particular technique that is specific to automata-based
LTL model checking is cycle locality preserving problem
decomposition [5,32]. The graph (product automaton) orig-
inates from a synchronous product of the property and sys-
tem automata. Hence, vertices of product automaton graph
are ordered pairs. An interesting observation is that every
cycle in a product automaton graph arises from cycles in
system and property automaton graphs. Let A, B be Büchi
automata and A ⊗ B their synchronous product. If C is a
SCC in the automaton graph of A ⊗ B, then the A-projection
of C and the B-projection of C are (not necessarily max-
imal) SCCs in the automaton graphs of A and B, respec-
tively.

As the property automaton is derived from the LTL for-
mula to be verified, it is typically quite small and can be
pre-analysed. In particular, it is possible to identify all SCCs
of the property automaton graph. A partition function may
then be devised that respects SCCs of the property automaton
and therefore preserves cycle locality. The partitioning strat-
egy is to assign all vertices that project to the same SCC of
the property automaton graph to the same subproblem. Since
no cycle is split among different subproblems, it is possible
to employ a localised Nested DFS algorithm to perform local
accepting cycle detection simultaneously.

Moreover, further interesting information can be drawn
from the property automaton graph decomposition. Maximal
SCCs can be classified into three categories:

Type F: (Fully Accepting) Any cycle within the compo-
nent contains at least one accepting vertex. (There is no
non-accepting cycle within the component.)
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Type P: (Partially Accepting) There is at least one accept-
ing cycle and one non-accepting cycle within the compo-
nent.
Type N: (Non-Accepting) There is no accepting cycle
within the component.

Realising that a vertex of a product automaton graph is
accepting only if the corresponding vertex in the property
automaton graph is accepting, it is possible to character-
ise the types of the SCCs in the product automaton, based
on the types of the corresponding components in the prop-
erty automaton. This classification of components into three
distinct types, N , F , and P , can be used to gain additional
improvements that may be incorporated into the algorithms
given above.

Specifically, the OWCTY algorithm needs to use this addi-
tional information for it to be linear for all weak graphs. How-
ever, for practically encountered property automata, this is
not strictly necessary, as the algorithm exhibits linear behav-
iour even without this modification.

3 Implementation techniques

It is a well-known fact that a distributed memory, paral-
lel algorithm can be straightforwardly transformed into a
shared memory one. However, there are several inefficien-
cies involved in this direct translation. The shared memory
architecture has several traits which may offer advantages in
real-world performance of such implementations. In this sec-
tion, we present our approaches to the challenges of shared
memory architecture and its specific characteristics. We will
briefly describe the techniques introduced in [2], concerning
communication, memory allocation, and termination detec-
tion, and we will show their application to the OWCTY algo-
rithm described in Sect. 2. In addition to this, we introduce
some of our latest results regarding implementation. First of
all though, let us describe the target platform in more detail.

3.1 Shared-memory platform

Since we will work with several assumptions about the tar-
geted hardware architecture in the paper, we will briefly
describe the platform first.

Our working environment is POSIX threads. Therefore,
we work with a model based on threads that share all the
memory, although they have separate stacks in their shared
address space and a special thread-local storage to store
thread-private data. Contrast this withSPIN 5.1 that employs
processes and inter-process communication channels to han-
dle parallel computation.

Critical Sections, Locking and Lock Contention. In a
shared memory setting, an access to a memory place that

is used by multiple threads has to be controlled; otherwise,
a race condition may occur. This is generally achieved by
using a “mutual exclusion device”, the so-called mutex.
A thread wishing to access the memory place has to lock the
associated mutex to guarantee the exclusiveness. The access
is then performed in the so-called critical section. Locking
procedure may block the calling thread if the mutex is locked
by some other thread. Such a situation is called a resource or
lock contention. It occurs whenever two or more threads hap-
pen to need to access the same critical section (and therefore
lock the same mutex) at the same time. If the critical sections
are long or they are entered very often, the contention starts
to cause observable performance degradation, as more and
more time is spent waiting for mutexes.

Processor Cache: Locality and Coherence. There are cur-
rently two main architectures in use for Level 2 cache. One
is that each processing unit has its completely private Level
2 cache (for the Symmetric Multiprocessing case), or there
is a shared Level 2 cache for a package of 2 cores. In big-
ger shared memory computer systems, it is usual to encounter
split cache, since they often contain on the order of 8–64 cores
attached to a single memory block. In recent hardware, the
basic building units are dual-core CPUs with shared cache,
but among the different units, the caches are still separate.

Due to coherence requirements, a read of data from thread
B subsequent to a write of the date from thread A may (and
usually does) incur a significant penalty. Since the cache
often works with smallest units of 128 or more bytes long
(the so-ca cache lines), various pieces of data may share a
single cache line, if they are adjacent in memory. If different
threads access some data on a single cache line very often
the performance of the computation may suffer dramatically.
Note that this is also the case if the data accessed by two
threads are disjoint, but close enough to occupy the same
cache line. Such a situation is spoken about as of false shar-
ing. Much more detailed study of these phenomenon may be
found in, e.g. [38].

3.2 Implementing algorithms in shared memory

Whenever an algorithm is about to be implemented in a
shared memory setting, all the technical details laid out in
previous paragraphs must be taken into account. Recall that
our goal is to adapt distributed memory algorithms to shared
memory environment and to achieve a scalable implemen-
tation. The scalability is inversely proportional to commu-
nication overhead and its growth with increasing number of
threads. Therefore, the techniques we designed were aimed
to reduce communication overhead by exploiting traits of
shared memory systems that are not available in distributed
memory environment. However, keeping in mind the pos-
sibility to scale beyond shared memory systems, we tried
to keep the implementation in a shape that would make a
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combined tool to work efficiently on clusters of multi-CPU
machines achievable.

When we venture into a strictly shared memory implemen-
tation, one may pose a question whether a different approach
of using a standard serial algorithm modified to allow paral-
lelisation at lower levels of abstraction would give a scalable,
efficient program for multi-CPU and/or multi-core systems.
Our efforts at extracting such a micro-parallelism in our code-
base have been largely fruitless, due to high synchronisation
cost relative to the amount of work we were able to perform in
parallel. An example of such micro-parallel approach would
be to implement a parallel successor generator, where there
is certain independence of the sub-tasks involved, but these
sub-tasks are very small and on current hardware, it is faster
to perform them in sequence than in parallel.

In the following sections, we explore the possibilities to
build on existing distributed memory approaches, in the vein
of statically partitioned graphs, reducing the overhead using
idioms only possible due to locality of memory.

3.3 Communication

Generally, in a distributed computation, all communication is
accomplished by passing messages—e.g. using a library like
MPI for cluster message passing. However, in communica-
tion-intensive programs, or those sensitive to communication
delay, using general-purpose message passing may be fairly
inefficient.

In shared memory, most of the communication overhead
can be eliminated by using more appropriate communication
primitives, like high-performance, contention- and lock- free
FIFOs (First In, First Out queues). We have adopted a variant
of the two-lock algorithm—a decent compromise between
performance on the one hand and simplicity and portability
on the other—presented in [35]. Our modifications involve
improved cache-efficiency and only use a single write-lock,
instead of a pair of locks, one for reading and one for writing,
since there is ever only one thread reading, while there may
be several trying to write.

Representation and pseudo-code for enqueue and dequeue
algorithms are found in Figs. 1, 2 and 3, respectively. The
correctness, linearisability (atomicity) and liveness proofs as
given in [35] are straightforwardly adapted to our implemen-
tation and thus left out.

Originally, every thread involved in the computation
owned a single instance of the FIFO and all messages for

Fig. 1 FIFO representation

Fig. 2 FIFO enqueue

Fig. 3 FIFO dequeue

this thread are pushed onto this single queue (there comes
the need for the write lock).

However, in communication-intensive workloads (like our
parallel model checking algorithms), the write lock has been
observed to be a point of contention, creating a bottleneck
even when only 4 CPU cores were involved.

Although there is also a completely lock-free design
described in [35], we have opted for a matrix-style commu-
nication primitive, with a private FIFO for each pair of com-
municating threads. This is partially motivated by the use of
atomic compare and swap instructions in the lock-free queue
design, which are relatively expensive compared with reg-
ular memory access. Moreover, even when lock contention
is removed, the lower level contention for a single memory
location on the CPU level is likely to be a reason of concern.
Moreover, for our use-case, all of the mentioned issues can
be addressed by using a larger number of queues without
incurring any significant penalties.

Alternatives to our implementation, which may be more
appropriate in different settings, include a ring-buffer FIFO
implementation (if there is a bound on the amount of in-
flight data known beforehand, the ring-buffer implemen-
tation may be more efficient) and possibly an algorithm
based on swapping incoming and outgoing queues (which
could be easily implemented as a pointer swap). The latter
gives results comparable with the described FIFO method,
although the code and locking behaviour is much more com-
plex and error-prone, which made us opt for the simpler FIFO
implementation.

3.4 Memory allocation

In a distributed computation, every process has simply its
own memory which it fully manages. In a shared memory,

123

5.2. SCALABLE SHARED MEMORY LTL MODEL CHECKING 53



144 J. Barnat et al.

however, we prefer to manage the memory as a single shared
area, since an equal partitioning of available memory and sep-
arate management may fall short of efficient resource usage.
However, this poses some challenges, especially in alloca-
tion-intensive environment like ours.

Efficient allocation and deallocation routines. Since the
workload we are facing facilitates large amounts of fixed-size
allocations and deallocations, it appears natural, to imple-
ment tailored allocation and deallocation routines.

A very simple O (1) memory pool has been devised, opti-
mised for many allocations of a limited set of sizes. Of course,
from time to time it needs to obtain memory from the sys-
tem and this operation is not constant-time; however, it is at
most linear in the block size and therefore amortises over the
individual allocations as well (given a fixed allocation size).

Each thread has its own private pool and therefore the
implementation is lock-free. This is possible since most oper-
ations are thread-local: the remaining case of cross-thread
deallocation is discussed in the following.

Concurrent allocation and deallocation. First, a naïve
approach of protecting the allocation routines with a simple
mutual exclusion is highly prone to resource contention. For-
tunately, modern general-purpose allocator implementations
refrain from this idea and have a generally non-contending
behaviour on allocation. However, releasing memory back
for reuse is more complex to achieve without introducing
contention, in a setting where it is often the case that thread
other than the one allocating the chunk needs to release it.

There are known general-purpose solutions to this prob-
lem, e.g. [34]; however, they are currently not in widespread
use in general-purpose allocators. Therefore, when relying
on the system’s allocator, we have to refrain from the afore-
mentioned pattern of releasing memory from different than
allocating thread, in order to avoid contention and the accom-
panying slowdown.

The message-passing implementation we employ is
pointer-based; in other words, the message sent is only a
pointer and the payload (actual interesting message content)
is allocated on the shared heap, and it may be either reused
or released by the receiving thread. Observe, however, that
releasing the associated memory in the receiving thread will
introduce the situation which we are trying to avoid.

Therefore, the allocation routines handle these cases dif-
ferently. Instead of manipulating the memory pool of a dif-
ferent thread, the memory (allocated in a different thread)
is appended to the freelist of the current thread. Thanks to
the workload distribution scheme employed, this approach
is very much feasible and does not introduce significant
memory overhead. Moreover, it is correct, since the mem-
ory handed over to the new thread is never again examined
by the original thread. We have dubbed the technique “mem-
ory stealing”, since the releasing thread “steals” the memory
from its previous owner.

General purpose memory allocation. Since apart from the
state allocation and deallocation, there are several important
memory-intensive routines (one example being the FIFOs,
another is the model parser and interpreter) in the model
checker, which do not exhibit the behaviour described above,
we also need a high-performance, general-purpose memory
allocator. Moreover, the pool allocator described needs to
obtain memory blocks somewhere as well.

We have opted for Emery Berger’s excellent HOARD
multi-threaded memory allocator [11]. Apart from having
very good performance and scalability properties, HOARD
strives to avoid heap layouts leading to false sharing, further
improving performance.

3.5 Termination detection

Since our algorithms rely on work distribution among sev-
eral largely independent threads, we need an algorithm for
shared memory termination detection. Similar to the distrib-
uted memory setting, our algorithm should introduce mini-
mal overhead and avoid as much serialisation as possible.

One possible solution is presented in [33]. The solution
avoids locking at all; however, it requires that the system pro-
vides an enqueue-with-wakeup primitive. We decided not to
follow this lock-free approach as we were able to achieve
quite satisfactory solution much easily employing primi-
tives available in POSIX Thread API. In particular, the API
offers a mutex implementation that allows threads to use the
mutex in a lock-or-fail manner, as opposed to the standard
lock-or-wait, which is usually employed for protecting criti-
cal sections. We can leverage this mechanism to achieve an
efficient termination detection algorithm as follows.

The idea is that each thread is associated with a mutex
whose status corresponds to the status of the thread: whenever
a thread is idle, its corresponding mutex is unlocked and con-
versely, whenever the thread is busy, its mutex is locked.

In order to detect termination we run a separate thread
performing the termination detection. The termination detec-
tion algorithm tries to lock mutexes of all worker threads,
one by one, using the lock-or-fail behaviour. If it succeeds
in locking all mutexes (all working threads are idle) it pro-
ceeds to check the communication queues. If these are empty,
the termination has occurred and the algorithm terminates.
Pseudo-code for the algorithm is shown in Fig. 4.

In order to cope with the termination detection algorithm,
every working thread is augmented so that it locks the corre-
sponding mutex whenever it starts processing pending work,
and unlocks the mutex whenever it becomes idle. To reduce
overhead caused by repeated polling for incoming work, the
thread, in addition, enters a sleeping mode after becoming
idle. Since we run the termination detection algorithm in a
dedicated thread, the termination detection thread may wake
up threads that have pending work, but are sleeping due to
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Fig. 4 Termination detection in
shared-memory

previous idling; i.e., if the termination thread has successfully
grabbed any locks and some queues belonging to those locked
threads are found non-empty, the corresponding threads are
awakened. After every run of the termination detection algo-
rithm, all grabbed locks are released again.

Moreover, although this algorithm works correctly as-is,
it is rather inefficient if the termination detection thread is
left running in a loop. Therefore, the termination detection
thread goes to sleep after every iteration and is woken up by
any worker thread that goes idle.

This modification introduces a race-condition to the algo-
rithm. If the last thread going to sleep wakes up the termina-
tion detection thread, which then runs the algorithm before
the calling thread manages to go to sleep, the system may
deadlock. We solved the problem with further technical mod-
ifications of the algorithm; however, we do not list these mod-
ification from simplicity reasons.

An alternative approach would be to synchronously exe-
cute the termination detection algorithm in the thread that has
become idle; but due to the nature of the system, the above
procedure is more practical code-wise and only incurs very
insignificant overhead.

3.6 Workload partitioning

One of the traditional approaches, when exploring the state
space of an implicitly specified model, is that the algorithm
starts from the initial state and using a transition function,
generates successors of every explored state. Visited states
are stored in a hash table, to facilitate quick insertion of newly
visited states and quick lookup of states that have already
been visited.

The usual approach in distributed algorithms is to partition
the state space statically, using a partition function [17,19]
(which is usually in turn based on a hash function over the
state representation). This partition function unambiguously
assigns each state to one of the computation nodes. Same

approach can be leveraged in shared memory computation,
where each thread of control assumes ownership of a private
hash table and potentially also a private memory area for
storing actual state representations.

All the processors (and therefore threads of control) share
a single continuous block of local memory, with uniform
accessibility from all the CPUs and/or cores. This gives us
two new options, compared with the situation in distributed
environment. First, if several hash tables are used, threads
can look into tables they do not own, and the second option
is to have a single shared hash table, used by all the threads.

Static and Dynamic Partitioning. In our research on this
topic in [8], we have arrived to the conclusion that when avail-
able (i.e. the algorithm allows), static partitioning is prefer-
able to dynamic. Such a scheme leads to distinct hash tables
for each thread and appears to improve both performance and
scalability by a significant margin. The issues with shared
hash table are a subject of further research, and unfortunately,
we cannot give more insight into the cause of these problems
at this time.

Therefore, we have opted for statically partitioning the
state space and using private hash tables. The implementa-
tion used in this paper is fully based on this approach. For
an experimental evaluation of the shared hash table options,
please refer to [8].

3.7 Implementing OWCTY in shared-memory

As can be seen from the pseudo-code (refer to Fig. 5), the
main OWCTY loop consists of few steps, namely, reachabil-
ity, elimination and reset. All of them can be parallelised,
but only on their own, which requires a barrier after each of
them.

The algorithm uses a BFS state space visitor to imple-
ment both reachability and elimination. The underlying BFS
is currently implemented using a partition function, i.e., every
state is unambiguously assigned to one of the threads. The
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Fig. 5 OWCTY pseudo-code. The reset phase (re-)initialises internal
per-vertex bookkeeping for the remaining two phases of the algorithm

framework in which the algorithm is implemented offers
a multi-threaded BFS implementation based on static state
space partitioning. The algorithm itself is only presented with
resulting transition and node expansion events, unconcerned
with the partitioning or communication details.

The barriers (i.e. barrier synchronisation) are straightfor-
wardly implemented using the termination detection algo-
rithm presented—the computation is initiated by the main
thread, and the termination detection is then executed in this
same thread, which also doubles as a scheduler. When the step
terminates, the main thread prepares the next step, spawns the
worker threads and initiates the computation again. Since the
hash table is always thread-private, i.e. owned exclusively by
a single thread, the main thread has to transfer the hash table
among different threads in the serial portion of computa-
tion. This is nonetheless done cheaply (few pointer opera-
tions only) so is likely not worth parallelising.

4 Experiments

4.1 Methodology

The main testing machine we have used is a 16-way AMD
Opteron 885 (8 CPU units with 2 cores each). A second test-
ing configuration has been a 4-way Intel Xeon 5130. All
timed programs were compiled using unpatched gcc 4.2.2,
using -O2. We have used both 32- and 64-bit builds, using
-m32 and -m64, respectively. If not specified otherwise, a
64-bit build has been used, due to memory demands of the
verification runs (32-bit pointers can only address up to 4
gigabytes of memory, part of which is reserved by the oper-
ating system). The 32-bit version has only been used for
comparison with few of the smaller models.

For this paper, our main concern is speed and scalability;
therefore, we focus on these two parameters. Measurement
has been done using standard UNIX time command, which
measures real and cpu times used by a program.

For the experimental evaluation we implemented algo-
rithms upon the state generator from DiVinE [7]. All the mod-
els we have used are listed in Table 1 including the verified
properties. The models come from the BEEM database [36]

that contains the models in DiVinE-native modelling lan-
guage as well as in ProMeLa. We used ProMeLa models for
comparison with the SPIN model checker.

4.2 Generator influence

In addition to these models, we have implemented a spe-
cial-purpose (“dummy”) state space generator which gen-
erates very small states very quickly, to evaluate scalability
when using a high-performance generator. This is impor-
tant to identify the role of our current generator, which is
known to be sub-optimal in the performance and scalabili-
ty of the framework. The results are presented in Fig. 6. It
can be seen that, although the scaling is roughly 1:2 (num-
ber of cores needs to be quadrupled to double the speed, ie
efficiency is about 50%), it is fairly flat across the board (i.e.
the speedup between 1 and 2 cores is not much higher than
speedup between 2 and 4 cores and so on). This is an inter-
esting result, since it gives us a good lower bound estimate
on scaling behaviour of the system when we improve the
state space generator. Scalability is inversely proportional to
communication overhead—a faster generator means the pro-
portion of time spent in communication is higher than with
a slower one.

In addition to the “dummy” generator, a model from BEEM
with similar runtime on a single core is plotted in the same
figure, for comparison. The expected scalability behaviour
with improved state space generator falls between that of
these two (i.e. worse than current behaviour with realistic
models, but better than that of the “dummy” generator).

4.3 Results

We report both runtimes and speedup for BFS reachability in
Fig. 7. Measurements for the implementation of OWCTY
algorithm (for full LTL model checking) are provided in
Fig. 8. These were obtained using a 64-bit build on the 16-way
AMD Opteron machine. Another set of data points comes
from the 4-way Intel machine (a 64-bit build again), visual-
ised in Fig. 9 for reachability.

Some of the phenomena visible in the plots need to be
explained. First of all, it needs to be noted that the exact dis-
tribution of graph vertices among worker threads strongly
depends on actual number of worker threads used, due to
distribution scheme used (please refer to Sect. 3.6: DiVinE
Multi- Core uses hash(vertex)/threadcount to assign a
given vertex to its owner thread). We call an edge a “cross”
edge when the two vertices it connects belong to different
threads. Clearly, communication overhead depends on pro-
portion of such “cross” edges in the system. Moreover, this
proportion depends on exact partitioning of the state space,
and this varies with the actual number of threads used. This
sometimes leads to situations where adding more CPU cores
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Table 1 Model and property
descriptions Acronym Description Property (LTL formula)

anderson Anderson’s queue lock mutual
exclusion algorithm
anderson.6.dve

If P0 waits for C S then it will even-
tually get there.
G(wait0 �⇒ F(cs0))

anderson.6.prop2.dve

at Discrete time model of Alur-Tau-
benfeld fast timing-based mutual
exclusion algorithm.
at.5.dve

N/A

elevator An elevator controller model with 3
floors.
elevator2.3.dve

Cab passes level 0 at most once without serving it,
after it has been requested
G(r0 �⇒ (¬l0U (l0U (¬l0U (l0U (l0 ∧ open))))))

elevator2.3.prop4.dve

leader The algorithm operates on a ring
of N processes. Each process is
assigned a unique number. The pur-
pose of this algorithm is to find the
largest number assigned to a pro-
cess.
leader_election.6.dve

Eventually a leader will be elected
F(elected)

leader_election.6.prop2.dve

leader_s A scaled-down version of leader
that fits the memory available to 32-
bit builds.
leader_election.5.dve

Eventually a leader will be elected.
F(elected)

leader_election.5.prop2.dve

telephony Model of a telecommunication ser-
vice with some features (call for-
ward when busy, ring back when
free).
telephony.7.dve

N/A

peterson Peterson’s mutual exclusion proto-
col for N processes. (N = 4)
peterson.4.dve

Someone is in critical section infi-
nitely many times.
G(F(SomeoneI nC S))

peterson.4.prop4.dve

Fig. 6 Timing and speedup of
reachability analysis with
high-performance state space
generator (designated “dummy”
in the plot). The state space has
256 000 005 states and 1 536
000 031 transitions. The
blocks.4.dve model from
BEEM is given for comparison
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to the computation changes the partitioning of the graph in
such a way that the higher communication overhead cancels
out the benefit of increased computational power (and some-
times even causes the whole computation to slow down).

Moreover, it can be seen that the OWCTY algorithm,
which has inherently higher communication costs than sim-

ple reachability, has accordingly poorer scalability behav-
iour. Another issue that contributes to the inferior scala-
bility of OWCTY is the ordering restriction imposed in
the “elimination” pass, which reduces the amount of work
that can be done in parallel and therefore impedes obtained
speedup.
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Fig. 7 Timing and speedup of
reachability analysis
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Fig. 8 Timing and speedup of
LTL model checking, the
algorithm used is OWCTY
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Fig. 9 Timing and speedup of
reachability analysis on a
different platform (4-way Intel
Xeon with 16G RAM)
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In addition to these experiments, we have performed a
few comparison runs, first for 32/64 bit builds, with results
presented in Figs. 10 and 11. These have been done in
order to establish the effect of pointer width on perfor-
mance and scalability. The conclusion we can draw from
the experiment is that while the wider pointers incur a per-
formance penalty on a single core run (which is observable

in reachability, but negligible in OWCTY), this penalty
is eventually evened out as cores are added (which in
turn means that the penalty is divided evenly among the
cores).

Furthermore, the effect of custom-made pool allocator is
shown in Fig. 12. It can be seen that the tailored allocator,
indeed, helps with scalability on the extreme right end of the

Fig. 10 Comparison of 32 and
64 bit builds of reachability in
regard to both absolute running
time and achieved speedup
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Fig. 11 Comparison of 32 and
64 bit builds of OWCTY, in
regard to both absolute running
time and achieved speedup
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Fig. 12 Impact of custom,
fine-tuned allocator on
reachability. The runs with all
allocation driven by HOARD are
designated H, the ones using a
custom pool allocator are
designated with P
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Fig. 13 Timing of DiVinE and
SPIN, reachability analysis
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plot (between 8 and 16 cores)—more so with some models
than with others.

4.4 Comparison with SPIN version 5.1

SPIN-generated verifier has been used with parameters -E
-A -w27 -m5000000 and compiled with -DMEMLIM =
8000 -DNOREDUCE -DVMAX = 512, plus -DSAFETY

for reachability. We have used bigger stack or hash table than
strictly necessary (to avoid running into excessive hash table
collisions or exceeding search depth; determining the best
sizes for each model would be slightly impractical). For the
NCORE > 1 runs, it has also been necessary to increase
the system-shared memory limit. For the Anderson model,
the stack limit needed to be quadrupled to facilitate verifica-
tion.
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Table 2 Scalability behaviour of DiVinE Multi- Core reachability on a wide selection of BEEM models

BEEM model 16-way AMD Opteron, 64G RAM 4-way Intel Xeon, 16G RAM

1 2 4 8 16 1 2 3 4

anderson.6 2:29 1:22 1:05 27 16 2:11 1:11 51 55

at.5 4:22 2:28 1:20 42 22 3:31 1:59 1:26 1:08

at.6 25:40 14:08 7:55 4:12 2:16 20:04 11:29 8:44 6:42

bakery.6 1:35 44 23 14 8 1:16 37 26 20

blocks.4 16:29 9:13 4:44 2:39 1:25 13:05 7:15 4:56 4:01

elevator.5 30:39 24:29 18:22 19:17 18:46 24:17 X 18:40 X 14:20 X 14:08 X

elevator2.3 1:42 57 31 17 11 1:23 46 35 28

elevator_planning.2 2:17 1:08 33 16 9 2:02 1:01 42 31

firewire_link.3 1:24:11 40:25 21:58 12:07 6:56 30:49 X 14:27 X 10:48 X 7:41 X

firewire_link.5 3:39 2:20 1:29 42 29 3:18 2:13 1:55 1:17

fischer.6 1:19 44 23 12 7 1:04 35 25 19

frogs.4 4:43 1:58 1:00 35 17 3:14 1:23 58 47

frogs.5 51:13 19:59 10:19 5:15 3:06 35:03 15:06 11:03 8:14

lamport.7 5:16 2:50 1:28 47 26 4:17 2:17 1:51 1:17

lamport.8 9:07 4:51 2:30 1:23 43 7:23 4:04 2:44 2:12

lamport_nonatomic.5 21:53 12:51 7:12 4:33 3:22 19:02 10:47 11:40 6:54

lann.6 23:57 12:00 6:20 3:20 1:48 20:34 10:17 7:05 5:34

lann.7 35:50 18:18 9:38 5:16 2:46 29:04 14:45 10:37 10:48

leader_filters.6 25:03 12:40 5:53 3:09 1:43 17:40 X 8:31 X 6:53 4:24 X

leader_filters.7 3:04 1:35 1:05 36 19 2:33 1:26 1:07 59

loyd.3 1:04:03 30:03 13:49 7:20 3:33 41:42 11:37 X 5:38 X 6:47 X

mcs.5 8:56 5:25 2:39 1:26 47 7:23 3:57 2:48 2:19

msmie.4 1:15 35 19 11 6 1:05 32 21 18

peg_solitaire.2 2:57:57 1:27:13 51:23 27:32 18:53 2:15:36 33:58 X 22:32 X 15:52 X

peterson.5 23:03 11:58 6:19 3:26 1:52 18:14 9:21 6:40 5:19

peterson.6 33:09 16:25 8:38 4:43 2:39 25:05 12:40 9:25 7:14

peterson.7 24:00 11:38 6:14 3:11 1:48 19:06 9:22 6:41 5:21

phils.6 3:56 2:20 1:15 43 31 3:18 1:58 1:23 1:10

phils.7 27:17 15:37 8:25 4:15 2:29 21:58 8:12 X 4:29 X 3:03 X

phils.8 14:10 7:55 4:13 2:28 1:41 11:04 4:40 X 2:25 X 1:41 X

production_cell.6 1:59 1:02 33 18 11 1:48 56 38 31

schedule_world.3 1:24:15 46:07 24:20 14:53 8:56 1:09:28 11:31 X 7:01 X 4:43 X

sokoban.3 13:55 12:22 12:24 12:24 13:42 10:09 X 10:16 X 10:09 X 10:15 X

szymanski.5 13:05 6:19 4:44 3:08 2:23 11:08 5:35 6:11 4:21

telephony.4 2:11 1:11 37 20 11 1:50 59 43 33

telephony.5 1:53:48 43:39 X 32:26 17:33 9:20 40:07 X 6:18 X 3:41 X 3:34 X

telephony.7 3:56 2:04 1:06 37 20 3:23 1:45 1:18 1:00

Only models with a single-core runtime longer than 1 min are shown. The X mark means that the run did not finish due to memory exhaustion

We have compared both dual-core LTL model checking
and multi-core reachability analysis. The results are pre-
sented in a time-to-cores plot in Fig. 13 for reachability, and
in Fig. 14 for LTL model checking.

It is easily seen that for a single-core run, SPIN is much
faster on both LTL and reachability, thanks to its faster state-

space generator. However, with increasing number of cores,
the superior scalability of DiVinE Multi- Core eventually
closes the gap. We attribute this to problems inSPIN’s imple-
mentation of parallel reachability that prevent it from scaling
on communication-intensive workloads. In [29], it has been
demonstrated that the SPIN implementation is capable of
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Table 3 Scalability behaviour of DiVinE Multi- Core liveness checking on a wide selection of BEEM models

BEEM model 16-way AMD Opteron, 64G RAM 4-way Intel Xeon, 16G RAM

1 2 4 8 16 1 2 3 4

anderson.6.prop2 8:40 4:57 3:30 2:10 1:30 7:14 4:05 3:07 2:52

anderson.6.prop4 11:41 6:27 4:46 2:45 1:56 9:39 5:23 4:10 3:56

bopdp.3.prop1 11 6 4 3 3 9 5 4 4

bopdp.3.prop3 15 8 6 4 3 13 7 6 5

bopdp.3.prop4 13 8 5 4 3 11 7 5 4

elevator.5.prop3 49:21 38:16 29:56 30:45 32:04 16:35 X 10:44 X 7:05 X 7:15 X

elevator2.3.prop4 9:27 5:40 3:28 2:07 1:35 8:18 4:51 3:50 3:05

elevator2.3a.prop4 1:29 56 35 21 14 1:18 47 34 29

lamport.5.prop4 28 17 10 7 5 23 14 10 8

lamport.7.prop4 23:12 13:23 8:10 5:16 3:39 19:41 10:58 8:28 6:49

leader_election.5.prop2 4:45 3:34 2:09 1:11 47 4:17 – 2:01 1:53

leader_election.6.prop2 43:00 – 16:16 10:49 8:28 38:36 12:08 X 5:40 X 6:13 X

leader_filters.5.prop2 26 15 9 8 6 22 15 9 8

leader_filters.6.prop2 1:06:16 37:05 21:42 15:54 11:06 12:35 X 5:03 X 3:16 X 2:33 X

leader_filters.7.prop2 9:04 5:10 3:08 2:25 1:45 7:34 5:02 3:23 2:53

mcs.3.prop4 14 8 5 4 3 12 7 6 5

mcs.5.prop4 36:36 22:42 13:27 8:36 6:14 31:06 10:53 X 8:56 X 7:26 X

peterson.5.prop4 1:38:18 52:58 32:12 20:20 13:35 26:06 X 4:27 X 3:09 X 2:45 X

peterson.7.prop4 1:51:46 58:48 36:18 22:40 15:41 26:22 X 7:49 X 5:55 X 4:19 X

public_subscribe.4.prop1 19 10 7 5 4 17 9 8 6

rether.5.prop5 1:27 1:00 32 22 20 1:15 58 39 28

rether.6.prop2 50 33 24 22 14 42 28 22 21

rether.7.prop2 40 20 19 11 9 34 18 18 17

rether.7.prop5 2:22 1:12 58 38 27 2:06 1:05 58 55

synapse.6.prop3 8 5 3 2 2 7 4 3 3

szymanski.4.prop4 1:20 51 39 33 28 1:09 43 39 35

Only valid model/property combinations are included. The X mark means that the run did not finish due to memory exhaustion

scaling whenever successor generation is very expensive (and
therefore, the communication overhead is much smaller).
We were, however, unable to reproduce this scalability in
our models, where successor generation is relatively cheap.
Unfortunately, we cannot use the models used in [29], as
these are only available in ProMeLa, if at all. Moreover, in
the BEEM database, only few models are available where the
DVE and ProMeLa state spaces match exactly. Nevertheless,
we believe that the models used are diverse enough to be rep-
resentative of the general trend.

We have also executed a batch of SPIN-only experiments
(using version 5.1), but it has been difficult to extract compar-
isons of single- and multi- core runs. The multi-core version
often fails to report errors correctly (for example, when the
single-core run reports an out of memory error, the 4-core run
does not, but visits smaller number of states, which proba-
bly means it also ran out of memory without reporting the

fact). Where we were able to reliably measure reachability
runtime, the improvement using 4 cores over a single core
fell between factor 1 and 2 (we were unable to find a model
in BEEM where the speedup would exceed 2 when using 4
cores). (Tables 2, 3.)

5 Conclusions

We observe that the algorithms employed by DiVinE Multi-
Core scale fairly well on multiple cores. Our current
OWCTY-based, multi-threaded implementation is able to
reduce runtime with increasing number of cores to up to
12 cores, and for some models, even to 16 cores, which is
a definite improvement over the MPI implementation of the
algorithm if run on the same shared memory platform.
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This fulfils our goal of implementing a scalable multi-core
LTL model checker. It maintains a linear time complexity
for majority of LTL properties verified in practice and pro-
vides scalability that makes it practical to use on machines
with several CPU cores available. Moreover, in the range
of 4–8 cores, the tool performance rivals that of SPIN and
even exceeds it with higher core numbers, which is in itself
a considerable achievement.

From the profiling work we have done, it is clear that
the current most important bottleneck of DiVinE is its state
generator. The experimental data presented in the paper sup-
port this observation, especially when compared with SPIN,
with its famously fast state space generator. Improvements
in this area should reduce the absolute running times, while
it may negatively affect relative scalability. Nevertheless, the
current implementation of algorithm and supporting mecha-
nisms still offer a speedup close to (number-of-cores/2) even
when used with a very fast state space generator.

To sum up, this paper presents a significant achievement
in the stated goal of implementing scalable algorithms and
support code for reachability and LTL model checking in
DiVinE Multi-Core.
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Abstract

Model checking is a popular technique to systematically
and automatically verify system properties. Unfortunately,
the well-known state explosion problem often limits the ex-
tent to which it can be applied to realistic specifications, due
to the huge resulting memory requirements. Distributed-
memory model checkers exist, but have thus far only been
evaluated on small-scale clusters, with mixed results. We
examine one well-known distributed model checker, DiVinE,
in detail, and show how a number of additional optimiza-
tions in its runtime system enable it to efficiently check
very demanding problem instances on a large-scale, multi-
core compute cluster. We analyze the impact of the dis-
tributed algorithms employed, the problem instance char-
acteristics and network overhead. Finally, we show that the
model checker can even obtain good performance in a high-
bandwidth computational grid environment.

1 Introduction

One of the main challenges in the field of computer
science is to provide formalisms, techniques, and efficient
tools for assessing the correctness or other functional prop-
erties of increasingly complex computer systems. One such
technique is model checking, which systematically (and au-
tomatically) checks whether a model of a given system sat-
isfies a desired property. This automated technique for ver-
ification and debugging has developed into a mature and
widely used approach.

Conventional sequential model checking techniques
have high memory requirements and are very computation-
ally intensive; they are thus unsuitable for handling real-
world systems that exhibit complex behaviors which can-
not be captured by simple models having a small or regular
state space. Various authors have proposed ways of solving

∗This work has been supported in part by the Czech Science Founda-
tion, grants No. 201/09/1389 and 201/09/P497.

this problem by either using powerful shared-memory mul-
tiprocessors (e.g., multi-core machines) or by distributing
the memory requirements over several machines (e.g., on a
cluster of workstations).

Memory requirements are often the bottleneck in being
able to solve a problem at all. Therefore, it can still be
beneficial to use algorithms with a slightly higher compu-
tational complexity, provided they can be distributed effec-
tively using a large distributed memory. A prominent ex-
ample in this category is the DIVINE [1] system , which we
will focus on in this paper. As DIVINE is especially tar-
geted on model specifications that induce very large state
spaces, an important question is to what extent it scales to
a large number of compute nodes. Previous research has
shown that the different distributed algorithms included in
DIVINE can have widely diverse execution times, depend-
ing on the model characteristics [1]. We will closely exam-
ine two different algorithms that previously were shown to
have the best overall performance, and we will analyze their
behavior on model instances that require significantly more
memory than the ones tackled before.

Models with large search spaces arise naturally from a
straightforward formalization of a system under develop-
ment. To make complete (finite) analysis of such models
possible, often simplifying assumptions have to be intro-
duced, with the unfortunate risk of certain inconsistencies
escaping analysis. Typically, also, models have to be made
amenable for analysis by putting an artificial boundary on
the number of resources or processes involved. By scaling
the model up from small instances to more realistic propor-
tions, gradually more trust can be gained in the verification
results. However, seemingly simple, restricted specifica-
tions can still give rise to unexpectedly huge search spaces,
also known as the state explosion problem. Although ab-
straction techniques exist which restrict models to their es-
sential core (without losing behavioral characteristics that
do require checking), large-scale analysis is often still a ne-
cessity in practical cases. For example, the checking of
routing protocols for mobile ad hoc networks [29] resulted
in verification of various scenarios, several of which could
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not be verified using the efficient (sequential) SPIN [16]
model checker, due to their very large state spaces. As
DIVINE also supports SPIN specifications [28], additional
scenarios can now be verified using a cluster.

The contributions of this paper are as follows. We de-
scribe and analyze several optimizations for the DIVINE
framework and two of its algorithms that together improve
their performance up to 50%. We show that these optimiza-
tions allow the algorithms to scale well, up to at least 256
cores, and that they can efficiently exploit modern multi-
core architectures. We compare the performance of both
parallel algorithms on seven representative models having
different characteristics, all exhibiting state spaces that are
much larger than could be tackled before. We analyze the
sensitivity of the algorithms to protocol overhead of the net-
work used, as this can typically have a large impact on par-
allel performance. Finally, we show that DIVINE, which is
largely implemented using asynchronous communication,
can now even be run efficiently on a large-scale optical com-
putational grid, despite the much higher (wide-area) laten-
cies on such a platform.

The paper is structured as follows. In Section 2 we exam-
ine DIVINE and two of its main parallel algorithms, and we
discuss their communication patterns. Section 3 discusses
the optimizations we applied to DIVINE, and their effec-
tiveness in improving the performance of both algorithms.
Next, Section 4 contains a performance analysis of the op-
timized model checker on six additional realistic problems
with search spaces up to 245 GB. In Section 5 we discuss
related work and conclude.

2 Distributed-Memory Model Checking

Model checking is a technique that relies on building a fi-
nite model of a system and checking that a desired property
holds in that model. The check itself is in principle an ex-
haustive search in the model. The main technical problem
in model checking is the state explosion which can occur
if the system being verified has many components which
make transitions in parallel. The size of the constructed
model grows exponentially in the size of the system’s de-
scription.

Much attention has been paid to the development of ap-
proaches to battle the state explosion problem. Many tech-
niques, such as abstraction, state compression, partial order
reduction, symbolic state representation, etc., are used to
reduce the size of the model, thus allowing a single com-
puter to still process large systems. However, despite im-
pressive progress on these reduction techniques, the mem-
ory required to handle large industrial models still exceeds
the capacities offered by a single contemporary computer.

One possible approach is to increase the computational
power and memory capacity of the system by using a com-

pute cluster, in which the compute nodes communicate via a
message passing interface. The use of distributed-memory
processing for model checking indeed has gained interest in
recent years. Techniques have been developed for both ex-
plicit and symbolic model checking, analysis of stochastic
and timed systems, equivalence checking and other verifi-
cation methods.

2.1 LTL Model Checking

In this paper we consider one particular model-checking
procedure, namely enumerative LTL model checking. In
LTL model checking, the properties are specified in Lin-
ear Temporal Logic, which is a temporal logic suitable to
express properties about the future of executions of the sys-
tem model, e.g., that a condition will eventually be true, or
that a condition will be true until another fact becomes true,
etc. An efficient procedure to decide LTL model checking
problems is based on automata and was introduced by Vardi
and Wolper [26]. In this approach, both the model and the
LTL formula are associated with an automaton, and the LTL
model-checking problem is reduced to detecting an accept-
ing cycle (i.e., a cycle in which one of the vertices is marked
“accepting”) in the combined automaton graph.

The optimal sequential algorithms for accepting cycle
detection use depth-first search (DFS) strategies. The indi-
vidual algorithms differ in their space requirements, length
of the counterexample produced, and other aspects. The
well-known Nested DFS algorithm is used in many model
checkers and is considered to be the best suitable algorithm
for enumerative sequential LTL model checking. The al-
gorithm was proposed by Courcoubetis et al. [9] and its
main idea is to use two interleaved graph searches to de-
tect reachable accepting cycles. The first search discovers
accepting states, while the second (the nested one) checks
for self-reachability. Another group of optimal algorithms
are SCC-based algorithms originating in Tarjan’s algorithm
for the decomposition of the graph into Strongly Connected
Components (SCCs) [25]. While Nested DFS is more space
efficient, SCC-based algorithms produce shorter counterex-
amples in general, which can thus be analyzed more conve-
niently. The time complexity of these algorithms is linear in
the size of the graph, i.e., O(m+n), where m is the number
of edges and n is the number of vertices.

The effectiveness of the Nested DFS algorithm is
achieved due to the particular order in which the graph is
explored, also guaranteeing that vertices are not re-visited
more than twice. In fact, all best-known algorithms rely
on the same exploration principle, namely the postorder as
computed by the DFS. It is a well-known fact that the post-
order problem is P-complete and, consequently, a scalable
parallel algorithm which would be directly based on DFS
postorder is unlikely to exist.
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An additional important criterion for a model checking
algorithm is whether it works on-the-fly. On-the-fly algo-
rithms generate the automaton graph gradually as they ex-
plore vertices of the graph. An accepting cycle can thus
be detected before the complete set of vertices is generated.
On-the-fly algorithms usually assume the graph to be given
implicitly by the function Finit giving the initial vertex and
by the function Fsucc which returns immediate successors of
a given vertex.

2.2 Parallel Algorithms for LTL Model
Checking

In many cases the algorithms as used traditionally are not
appropriate to be adapted to parallel architectures. In the
case of LTL model checking, all efficient algorithms build
on depth-first search exploration of the state space. How-
ever, there is no known way to efficiently compute DFS
postorder on parallel machines. New algorithms have to
be invented to replace the classical ones. We briefly in-
troduce two algorithms for accepting cycle detection that
are (among others) implemented in DIVINE. The sequential
complexity of these algorithms is worse than for those based
on DFS, but both allow solving the LTL model-checking
problem on parallel architectures much more efficiently.
For a detailed survey on these and other algorithms imple-
mented in DIVINE we refer to [1].

OWCTY: Topological Sort Algorithm

The main idea behind the OWCTY (One Way Catch
Them Young) algorithm stems from the fact that a directed
graph can be topologically sorted if and only if it is acyclic.
The core of the cycle detection algorithm is thus an appli-
cation of the standard linear topological sort algorithm to
the input graph. Failure in topologically sorting the graph
means the graph contains a cycle. Accepting cycles are de-
tected with multiple rounds (iterations) of the topological
sort. Every iteration consists of reachability and elimina-
tion procedures. The reachability procedure removes ver-
tices unreachable from an accepting vertex (as these can-
not belong to an accepting cycle) and computes indegrees
for all remaining vertices. The succeeding elimination pro-
cedure recursively eliminates vertices whose predecessor
count drops to zero. The algorithm does not work on-the-
fly, as the entire automaton graph has to be generated first.
Also, the algorithm does not immediately give the accepting
cycle; it only checks for its presence in the graph. However,
the counterexample is easily generated using two additional
linear graph traversals, like breadth-first search.

The time complexity of the algorithm is O(h ·m) where
h is the height of the SCC graph. Here the factor m comes
from the computation of the reachability and elimination

4 3

1 2

Figure 1. Undiscovered cycle

functions and the factor h relates to the number of exter-
nal iterations. In practice, the number of external iterations
is very small (up to 40–50), even for very large graphs.
This observation is supported by experiments in [11]. Sim-
ilar results are communicated in [22] where heights of SCC
graphs were measured for several models. As reported, 70%
of the models have heights smaller than 50.

A positive aspect of the algorithm is its extreme effec-
tiveness for weak automaton graphs. A graph is weak if
in each SCC all the states are accepting or none of them
is. For weak graphs only one iteration of the algorithm is
necessary to decide about accepting cycles, the algorithm
works in linear time and is thus optimal. A study of tempo-
ral properties [8] has revealed that verification of up to 90%
of LTL properties leads to weak automaton graphs.

MAP: Maximal Accepting Predecessors

The main idea behind the MAP algorithm is based on
the fact that each accepting vertex lying on an accepting
cycle is its own predecessor. The algorithm that would be
directly derived from this idea requires expensive storing
of all proper accepting predecessors for each (accepting)
vertex. To remedy this, the algorithm instead stores only a
single representative accepting predecessor for each vertex.
We presuppose a linear ordering of vertices (given, e.g., by
their memory representation) and choose the maximal ac-
cepting predecessor. For a vertex u we denote its maximal
accepting predecessor in the graph G by mapG(u). Clearly,
if an accepting vertex is its own maximal accepting prede-
cessor (mapG(u) = u), it lies on an accepting cycle. Un-
fortunately, the opposite does not hold in general. It can
happen that the maximal accepting predecessor for an ac-
cepting vertex on a cycle does not lie on the cycle. This
is exemplified in the graph given in Fig. 1. The accepting
cycle 〈2,1,3,2〉 is not revealed due to the greater accept-
ing vertex 4 outside the cycle. However, as vertex 4 does
not lie on any cycle, it can safely be deleted (marked as
non-accepting) from the set of accepting vertices, and the
accepting cycle still remains in the resulting graph. This
idea is formalized as a deleting transformation.

Whenever the deleting transformation is applied to the
automaton graph G with mapG(v) 6= v for all v ∈ V , it
shrinks the set of accepting vertices by those vertices that
do not lie on any cycle. As the set of accepting vertices can
change after the deleting transformation has been applied,
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while (!synchronized()) {
if ((state = waiting.dequeue()) != NULL) {

state.work();
for (tr = state.succs(); tr != NULL; tr = tr.next()) {

tr.work();
newstate = tr.target();
dest = newstate.hash();
if (dest == this_cpu) waiting.queue(newstate);
else send_work(dest, newstate);

}
}
else idle();
process_messages(&waiting);

}

Figure 2. Distributed graph traversal skeleton

the maximal accepting predecessors must be recomputed.
It can happen that even in the graph del(G) the maximal
accepting predecessor function is still not sufficient for cy-
cle detection. However, after a finite number of iterations
consisting of computing maximal accepting predecessors
followed by application of the deleting transformation, an
accepting cycle is certified (after which a counterexample
can be reconstructed). For an automaton graph without ac-
cepting cycles, the application of deleting transformations
results in an automaton graph without accepting vertices.

The time complexity of the algorithm is O(a2 ·m), where
a is the number of accepting vertices. Here the factor a ·m
comes from the computation of the map function and the
factor a relates to the number of iterations. Unlike the
OWCTY algorithm, the MAP algorithm does work on-the-
fly. Experimental evaluation of this algorithm demonstrated
that accepting cycles were typically detected in a very small
number of iterations. On the other hand, if there is no ac-
cepting cycle in the graph, the number of iterations tends to
be very small compared to the size of the graph (up to 40–
50). Thus, the algorithm exhibits near linear performance
in practice.

2.3 DiVinE Tool

The DIVINE toolkit consists of several separate imple-
mentations of various LTL model checking algorithms such
as described above. Although the algorithms are very dif-
ferent, they follow the same overall pattern, illustrated in
Figure 2. All algorithms perform a strict-order independent
repeated traversal of a directed graph. Vertices of the graph
are very small (typically less than 1 KB), but there are many.
To distribute work among compute nodes, the tool partitions
the graph into (disjunct) sets of vertices such that each set
is owned by one node. This partitioning is implemented us-
ing a hash function: every vertex is assigned to a compute
node according to the hash value computed from its state
representation. Due to the large number of vertices to be
distributed, the hash-based partitioning scheme results in a

quite well-balanced workload, at the price of minimal lo-
cality. The probability that immediate descendants of a ver-
tex belong to the same compute node as the vertex is 1/p,
where p is the number of compute nodes. This means in
practice, that significant portions of edges of the graph are
so called cross edges, i.e., edges whose incident vertices be-
long to different compute nodes. Basically, every cross edge
results in a message to be sent from the compute node own-
ing the source vertex of the edge to the node owning the
target vertex of the edge. The message bears information
about the explored edge plus a small amount of additional
data that is dependent on the algorithm involved. As a re-
sult, a huge number of small messages is exchanged among
compute nodes during the execution of a DIVINE tool.

Both OWCTY and MAP show a gradually increasing
memory usage during their first exploration phase, where
the state space is being expanded. During subsequent ap-
plication phases, memory usage remains constant, as the
algorithm-specific state meta-data is preallocated during the
first phases. Overall, generating, hashing and comparing
states is responsible for a large fraction of the applications’
runtime. Furthermore, large-scale graph algorithms like
explicit-state model checking have a high data access to
computation ratio compared to scientific computing appli-
cations [19].

Distributed Graph Traversal

As shown in Figure 2, the core of each graph traversal
algorithm is a while loop over a queue of vertices (states)
waiting to be processed. Each time a vertex is dequeued,
edges (transitions) emanating from it are enumerated, and
for each of them an algorithm-related action is performed.
The target vertices are examined, and if they need to be
stored locally, they are inserted back into the queue. Non-
local vertices are wrapped into messages and sent to their
owners. In the serial case the main loop terminates as
soon as the queue becomes empty. For distributed algo-
rithms, however, the processing of incoming messages pro-
duces new vertices to be inserted into the queue, thus in-
troducing new work. Therefore, the parallel algorithm may
terminate only if all local queues are empty and there is
no message in transit. To detect this termination condi-
tion, Safra/Dijkstra’s distributed termination detection algo-
rithm [10] is used; see also [21].

An important observation is that the communication
among compute nodes is asynchronous: the algorithms de-
scribed simply push work to other compute nodes, with-
out triggering replies that require more processing. This
aspect also enables an important optimization: work items
sent to the same destination can be aggregated into larger
messages, significantly reducing the communication over-
head. DIVINE implements the communication using asyn-
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chronous MPI primitives, which allows for efficient parallel
processing on a wide variety of architectures. On the other
hand, the use of asynchronous messages may increase the
memory demands, both at the application and the commu-
nication layer. The more vertices are enqueued in a local
queue, the longer it takes before incoming messages are
actually received. Since the number of messages is lim-
ited by the number of edges, we can observe a shift in the
space complexity of the algorithms. Unlike the serial case,
where the space complexity of a graph traversal algorithm
is asymptotically linear in the number of vertices, the dis-
tributed algorithms exhibit space complexity that is asymp-
totically linear in the number of vertices and edges, hence,
up to asymptotically quadratic in the number of vertices.
Experimental experience has shown that even for graphs
with a relatively small number of transitions (with an aver-
age outdegree less than 10), the practical memory demands
are significantly increased in the distributed case compared
to the serial one, due to incoming message buffering.

To avoid increased memory demands during computa-
tion, DIVINE algorithms regularly check for incoming mes-
sages. If the content of an incoming message indicates fur-
ther processing, the appropriate vertex is extracted from the
message and it is enqueued to the local queue. If there is no
further processing required for the incoming message, the
message is discarded immediately.

3 Optimizing DIVINE’s Performance

The performance of DIVINE was considered to be rea-
sonably good, but had not yet been evaluated on large-scale
parallel systems. The original evaluation [1] had investi-
gated performance up to 20 compute nodes, which was the
size of the cluster used for the development of DIVINE.
For this paper, we were able to make use of the DAS-3
system (discussed below), allowing performance evalua-
tion at a much larger scale. It should be noted that that
the applications are far from trivially parallel, as they are
very communication intensive, as shown later in this Sec-
tion. It was soon determined that performance of several
DIVINE algorithms did not scale well with a high number
of nodes. It was unclear whether this was possibly caused
by inherent scalability limitations of the underlying (dis-
tributed) algorithms. For example, in the elimination phase
of the OWCTY algorithm, the states of the graph must be
expanded in topological order. It was previously unclear,
whether strictly following this order would force some cores
to become idle due to an insufficient amount of work. As
our results will show, this is not the case in practice.

An important reason for the initial scalability to drop,
was found to be an inefficiency in DIVINE’s timer man-
agement for its user-level messaging layer. Even though
the associated system calls are highly optimized in the

Linux kernel, the extent to which they were used still se-
riously impeded performance when many compute nodes
were used. By modifying the timer management to use a
cached version of the current time where appropriate (op-
timization TIMER), large-scale performance was improved
significantly.

3.1 Optimizations Applied

To investigate possibly remaining performance prob-
lems, we started with a bottom-up approach in which
DIVINE’s networking module (shared by the implementa-
tions of parallel algorithms, including MAP and OWCTY)
was first instrumented for performance analysis. Every MPI
invocation was wrapped in a low-overhead layer that main-
tained statistics about the call’s overhead (e.g., to deter-
mine send and receive overhead), and about data transfer
rates (both incoming and outgoing). The most important
statistics were logged once every three seconds on every
CPU core. The combined data was then graphically ana-
lyzed to hypothesize causes for the performance degrada-
tions, upon which action could be taken. The same ap-
proach was recently successfully applied on a distributed
application from an entirely different domain (distributed
game tree search) that showed a traffic pattern remarkably
similar to DIVINE’s [27].

DIVINE’s receive primitive, called process messages
(see Figure 2), was an important target in several of our op-
timizations. Besides implementing polling, receiving and
processing user messages, it is also responsible for timeout-
based flushing of pending messages and the handling of dis-
tributed termination detection. The following optimizations
(with acronyms for reference) were applied:

Auto-tune receive rate (RATE) – DIVINE’s applica-
tions often performed much more polling than necessary.
This aspect surfaced as a high overall MPI poll failure rate.
Straightforward reduction of the number of polls can al-
ready improve performance substantially, but statically de-
termining the optimal polling rate is quite hard. Typi-
cally it depends on many factors (besides the host and net-
work hardware, the messaging middleware, the application,
the problem instance, etc.), but it can also change over
the application’s runtime. The optimized version of pro-
cess messages thus dynamically changes the polling rate,
based on the actually experienced message arrival rate.
Note that as the data transfers occur in an essentially un-
predictable order, blocking receives at the MPI layer cannot
be applied effectively, since this would introduce additional
delays.

Prioritize I/O tasks (PRIO) – DIVINE implements
timeout-based flushing of pending work to improve perfor-
mance by providing other nodes with additional work in
cases where message combining would otherwise postpone
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transfers too long. Furthermore, distributed termination de-
tection is a requirement for DIVINE’s correct functioning,
but involves a separate MPI communication channel and
its associated polling overhead. Both these tasks in pro-
cess messages were not timing-critical, yet originally were
performed each time the primitive was invoked. In the op-
timized version, both overheads were reduced by only ex-
ecuting the associated code a suitably small fraction of the
time.

Optimize message flushing (FLUSH) – Another aspect
that was optimized, is the flushing of messages during
the applications runtime, including distributed termination
phases (as discussed in Section 2, each DIVINE algorithm
has several of these phases). When running out of local
work, the original implementation simply flushed all out-
standing (non-full) messages in a fixed sequential order,
which caused much congestion due to hotspots in the net-
work and at the receivers. Also, as every message was
flushed indiscriminately, the average message size during
distributed termination detection phases dropped substan-
tially, causing a relatively high overhead. Message flushing
was optimized quite similarly to the Awari application [27].
In the new version, messages are now flushed from large
to small – effectively spreading the traffic over the network
– also taking care not to exceed a reasonable upperbound
in the outgoing traffic rate – thus avoiding the syndrome of
frantically sending tiny messages.

Pre-establish network connections (PRESYNC) – A fi-
nal optimization is of a quite different nature. As will be dis-
cussed in Section 4.3, DIVINE is also suitable for running
on wide-area distributed systems, but it was noticed that
during large-scale grid experiments some endpoints would
often fail to start communicating efficiently. Sometimes this
situation could prolong such that this led to a huge back-
log of MPI messages at the sender, eventually causing the
application to fail due to excessive paging. The cause of
the problem is that the MPI implementation used (Open
MPI [14]) establishes TCP connections on-demand. This

is often a useful feature, as it decreases large-scale MPI ini-
tialization time, and often only a small subset of the end-
points communicate point-to-point. However, DIVINE is
a-typical in the sense that it requires every endpoint to com-
municate with every other endpoint. Also, immediately af-
ter startup, it starts communicating at peak data rates. These
data rates can be such that they can fill almost the entire
capacity of the wide-area network between sites, making
further connection-establishment very difficult due to time-
outs. This issue was resolved by the addition of a (by pur-
pose) naively implemented small all-to-all data exchange
at the initialization of DIVINE’s runtime system, when the
network is still uncongested. This forces all network con-
nections to be readily available when the actual data trans-
fers start.

3.2 Impact of the Optimizations

Our performance evaluation was done on the Distributed
ASCI Supercomputer [7] (DAS-3), a wide-area distributed
system for Computer Science research in the Netherlands.
DAS-3 consists of five clusters distributed over four sites.
DAS-3 uses Myri-10G networking technology from Myri-
com both as an internal high-speed interconnect as well as
an interface to remote DAS-3 clusters. DAS-3 is largely
homogeneous: every cluster uses dual-CPU AMD Opteron
nodes, but with different clock speeds and/or number of
CPU cores. For the single-cluster performance evaluations
in this paper we used the DAS-3 cluster at VU Univer-
sity, since it has the largest number of compute nodes and
cores (85 nodes with a dual-cpu, dual-core 2.4 GHz AMD
Opterons).

Figures 3 and 4 show the optimization effects for MAP
and OWCTY on an increasing number of DAS-3/VU com-
pute nodes, using Myri-10G’s native MX layer for commu-
nication. Results are shown for 1, 2 and 4 cores per com-
pute node. We used LTL problem instance 6 of the Ander-
son specification from the BEEM benchmark set [23] (this
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Figure 7. Impact of the individual optimiza-
tions for OWCTY on 64*4 cores

specification concerns the correctness of a mutual exclusion
algorithm). In this case the state space has to be searched
completely, but it is still small enough to fit into the mem-
ory of 16 compute nodes, making a scalability comparison
feasible. There are several conclusions to be drawn from
these figures:

• The performance for both the MAP and the OWCTY
implementation has increased substantially: they are
about 30–50% faster than before;

• The scalability of both algorithms is quite good: by
increasing the number of cores with a factor 16 (from
16 to 256 cores), both MAP and OWCTY run about a
factor 10 faster;

• Due to reduced overheads, the performance of the opti-
mized version is almost insensitive to the placement of
multiple processes on the same node, unlike the origi-
nal version.

Figures 5 and 6 illustrate the effect of the optimizations
on the applications’ throughput as a function of their run-
time. In this case a larger instance of the Anderson problem
was used to obtain a higher resolution graph.

Nodes Total Runtime (s) Efficiency
cores MAP OWCTY MAP OWCTY

1 1 956.8 628.8 100% 100%
16 16 73.9 42.5 81% 92%
16 32 39.4 22.5 76% 87%
16 64 20.6 11.4 73% 86%
64 64 19.5 10.9 77% 90%
64 128 10.8 6.0 69% 82%
64 256 7.4 4.3 51% 57%

Table 1. Efficiency of MAP and OWCTY

In the case of MAP (Figure 5), the throughput graph
clearly shows the application-specific phases. The first
phase (originally taking 354 seconds, optimized 261 sec-
onds), the state space is constructed on-the-fly, besides ap-
plying the MAP algorithm itself (see Section 2.2). It is
therefore taking significantly longer than the subsequent
phases. The graph clearly shows that peak throughput
is maintained almost throughout the application’s runtime,
and that the optimizations have let the average per-core
throughput increase from 15.0 to 22.1 MByte/s.

Likewise, the throughput graph for OWCTY (Figure 6)
shows the application-specific phases. As in the case for
MAP, in the first phase (lasting resp. 309 and 168 sec-
onds) the state space is constructed on-the-fly. After that,
OWCTY here only requires two smaller phases to complete
(as is true for many specifications, see Section 2.2). How-
ever, note the long tail of the last phase, which is due to
inefficiencies in the original termination detection imple-
mentation. For OWCTY, the average per-core throughput
increases from 7.9 to 16.4 MByte/s.

To investigate the relative impact of the optimizations,
we constructed a version of DIVINE where combinations
of individual optimizations discussed above could be en-
abled dynamically at runtime. The results for OWCTY us-
ing 256 cores on the larger instance of the Anderson model
are shown in Figure 7. The version with TIMER optimiza-
tion was used as a baseline, since this modification is re-
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Table 2. Large-scale models used
Model Description Specification State space
Elevator Elevator controller correctness elevator.4.prop2 (scaled) 123.8 GB
Publish-subscribe Groupware protocol public-subscribe.5.prop1 209.7 GB
AT Timing based mutual exclusion at.7.prop2 245.0 GB
Le Lann Token ring leader election lann.8.prop1 > 320 GB
GIOP CORBA General Inter-Orb Protocol scenario 1, property 3 203.8 GB
Lunar Ad hoc routing protocol scenario 4d; two properties 181.6 GB
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Figure 8. Publish-subscribe on 64 nodes
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Figure 9. Lunar on 64 nodes, property 1

quired to still get reasonable speedup as the number of CPU
cores grows. As shown, optimization FLUSH has the high-
est impact on performance, but RATE and PRIO also have
significant impact. Optimization PRESYNC (not shown)
only has impact when the network contains a bottleneck,
such as for grid configurations discussed in Section 4.3.

It should be noted that some of the optimizations are not
independent: optimization RATE can by itself reduce the
polling rate such that optimization PRIO becomes less ef-
fective (or required). Interestingly, both polling optimiza-
tions turn out to have less impact for MAP, but this is ex-
plained by the fact that MAP already applies an (ad-hoc)
polling rate reduction at the application level. However, for
both OWCTY and MAP, when a network with higher host
overhead is employed (e.g., a TCP/IP network as discussed
later in this paper), enabling both RATE and PRIO is still
required to obtain good performance.

To estimate the efficiency of MAP and OWCTY, we ran
single-core versions on a special DAS-3/VU node equipped
with 16 GB memory (the regular compute nodes have 4 GB,
which is insufficient to store the state space there). The re-
sults are shown in Table 1. Considering the high data ex-
change rates of the fine-grained applications, and the highly
demanding traffic pattern (irregular all-to-all), these results
can be considered quite good. Also note that this is still a
reasonably small problem: DIVINE’s efficiency increases
further with problem size as the relative impact of synchro-
nizations between the application phases then lessens.

4 Scalability of Optimized DIVINE

Besides being able to analyze medium-scale models ef-
ficiently, another important use case for DIVINE is dealing
with problems that simply are too large to fit into the main
memory of (typical) small-scale computer systems. In this
section we will therefore focus on the performance of MAP
and OWCTY on a diverse set of large-scale models. We will
look into scalability aspects, and also examine the impact of
network overhead.

An overview of the model specifications used is shown in
Table 2. The first four models (Elevator, Publish-subscribe,
AT, and Le Lann) are written in DIVINE’s native model-
ing language “DVE”, and are taken from the on-line BEEM
database [23]. The last two models are examples of re-
alistic specifications written in Promela, the SPIN mod-
eling language. These models are related to protocols
for the CORBA architecture (General Inter-Orb Protocol,
GIOP [17]) and Ad hoc routing (Lunar [29]), for which
we examine two different LTL properties. In DIVINE,
Promela specifications are handled using the embedded
“NIPS” module. NIPS is a complete reimplementation of
the original SPIN tool, by means of a specially developed
model-checking virtual machine [28].

In two models, AT and Le Lann, the LTL formula be-
ing verified is false, i.e., there exists a counterexample that
has to be found by the DIVINE tool. In all other cases, the
LTL formula provided is valid in the model, as a result of
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Figure 10. Elevator on 64 nodes
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Figure 11. GIOP on 64 nodes
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Figure 12. Lunar on 64 nodes, property 2
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Figure 13. AT on 80 nodes

which the entire state space has to be built and analyzed for
the presence of accepting cycles. The state space memory
requirements shown are the ones reported by OWCTY; the
algorithm-dependent per-state memory overhead for MAP
is somewhat lower, reducing its overall memory require-
ments on average by 14%.

4.1 DAS-3 Cluster Performance

We will now show results of 1-, 2- and 4-core configu-
rations of the DAS-3/VU cluster, using MX over Myri-10G
like in the previous section. We used 64 nodes unless (when
noted) the search space was so big that 80 nodes were re-
quired to store it in main memory.

The specifications requiring a full space search are
shown in Figures 8 – 12. Interestingly, two groups of spec-
ifications with similar performance patterns can be iden-
tified: for Publish-subscribe and the first Ad hoc routing
specification, OWCTY and MAP are about equally fast. In
contrast, for Elevator, GIOP and the second Ad hoc routing
specification, OWCTY is much faster than MAP, but both
show good scalability when increasing the number of cores.
The reason is that in the case of Publish-subscribe, MAP
only requires 9 very short cycle-searching phases after the

first on-the-fly one. For the second Ad hoc routing specifi-
cation, the property is even known without either OWCTY
or MAP having to start any additional phases, therefore their
performance is about equal. This should be contrasted with
the second group of specifications, where, e.g., MAP on El-
evator requires 21 longer phases and OWCTY only needs
three phases.

The two inconsistent specifications show a rather differ-
ent picture. As seen in Figure 13, MAP is extremely quick
in finding the counterexample: it is at the bottom of the
graph, taking only a few seconds. OWCTY requires a very
expensive preparation phase constructing the entire search
space, which is large enough that 80 compute nodes are re-
quired. The Le Lann specification (graph not included) even
has a search space too large to fit on DAS-3/VU so OWCTY
is unable to find the counterexample. On the other hand, like
for AT, MAP is able to find it in a matter of seconds.

4.2 Network Impact

In this section we compare DIVINE’s performance us-
ing Myri-10G’s native MX interface with performance using
TCP/IP over the same network. We use TCP/IP to provide
insight into DIVINE’s performance on a higher-overhead
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MPI primitive MX MX MX TCP TCP TCP
64 cores 128 cores 256 cores 64 cores 128 cores 256 cores

MPI Isend 12.5 13.1 13.4 18.6 19.4 19.8
MPI Recv 7.9 8.3 8.8 7.7 7.6 7.3
MPI Iprobe (failed) 1.9 2.6 4.6 38.7 51.2 87.7
MPI Iprobe (success) 4.2 4.5 5.1 3.2 3.7 4.9

Table 3. Average MPI host overhead in µs on DAS-3/VU
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Figure 14. TCP/IP overhead for MAP
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Figure 15. TCP/IP overhead for OWCTY

network, much as would be the case on a general purpose
1Gb/s or 10Gb/s Ethernet. We use the same version of Open
MPI for both MX and TCP/IP, as Open MPI conveniently al-
lows selection of a specific network backend at runtime.

Table 3 shows host-level overheads using MX and
TCP/IP for the most important MPI primitives used in
DIVINE. The overheads were measured using the MAP ap-
plication (results using OWCTY are very similar). Receives
and successful probes have about the same overhead, but
send overhead is about 50% higher on TCP/IP. The biggest
difference is for failing probes, however, where TCP/IP is
about a factor 20 more expensive than MX. In addition,
kernel-based TCP/IP receive processing is a source of over-
head, but this is harder to measure as it occurs interrupt-
driven, asynchronous to the application. Note that differ-
ences in end-to-end latency and peak throughput are less
relevant, as they have little impact on application perfor-
mance given DIVINE’s asynchronous communication style.

Figures 14 and 15 show a quite consistent pattern in the
impact of using TCP/IP instead of MX. The TCP/IP inter-
face with higher send and receive overhead does increase
the runtimes, but interestingly enough this increase is al-
most independent of the number of cores used. It should
be noted that in DIVINE the communication rate per core
is in principle independent of the total number of cores, so
one would expect that doubling the number of cores would
on average halve the total number of sends and receives per
core. Unfortunately, the overhead of a TCP/IP-based net-
work is significantly more dependent on the number of re-
mote endpoints than MX, as shown above, which counter-

balances the gain due to the reduced total number of trans-
fers per core.

4.3 DAS-3 Grid Performance

Given DIVINE’s consistent use of asynchronous com-
munication throughout its execution, an interesting ques-
tion is to what extent its overall performance is truly la-
tency independent. However, running the distributed model
checker at a large scale does pose very high demands on the
wide-area network bandwidth, as every compute node indis-
criminately needs to transfer a large portion of its protocol
messages to nodes at other clusters. Fortunately, DAS-3
provides the opportunity to examine this aspect in detail
since it features a dedicated wide-area network called Star-
Plane [24], built out of multiple optical 10G links. The im-
pact of using a single or multiple optical links on distributed
application performance (including DIVINE) is discussed
in another recent paper [20]; here we will use a static con-
figuration of two 10G links between the sites.

We use a DAS-3 grid configuration of 160 compute
nodes distributed over 4 clusters, located at 3 sites in the
Netherlands (VU University, University of Amsterdam and
Leiden University). The one-way latencies over TCP/IP be-
tween these clusters range between 0.37 and 0.98 millisec-
onds, which should be contrasted with an intra-cluster one-
way TCP/IP latency on DAS-3/VU of 26 microseconds, i.e.,
up to a factor 38 difference.

Figures 16 and 17 show the results for running an in-
creasingly large instance of the Elevator specification on
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Figure 16. Elevator/MAP on a grid
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Figure 17. Elevator/OWCTY on a grid

both the grid and a DAS-3/VU cluster. Note that problem
size 13 is too big to be run on the single DAS-3/VU cluster
alone. The figures show that despite the additional wide-
area latencies incurred, for both MAP and OWCTY grid
performance is actually very close to single-cluster perfor-
mance using the same TCP/IP protocol stack.

5 Discussion and Conclusions

The work on distributed-memory verification is quite ex-
tensive, and growing in recent years. In this paper we dis-
cussed a distributed-memory tool for enumerative model
checking. Distributed-memory techniques have also been
applied in other verification areas, e.g., verification of timed
systems [3], equivalence checking [4], state space construc-
tion [13], and µ-calculus model checking [5]. However,
these systems have thus far not been evaluated on and opti-
mized for large-scale clusters (or grids). A possible excep-
tion is the symbolic model checker in [12], but no scalability
results are reported.

Our paper is novel in bringing distributed model check-
ing closer to industrial applications. Both the scale and ef-
ficiency with which we are now able to verify very large
systems is to the best of our knowledge without prece-
dent. For very large-scale models, state space reduction
may still remain necessary, but this can often be orthogonal
to the techniques discussed in this paper. For example, for
partial order reduction, a static transformation approach is
known [18], but distributed algorithms also exist [6]. State
compression is another popular technique that directly ap-
plies in a distributed context. Keeping parts of the state
space on secondary storage, while still maintaining good
performance, is also a possibility [15].

We have discussed two main distributed algorithms in
DIVINE, and we have shown how several optimizations to-
gether improved their performance by 30 to 50%. We com-
pared the performance of these two algorithms on seven
representative large models, having quite different charac-

teristics. We have shown that the optimizations allow the
algorithms to scale well, up to at least 256 cores, efficiently
exploiting current multi-core architectures. However, as
many-core is an inevitable trend in computer architecture,
it appears likely that at some point a single-address-space
multithreaded implementation should be integrated with the
current version for best performance [2].

Some of the optimizations discussed are not unique to
DIVINE, but will also be applicable in other distributed ap-
plications. For example, the auto-tuning polling rate opti-
mization described will be useful in several cases where ap-
plications have to employ non-blocking polling due to the
irregularity of the communication patterns [27].

The performance differences shown can be used to plan
an efficient model checking workflow, during the develop-
ment of an abstract specification. If a property of a model
is expected to hold, and the state space fits completely into
(distributed) memory, the OWCTY algorithm will typically
be preferable as it can give up to three times faster results
than MAP. However, if the status of a property is uncertain,
MAP will generally be preferable instead, as it works on-
the-fly, and may thus find counterexamples quickly (even
when the entire state space would not fit into memory).
Also, if a property holds after all, MAP will still perform
quite well due to its good scalability.

In this paper, we also analyzed the sensitivity of the
model checking algorithms to network protocol overhead,
and we have shown how the consistent use of asynchronous
communication even allows efficiently running the model
checker on a large-scale computational grid. This thus en-
ables further scaling up the model checker for realistic use
cases, where the state space to be examined quickly grows
even beyond the capacity of a single large compute cluster.

Note – DIVINE is available from http://divine.fi.muni.cz.
The cluster-based tools, containing the optimizations dis-
cussed, are now part of DIVINE-CLUSTER, distinguish-
ing them from other instances of DIVINE.
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Model Checking of Large Systems. In FMCO’05, vol-
ume 4590 of LNCS, pages 281–293. Springer, 2006.

[2] J. Barnat, L. Brim, and P. Rockai. Scalable Multi-core
LTL Model-Checking. In SPIN’07, volume 4595 of
LNCS, pages 187–203. Springer, 2007.

[3] G. Behrmann, T. S. Hune, and F. W. Vaandrager. Dis-
tributed Timed Model Checking — How the Search
Order Matters. In CAV’00, volume 1855 of LNCS,
pages 216–231. Springer, 2000.

[4] S. Blom and S. Orzan. A Distributed Algorithm for
Strong Bisimulation Reduction of State Spaces. STTT,
7(1):74–86, 2005.

[5] B. Bollig, M. Leucker, and M. Weber. Parallel Model
Checking for the Alternation Free mu-Calculus. In
TACAS’01, volume 2031 of LNCS, pages 543–558.
Springer, 2001.
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Abstract. One of the most important open problems of parallel LTL
model-checking is to design an on-the-fly scalable parallel algorithm with
linear time complexity. Such an algorithm would give the optimality we
have in sequential LTL model-checking. In this paper we give a partial
solution to the problem. We propose an algorithm that has the required
properties for a very rich subset of LTL properties, namely those express-
ible by weak Büchi automata.

1 Introduction

Formal verification is nowadays an established part of the design methodology
in many industrial applications. Moreover, it is no more regarded only as a sup-
plementary vehicle to more traditional coverage oriented testing and simulation
activities, ruther it takes in many situation the role of the primary validation
technique. In [14] the authors report about replacing testing with symbolic ver-
ification in the recent Intel Core i7 processor design.

Traditional verification techniques are computationally demanding and
memory-intensive in general and their scalability to extremely large and com-
plex systems routinely seen in practice these days is limited. Verifying complex
systems with a high degree of fidelity implies exceedingly large state spaces that
must be analyzed. These state spaces are typically too large to fit into memory of
a single contemporary computer, unless substantial simplification leading to re-
moval of important features from the model are made. One solution to deal with
the memory problems is to use more powerfull parallel computers. Enormous
recent progress in hardware architectures, which has measured several orders of
magnitude with respect to various physical parameters such as computing power,
memory size at all hierarchy levels from caches to disks, power consumption, net-
working, physical size and cost, has made parallel computers easily available. On
the other hand, this architectural shift requires introducing algorithmic changes
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to our tools. Without them we will not be able to fully utilize the power of
parallel computers.

In this paper we consider parallel explicit-state LTL model-checking. Explicit-
state model checking is a branch of model checking in which the states and
transitions are stored explicitly as the model checking program traverses through
the state space. The main practical problem with explicit model checking is
the state space explosion. To reduce the state explosion effect, explicit model
checking works on-the-fly to gradually generate and check the state space, being
thus able to find a counter-example without ever constructing the complete state
space.

In the case of automata-based approach to explicit-state LTL model-checking
the verification problem is reduced to checking the non-emptiness of a Büchi
automaton, hence the detection of a reachable accepting cycle in a rooted di-
rected graph. The best known on-the-fly algorithms use depth-first-search (DFS)
strategies.

It is well-known that DFS based algorithms are difficult to parallelize. For this
reason parallel explicit-state LTL model-checking algorithms rely on other state
exploration strategies than DFS. Typically, they use some variant of breath-first-
search (BFS) strategy, which is well suited for parallelization. Several different
algorithms have been proposed for parallel explicit-state LTL model-checking.
Contrary to the serial case, it is difficult to identify the best algorithm among
them. One of the reasons is that some of these algorithms have higher time
complexity, but work on-the-fly, while others are on-the-fly with worse time
complexity.

One of the main open problems in explicit-state LTL model-checking is to
develop a parallel algorithm that works on-the-fly and has linear time com-
plexity. In this paper we propose a parallel on-the-fly linear algorithm for LTL
model-checking of weak LTL properties. Weak LTL properties are those that are
expressible by weak Büchi automata, i.e. automata in which there is no cycle
with both accepting and non-accepting state on its path. The studies of tempo-
ral properties [8,5] reveal that verification of up to 90% of LTL properties leads
to a weak case. The most common weak LTL properties are the response prop-
erties, e.g. properties stating that whenever A happens, B happens eventually.
An important aspect of our approach is that there is no difference in handling
weak and non-weak LTL formulas. However, if it is required, we can perform test
for a weak case within the model checking procedure with no impact on both
theoretical complexity and practical performance.

Our algorithm extends the linear parallel OWCTY algorithm [5] by a heuris-
tic for early accepting cycle discovery. The heuristic is based on the MAP algo-
rithm [4], in partiucalr it employs the fact that if an accepting state is its own
predecessor, it lies on an accepting cycle. The new algorithm thus combines the
basic OWCTY algorithm with a limited propagation of selected accepting states
as performed within MAP algorithm.

The new algorithm is able to detect accepting cycle and produce the so called
counter-example without constructing the entire state space, hence it can be
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classified as on-the-fly algorithm. Since it relies on a heuristic method, a natural
question is how much on-the-fly the algorithm actually is. Unfortunately, there
is no standard way to compare LTL model-checking algorithms regarding this
aspect. For DFS-based sequential algorithms the question is easier to answer
and has been discussed by several authors. For parallel algorithms the situation
is much complicated. Therefore, we identify some simple criteria for the degree
of “on-the-flyness” of an algorithm, and subsequently classify our algorithm ac-
cording these criteria.

Our new algorithm has been implemented in the multi-core version of the
parallel LTL model-checker DiVinE [3,2]. The tool is available from its web-
page [7] and is also distributed as a part of Fedora 11 release.

We proceed as follows: Section 2 establishes the necessary notions used in
the algorithm. Section 3 then presents the algorithm itself. Section 4 discusses
the on-the-fly notion in more detail and also contains discussion on related
work. Section 5 reports results on experimental evaluation of the algorithm, and
Section 6 contains the conclusions and an open questions.

2 Preliminaries

Automata-theoretic approach to explicit-state LTL model-checking [19] exploits
the fact that every set of executions expressible by an LTL formula can be
described by a Büchi automaton. In particular, the approach suggests to express
all system executions by a system automaton and all executions not satisfying
the formula by a property or negative claim automaton. These automata are
combined into their synchronous product in order to check for the presence
of system executions that violate the property expressed by the formula. The
language recognized by the product automaton is empty if and only if no system
execution is invalid.

The language emptiness problem for Büchi automata can be expressed as
an accepting cycle detection problem in a graph. Each Büchi automaton can be
naturally identified with an automaton graph which is a directed graph G =
(V, E, s, A) where V is the set of states (n = |V |), E is a set of edges (m = |E|),
s is an initial state, and A ⊆ V is a set of accepting states. We say that a cycle
in G is accepting if it contains an accepting state. Let A be a Büchi automaton
and GA the corresponding automaton graph. Then A recognizes a nonempty
language iff GA contains an accepting cycle reachable from s. The LTL model-
checking problem is thus reduced to the accepting cycle detection problem in
the automaton graph.

The optimal sequential algorithms for accepting cycle detection use depth-first
search strategies to detect accepting cycles. The individual algorithms differ in
their space requirements, length of the counter-example produced, and other
aspects. For a recent survey we refer to [18]. The well-known Nested DFS algo-
rithm is used in many model checkers and is considered to be the best suitable
algorithm for explicit-state sequential LTL model checking. The algorithm was
proposed by Courcoubetis et al. [6] and its main idea is to use two interleaved
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searches to detect reachable accepting cycles. The first search discovers accepting
states while the second one, the nested one, checks for self-reachability. Several
modifications of the algorithm have been suggested to remedy some of its dis-
advantages [12]. Another group of optimal algorithms are SCC-based algorithms
originating in Tarjan’s algorithm for the decomposition of the graph into strongly
connected components (SCCs) [17]. While Nested DFS is more space efficient,
SCC-based algorithms produce shorter counter-examples in general. For a sur-
vey we refer to [16]. The time complexity of all these algorithms is linear in the
size of the graph, i.e. O(m + n), where m is the number of edges and n is the
number of states.

The effectiveness of the Nested DFS algorithm is achieved due to the partic-
ular order in which the graph is explored and which guarantees that states are
not re-visited more than twice. In fact, all the best-known algorithms rely on the
same exploring principle, namely the postorder as computed by the DFS. It is a
well-known fact that the postorder problem is P-complete and, consequently a
scalable parallel algorithm which would be directly based on DFS postorder is
unlikely to exist.

Several solutions to overcome the postorder problem in a parallel environment
have been suggested. The parallel algorithms were developed employing addi-
tional data structures and/or different search and distribution strategies. In the
next section we present two of them. For a survey on other algorithms we refer
to [1].

3 Algorithm

The proposed algorithm combines the OWCTY [5] approach with a heuristic for
early accepting cycle discovery based on the MAP algorithm [4].

The basic OWCTY algorithm uses topological sort for cycle detection – a
linear time algorithm that does not depend on DFS postorder and can thus be
parallelized reasonably well. However, topological sort algorithm cannot detect
accepting cycles as such. Therefore, the OWCTY algorithm uses other provi-
sions to eliminate detection of non-accepting cycles. In particular, the algorithm
computes a set of states predecessed by an accepting cycle, the so called ap-
proximation set. If the algorithm terminates and the set is empty, there is no
accepting cycle in the graph. The set is computed in several phases as follows.
First, a phase called Initialize is executed to explore the complete state space
of the automaton and to set up internal data for use by subsequent phases. Note
that all reachable states are initially part of the approximation set. This phase
is the one where we apply our “on-the-fly” heuristics. The latter two phases
are called Elim-No-Accepting and Elim-No-Predecessors. These phases
remove states from the approximation set that cannot be part of an accepting
cycle. They are executed repeatedly until a fix-point is reached. An important
observation is that if the underlying automaton graph is weak (system automa-
ton was producted with weak negative claim Büchi automaton), the phases need
to be executed exactly once. Further details of the algorithm and its phases can
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Algorithm 1. DetectAcceptingCycle

Require: Implicit definition of G=(V,E,ACC)
1: Initialize()
2: oldSize ←∞
3: while (ApproxSet.size �= oldSize) ∧ (ApproxSet.size > 0) do
4: oldSize ← ApproxSet.size
5: Elim-No-Accepting()
6: Elim-No-Predecessors()
7: return ApproxSet .size > 0

Algorithm 2. Initialize

1: s ← GetInitialState()
2: ApproxSet ← {s}
3: ApproxSet .setMap(s, 0)
4: Open .pushBack(s)
5: while Open.isNotEmpty() do
6: s ← Open .popFront()
7: for all t ∈ GetSuccessors(s) do
8: if t �∈ ApproxSet then
9: ApproxSet ← ApproxSet ∪ {t}

10: Open.pushBack(t)
11: if IsAccepting(t) then
12: if t = s ∨ApproxSet .getMap(s) = t then
13: AcceptingCycleFound()
14: return true
15: ApproxSet .setMap(t ,max(t ,ApproxSet .getMap(s)))
16: else
17: ApproxSet .setMap(t ,ApproxSet .getMap(s))

be found in [5]. For clarity, we just list the pseudo-code of the new combined
algorithm.

The original MAP algorithm is based on propagation of maximum accepting
predecessors and, similarly to OWCTY, its execution is organized into multiple
passes. Each pass fully propagates (this includes re-propagation) maximum (ac-
cording to given order) accepting predecessors of all states. Even a single pass
of such algorithm is super-linear, up to n passes may need to be executed. After
each pass, states constituting maximum accepting predecessors are marked as
non-accepting and next pass is executed. The MAP algorithm finishes when a
state is found to be its own maximum accepting predecessor (this means that
an accepting cycle has been discovered in the state space), or when there are no
reachable accepting states.

The idea of propagating one accepting predecessor along all newly discovered
edges is at heart of the proposed heuristic extension of OWCTY. If the propa-
gated accepting state is propagated into itself, an accepting cycle is discovered
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Algorithm 3. Elim-No-Accepting

1: ApproxSet’ ← ∅
2: for all s ∈ ApproxSet do
3: if IsAccepting(s) then
4: Open.pushBack(s)
5: ApproxSet’ ← ApproxSet’ ∪ {s}
6: ApproxSet’ .setPredecessorCount(s , 0)
7: ApproxSet ← ApproxSet’
8: while Open.isNotEmpty() do
9: s ← Open .popFront()

10: for all t ∈ GetSuccessors(s) do
11: if t ∈ ApproxSet then
12: ApproxSet .increasePredecessorCount(t)
13: else
14: Open.pushBack(t)
15: ApproxSet ← ApproxSet ∪ {t}
16: ApproxSet .setPredecessorCount(t , 0)

Algorithm 4. Elim-No-Predecessors

1: for all s ∈ ApproxSet do
2: if ApproxSet .getPredecessorCount(s) = 0 then
3: Open.pushBack(s)
4: while Open.isNotEmpty() do
5: s ← Open .popFront()
6: ApproxSet ← ApproxSet � {s}
7: for all t ∈ GetSuccessors(s) do
8: ApproxSet .decreasePredecessorCount(t)
9: if ApproxSet .getPredecessorCount(t) = 0 then

10: Open.pushBack(t)

and the computation is terminated. Likewise the MAP algorithm, an accept-
ing state to be propagated is selected as a maximal accepting state among all
accepting states visited by the traversal algorithm on a path from the initial
state of the graph to the currently expanded state. Since the Initialize phase
of OWCTY needs to explore full state space, we can employ it to perform limited
accepting cycle detection using maximal accepting state propagation. Unlike the
MAP algorithm, we however avoid any re-propagation to keep the Initialize
phase complexity linear in the size of the graph. This means that some accepting
cycles that would be actually discovered using re-propagation, may be missed.
In particular, there are three general reasons for not discovering an accepting
cycle with our heuristics. First, the maximum accepting predecessor of the cycle
may not lie on the cycle itself, see Figure 1(a). Second, the maximum accepting
predecessor value does not reach the originating state due to the absence of a
fresh path (path made of yet unvisited states), see Figure 1(b). And third, the
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(a) (b) (c)
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C D

A > B > C
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C D

C A>D>
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B

C D

B> > AC

C

Fig. 1. Three scenarios where no accepting cycle will be discovered using accepting
state propagation. a) Maximal accepting predecessor is out of the cycle. b) There is
no fresh path back to the maximal accepting state. c) Wrong order of propagation,
C → D is explored before B → D, hence, C is propagated from D.

maximum accepting predecessor value does not reach the originating state due
to a wrong propagation order, see Figure 1(c).

When the algorithm encounters an accepting state that is being propagated,
it terminates early, producing a counter-example. On the other hand, if the
Initialize phase of OWCTY fails to notice an accepting cycle, the rest of the
original OWCTY algorithm is executed. Either the algorithm finds an accepting
cycle (and again, produce a counter-example) or, it proves that there are no
accepting cycles in the underlying graph.

An interesting feature of our algorithm is a possibilty to propagate more values
simultaneously. Generally, the more values are propagated the more successful
the Initialize phase might be in discovering accepting cycles. Consider for ex-
ample the case (a) in Figure 1. If two largest accepting states are propagated,
A and B in this case, the cycle would be detected. Similarly, if the algorithm
considers multiple distinct orderings and propagates maximal accepting states
for each of them, the cycle in the case (a) in Figure 1 could be detected. This
would, however, require B to be a maximal accepting state for some ordering.

4 On-the-Fly Verification

In automated verification, parallel techniques both for symbolic and explicit
state approaches have been considered. While the symbolic set representations,
which often employs canonical normal forms for propositional logic like BDDs,
have been a breakthrough in the last decade (with the capacity to handle spaces
of the size 1020 and beyond), they often turned out to not scale well with the
problem sizes. Moreover, the success of their application to a given verification
problem cannot be estimated in advance, since neither the size of the system in
terms of lines of code nor other known metrics for the system size have proved
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to be useful for such estimates. Moreover, the use of BDDs is often sensible to
the used variable ordering, which is sometimes difficult to determine.

For this reason, SAT-based model checking, in particular in the forms of
bounded model checking and equivalence checking have recently become very
popular. They still benefit from the use of symbolic methods, but tend to be more
scalable as they no longer rely on canonical normal forms like BDDs. Many algo-
rithms used in SAT solvers could also benefit from parallel processing capabilities,
even though this has not yet been a topic of the mainstream research.

An alternative is the use of explicit state set representations. Clearly, for most
real world systems, the state spaces are far too big for a simple explicit repre-
sentation. However, many techniques like partial order reduction approach have
been developed to reduce the state spaces to be examined. In contrast to sym-
bolically represented state sets, explicit state space representations can directly
benefit from multiprocessor systems and explicit state based model checking
scales very well with the number of available processors.

Let alone partial order reduction techniques, another important method for
coping with the state explosion problem in explicit state model checking, is the so
called on-the-fly verification. The idea of the on-the-fly verification builds upon
an observation that in many cases, especially when a system does not satisfy its
specification, only a subset of the system states need to be analyzed in order
to determine whether the system satisfies a given property or not. On-the-fly
approaches to model checking (also reffered to as local algorithmic approaches)
attempt to take advantage of this observation and construct new parts of the
state space only if these parts are needed to answer the model checking question.

As mentioned in Section 2 explicit-state automata-theoretic LTL model check-
ing relies on three procedures: the construction of an automaton that represents
the negation of the LTL property (negative-claim automaton), the construction
of the state space, i.e. the product automaton of system and negative-claim au-
tomata, and the check for the non-emptiness of the language recognized by the
product automaton.

An interesting observation is that only those behaviors of the examined system
are present in the product automaton graph that are possible in the negative-
claim automaton. In other words, by constructing the product automaton graph
the system behaviors that are not relevant to the validity of the verified LTL
formula are pruned out. As a result, any LTL model checking algorithm that
builds upon exploration of the product automaton graph may be considered as
an on-the-fly algorithm. We will denote such an algorithm as Level 0 on-the-fly
algorithm in the classification given below.

When the product automaton graph is constructed, an accepting cycle detec-
tion algorithm is employed for detection of accepting cycles in the product au-
tomaton graph. However, it is not necessary for the algorithm to have the prod-
uct automaton constructed before it is executed. On the contrary, the run of the
algorithm and the construction of the underlying product automaton graph may
interleave in such a way that new states of the product automaton are constructed
on-the-fly, i.e. when they are needed by the algorithm. If this is the case, the
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algorithm may terminate due to the detection of an accepting cycle before the
product automaton graph is fully constructed and all of its states are visited.

Those LTL model checking algorithms that may terminate before the state
space is fully constructed are generally denoted as on-the-fly algorithms. If there
is an error in the state space (accepting cycle), an on-the-fly algorithm may
terminate in two possible phases: either an error is found before the interleaved
generation of the product automaton graph is complete (i.e. before the algorithm
detects that there are no new states to be explored), or an error is found after
all states of the product automaton have been generated and the algorithm is
aware of it. The first type of the termination is henceforward referred to as
early termination (ET). Note that the awareness of completion of the product
automaton construction procedure is important. If the algorithm detects the
error by exploring the last state of the product automaton graph before it detects
that it was actually the last unexplored state of the graph, we consider it to be
an early termination.

We classify “on-the-flyness” of accepting cycle detection algorithms according
to the capability of early termination as follows. An algorithm is

– level 0 on-the-fly algorithm, if there is a product automaton graph containing
an error for which the algorithm will never early terminate.

– level 1 on-the-fly algorithm, if for all product automaton graphs containing
an error the algorithm may terminate early, but it is not guaranteed to do
so.

– level 2 on-the-fly algorithm, if for all product automaton graphs containing
an error the algorithm is guaranteed to early terminate.

Note that level 0 algorithms are sometimes considered as on-the-fly algorithms
and sometimes as non-on-the-fly algorithms depending on research community.
Since a level 0 algorithm explores full state space of the product automaton
graph it may be viewed as if it does not work on-the-fly. However, as explained
above, just the fact that the algorithm employs product automaton construction
is a good reason for considering the whole procedure of LTL model checking with
a level 0 algorithm as an on-the-fly verification process.

To give examples of algorithms with appropriate classification we consider
algorithms OWCTY, MAP, and Nested DFS. OWCTY algorithm is level 0 algo-
rithm, MAP algorithm is level 1 algorithm and Nested DFS is level 2 algorithm.
From the description in the previous section it is clear, that the algorithm we
propose in this paper falls in the category of level 1.

It is not possible to give an analytical estimate of the percentage of the state
space an on-the-fly algorithm needs to explore before early termination happens.
Therefore, it is always important to accompany the classification of an algorithm
by an experimental evaluation. This is in particular the case for level 1, where the
experiments may give more accurate measure of the effectiveness of the method
involved.

So far we have spoken only about the on-the-flyness status of a state space
exploration algorithm. Nevertheless, on-the-fly LTL model checking procedure
also denotes an approach that avoids explicit a priori construction of the negative
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claim automaton. We adapt the notation of [13] and denote this type of on-the-
flyness as truly on-the-fly approach to LTL model checking. Note that truly
on-the-flyness and algorithmic on-the-flyness are independent of each other and
truly on-the-fly approach may be combined with on-the-fly algorithms of any
level.

As for the state space exploration algorithms, the efficiency of the on-the-
flyness of the algorithm may also be improved by other techniques. It might
be the case that even the level 2 on-the-fly algorithm fails to discover an error,
if the examined state space is large enough to exhaust system memory before
an error is found. This issue has been addressed by methods of directed model
checking [10,11,9], which combines model-checking with heuristic search. The
heuristic guides the search process to quickly find a property violation so that
the number of explored states is small. It is worthy to note that our approach
can be extended with directed search as well.

5 Experiments

To experimentally evaluate efficiency of our approach we conducted numerous
experiments employing models from BEEM [15]. All measured values were ob-
tained using the verification tool DiVinE-MC version 1.4 [3,7]. The experiments
were performed on a workstation equipped with two dual-core Intel Xeon 5130
@ 2.00 GHz processors, 16 GB of RAM, and 64-bit Linux-based operating sys-
tem. For scalability experiments we also employed 16 way AMD Opteron 885
(8x dual-core) with 64 GB of RAM.

5.1 On-the-Flyness

For validation of the on-the-fly aspect of our new algorithm we originally selected
212 instances of verification problems with invalid LTL specification from BEEM
database. However, we discovered that many of the instances resulted in a state
space containing a self-loop over an accepting state (trivial accepting cycle). Such
an accepting cycle can be easily detected using any graph traversal algorithm
using just a simple self-loop test for each accepting state. After pruning out these
unwanted cases, our benchmark contained 90 verification problems. An overview
of the verification problems used to validate on-the-flyness of our approach is
given in Figure 2.

We list experimental results in a few tables that all have a common structure.
Each table row represents a single experimental configuration of the algorithm
we run. Column Algorithm gives the configuration of the experiment. Columns
Visited states, Memory (MB), and Time (s) give the total number of distinct
states generated, the total amount of memory consumed, and the total time of
verification, respectively, for the whole benchmark set of verification problems.
Column ET ratio reports on the number of Early terminations that happened for
the experiment configuration. For example, if the ET ratio says 78/90, it means
that for 78 verification problems out of 90, an accepting cycle was detected before
the full state space was constructed.
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Model LTL Properties Validity

anderson G((!cs0) -> F cs0) No

driving phils G(ac0 -> F gr0) No

GF ac0 No

elevator2 G(r1->(F(p1 && co))) No

G(r1->(!p1U(p1U(p1&& co)))) No

G(r1->(!p1U(p1U(!p1U(p1U(p1&&co)))))) No

F(G p1) No

elevator G(waiting0 ->(F in elevator0)) No

iprotocol F consume No

G F consume No

((G F dataok) && (G F nakok)) -> (G F consume) No

lamport G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

lifts (GF pressedup0) -> (GF moveup) No

G (pressedup0 -> F moveup) No

((! moveup) U pressedup0) || G (! moveup) No

mcs G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

peterson G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

GF someoneincs No

phils GF eat0 No

G (one0 -> F eat0) No

GF someoneeats No

protocols (pready U prod0) -> ((cready U cons0) || G cready) No

F (consume0 || consume1) No

G F (consume0 || consume1) No

rether G (res0 -> (rt0 R !cend)) No

GF rt0 No

G (want0 -> (! ce U (ce U (!ce && (rt0 R !ce))))) No

szymanski G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

GF someoneincs No

Fig. 2. Selected BEEM models with invalid LTL properties
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To identify the configuration of the algorithm in the experiment we use the
following notation. W = x denotes that the algorithm was performed using
x CPU cores (x workers in DiVinE-MC terminology), V = y denotes that the
algorithm involved y different value propagations at the same time. Note that for
V = 0 no values were propagated in order to early detect accepting cycles and the
full state space of all verification problems had to be constructed. By DFS and
BFS keys we distinguish whether the underlying search order employed for the
initial reachability was a local depth-first or local breadth-first one, respectively.
Also, since the behavior of the algorithm is non-deterministic (if more than one
CPU cores are used) all values reported are actually average values obtained
from ten independent runs of the corresponding experiment.

Before analyzing the experimental results, it is also important to explain the
implementation of the technique we use to identify accepting states to be prop-
agated. In particular, the algorithm always propagates the maximal accepting
state it has encountered with respect to the given order of accepting states. To
be able to efficiently decide about order of two given states, we decided not to
compare the contents of the corresponding state vectors, but rather to use the
unique pointers to memory addresses where the two state vectors are stored. For
a state s, we denote the pointer by ptr(s). Note that the ordering of states
depends on properties of the memory managment system of the platform the
program is running on. in practice, the ordering of states depends on the order
in which the states were allocated, hence, on the order in which the states were
examined. Some experiments employed multiple different orderings for identifica-
tion of states to be propagated. Different orderings were achieved by performing
various bit alternations in the bit representation of the pointer. Concrete tech-
niques used in different configurations of our algorithm are listed in the following
table.

Algorithm Propagated values

Configuration 1st 2nd 3rd

V=0 — — —

V=1 ptr(s) — —

V=2 ptr(s) ptr(s) xor 0x555 —

V=3 ptr(s) ptr(s) xor 0x555 ptr(s) xor 0xFFFF

In Figure 3 we report results for single core experiments. It can be seen that
the value propagation is quite successful regarding the early termination. Com-
pared with the algorithm that performs no value propagation the algorithms
with value propagations can save non-trivial amount of memory and reduce the
runtime needed for verification, which definitely justifies our new algorithm to be
considered as an algorithm that works on-the-fly. Other interesting aspect that
can be read from the table are as follows. The more values are propagated, the
larger is the ratio of early terminations, DFS mode seems to be slightly better in
states and memory, but the BFS mode is better in detecting the presence of an
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Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=0, W=1 52 047 342 6 712 760 0/90

BFS, V=1, W=1 23 157 474 4 858 295 66/90

BFS, V=2, W=1 23 173 041 4 949 297 67/90

BFS, V=3, W=1 20 175 952 4 796 237 78/90

DFS, V=0, W=1 52 047 342 6 716 760 0/90

DFS, V=1, W=1 19 849 655 4 583 272 56/90

DFS, V=2, W=1 20 971 228 4 753 277 61/90

DFS, V=3, W=1 17 090 024 4 502 240 68/90

Nested DFS 622 984 1 736 7 90/90

Fig. 3. Single core experiments

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=1, W=1 6 820 499 2 829 40 66/66

BFS, V=2, W=1 6 854 458 2 893 41 67/67

BFS, V=3, W=1 5 621 320 3 194 36 78/78

DFS, V=1, W=1 3 930 520 2 257 23 56/56

DFS, V=2, W=1 5 173 954 2 546 31 61/61

DFS, V=3, W=1 1 802 949 2 518 12 68/68

Nested DFS 622 984 1 736 7 90/90

Fig. 4. Single core experiments restricted to runs with early termination

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=0, W=1 52 047 342 6 712 760 0/90

BFS, V=0, W=2 52 047 342 9 072 503 0/90

BFS, V=0, W=3 52 047 342 10 065 441 0/90

BFS, V=0, W=4 52 047 342 10 874 395 0/90

DFS, V=0, W=1 52 047 342 6 716 760 0/90

DFS, V=0, W=2 52 047 342 9 069 504 0/90

DFS, V=0, W=3 52 047 342 10 036 441 0/90

DFS, V=0, W=4 52 047 342 10 888 396 0/90

Fig. 5. Experiments involving various number of CPU cores but no value propagation
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Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=1, W=1 23 157 474 4 858 295 66/90

BFS, V=1, W=2 17 203 306 5 748 130 74/90

BFS, V=1, W=3 20 244 429 6 955 122 74/90

BFS, V=1, W=4 18 632 114 7 576 102 72/90

DFS, V=1, W=1 19 849 655 4 583 272 56/90

DFS, V=1, W=2 18 996 947 5 890 136 77/90

DFS, V=1, W=3 22 826 318 7 037 138 73/90

DFS, V=1, W=4 18 833 201 7 685 100 72/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=2, W=1 23 173 041 4 949 297 67/90

BFS, V=2, W=2 17 540 622 5 976 132 75/90

BFS, V=2, W=3 19 199 233 6 956 115 76/90

BFS, V=2, W=4 18 856 858 7 647 102 73/90

DFS, V=2, W=1 20 971 228 4 753 278 61/90

DFS, V=2, W=2 18 557 211 5 909 136 76/90

DFS, V=2, W=3 21 429 842 6 944 125 75/90

DFS, V=2, W=4 18 601 625 7 712 98 72/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=3, W=1 20 175 952 4 796 237 78/90

BFS, V=3, W=2 16 421 989 6 006 127 78/90

BFS, V=3, W=3 17 335 622 6 765 108 80/90

BFS, V=3, W=4 15 462 219 7 435 89 78/90

DFS, V=3, W=1 17 090 024 4 502 240 68/90

DFS, V=3, W=2 17 932 103 5 882 129 80/90

DFS, V=3, W=3 21 174 728 6 984 126 76/90

DFS, V=3, W=4 18 676 721 7 754 97 75/90

Fig. 6. Experiments involving various configurations of the algorithm and various num-
ber of CPU cores

accepting cycle on-the-fly. An interesting observation is the correspondence of
the ratio of early terminations and the amount of visited states and time needed.
For example, in DFS, V=3, W=1 case, the ET ratio is 68/90 = 75%, the amount
of avoided states is 35 millions which is 67% of the total of state spaces, and the
time spared is 520 seconds, i.e. 72%. For comparison we also report the overall
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Algorithm Visited states Memory (MB) Time (s) ET ratio

exp 0, BFS, V=3, W=4 15 271 625 7 408 85 79/90

exp 1, BFS, V=3, W=4 14 831 048 7 388 86 78/90

exp 2, BFS, V=3, W=4 16 324 239 7 541 90 78/90

exp 3, BFS, V=3, W=4 14 979 049 7 400 91 78/90

exp 4, BFS, V=3, W=4 16 064 605 7 453 90 77/90

exp 5, BFS, V=3, W=4 15 950 789 7 445 87 80/90

exp 6, BFS, V=3, W=4 14 726 197 7 401 85 79/90

exp 7, BFS, V=3, W=4 15 601 260 7 441 94 78/90

exp 8, BFS, V=3, W=4 15 308 205 7 413 90 79/90

exp 9, BFS, V=3, W=4 15 565 178 7 462 90 75/90

Maximum 16 324 239 7 541 94 80/90

Minimum 14 726 197 7 388 85 75/90

Average 15 462 220 7 435 88.8 78.1/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

exp 0, DFS, V=3, W=4 19 126 324 7 802 98 75/90

exp 1, DFS, V=3, W=4 17 513 441 7 622 101 75/90

exp 2, DFS, V=3, W=4 19 289 379 7 814 98 73/90

exp 3, DFS, V=3, W=4 18 234 139 7 734 97 73/90

exp 4, DFS, V=3, W=4 16 135 286 7 504 87 78/90

exp 5, DFS, V=3, W=4 19 586 932 7 833 98 74/90

exp 6, DFS, V=3, W=4 19 237 964 7 803 94 78/90

exp 7, DFS, V=3, W=4 20 121 416 7 885 105 74/90

exp 8, DFS, V=3, W=4 18 956 781 7 784 93 78/90

exp 9, DFS, V=3, W=4 18 565 549 7 767 97 75/90

Maximum 20 121 416 7 885 105 78/90

Minimum 16 135 286 7 504 87 73/90

Average 18 676 721 7 754 96.8 75.3/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=3, W=4 15 462 220 7 435 88.8 78.1/90

DFS, V=3, W=4 18 676 721 7 754 96.8 75.3/90

Fig. 7. Non-deterministic behavior of the algorithm demonstrated on version V=3 and
4 CPU cores. Comparison of BFS and DFS search order strategies.
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Model LTL Properties Validity

anderson GF someoneincs Yes

elevator2 G(r0->(!p0U(p0U(!p0U(p0U(p0&&co)))))) Yes

lamport GF someoneincs Yes

leader filters F leader Yes

rether GF (nact0) Yes

szymanski GF someoneincs Yes

Fig. 8. Selected BEEM model instances with valid LTL properties

16-way AMD Opteron 4-way Intel Xeon

Model 1 2 4 8 16 1 2 3 4

anderson 11:41 6:27 4:46 2:45 1:56 9:39 5:23 4:10 3:56

elevator2 9:27 5:40 3:28 2:07 1:35 8:18 4:51 3:50 3:05

lamport 23:12 13:23 8:10 5:16 3:39 19:41 10:58 8:28 6:49

leader filters 9:04 5:10 3:08 2:25 1:45 7:34 5:02 3:23 2:53

rether 2:22 1:12 58 38 27 2:06 1:05 58 55

szymanski 1:20 51 39 33 28 1:09 43 39 35

Fig. 9. Scalability experimental results of liveness checking on a selection of models
with valid properties

values of visited states and time needed if the serial Nested DFS algorithm is
used.

Figure 4 gives the overall values if only the cases, where early termination
happened, are considered. The table demonstrates, that if early termination
succeeds, the efficiency of our new algorithm is quite close to the optimal but
serial Nested DFS algorithm. Note the increase in the number of visited states
in case DFS, V=2, W=1 compared to DFS, V=1, W=1. We explain this by the
fact, that in the case of V=2 the memory requirements to store a single state
vector differs from the case V=1, hence, pointers to addresses of state vectors
are reordered due to the underlying memory management.

Before we discuss how the algorithm performs with respect to early termi-
nation if multiple CPU cores are used, we first look into how the algorithm
behaves if no value propagation is used. As it can be seen from Figure 5, using
more CPU cores not only renders shorter running times, but it also increases
the overall memory consumption. This can be easily explained by the overhead
related to multiple threads. For example, in DiVinE-MC every thread maintains
its own hash table. However, there is an interesting phenomenon, also indepen-
dent of the search order used, that the increase from one core to two cores is
approximately twice as big as any further increase from n cores to n+1 cores.
Our guess is that for a single core run, the tool consumes less memory as the
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Fig. 10. Runtimes and speedup plots as measured on 16-way AMD Opteron 885 and
4-way Intel Xeon platforms

underlying memory management need not pre-allocate large memory blocks to
prevent fragmentation.

In Figure 6 we present an overview of our experimental study. We conclude
from the experimental results that our parallel algorithm for accepting cycle
detection works in an on-the-fly manner. The experimental data demonstrate
that using more accepting states for the propagation increases the successfulness
of early termination, though it is disputable whether it actually reduces demands
on computing resources. An interesting point is that unlike the single core case,
in parallel processing BFS variants outperform DFS ones. This result is however,
bound to the ordering of states in the state space.

Finally, data in Figure 5 demonstrate the non-deterministic behavior of paral-
lel runs. It can be observed that the early termination ratio and the demands on
computational resources vary, however, the deviation is relatively small which is
very important from the practical point of view.

5.2 Scalability

In order to demonstrate the scalability aspects of the new algorithm we selected
various valid instances from the BEEM database. See Figure 8 for details. In
Figure 9 we report on run-times needed to complete the corresponding verifica-
tion tasks. It can be seen that the efficiency of parallel computation is slightly
deteriorating as the number of cores involved in the computation reaches the
maximum number of available cores. Nevertheless, the run-times consistently
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decrease as the number of cores involved increases. The speedup and run-times
are also given as graphs in Figure 10.

6 Conclusions

In this paper we described a new parallel algorithm for accepting cycle detection
problem, i.e. explicit-state LTL model-checking. The algorithm emerged as a
combination of two existing parallel algorithms, OWCTY and MAP, keeping
the best of both. In particular, the new parallel algorithm is scalable and time-
optimal for majority of LTL properties, likewise the OWCTY algorithm, but it is
also able to detect some accepting cycles on-the-fly, likewise the MAP algorithm.
No such algorithm has been known so far.

We also performed large experimental study. It demonstrated that using our
new algorithm significantly reduces computation resources needed to complete
the verification task in many cases.

As for the future work, we can see many options. First of all, we have the im-
pression that one could further improve the results by clever selection of ordering
function. It is clear that technique to select states to be propagated influences
the experimental results a lot. It is still unclear how far one can get with a good
ordering function in practice. Another future goal is to incorporate directed
search in the Initialize phase of the algorithm. Directed search is known to
significantly increase efficiency of early termination in serial case, we expect this
to be the case also for parallel algorithms. And finally, we still do not have the
answer to the open problem of existence of parallel scalable and optimal level 2
on-the-fly algorithm for weak LTL properties and level 1 or better for full LTL.
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1. Barnat, J., Brim, L., Černá, I.: I/O Efficient Accepting Cycle Detection. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Hei-
delberg (2007)
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15. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
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CUDA accelerated LTL Model Checking
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Abstract

Recent technological developments made available
various many-core hardware platforms. For example,
a SIMD-like hardware architecture became easily ac-
cessible for many users who have their computers
equipped with modern NVIDIA GPU cards with CUDA
technology. In this paper we redesign the maximal
accepting predecessors algorithm [7] for LTL model
checking in terms of matrix-vector product in order
to accelerate LTL model checking on many-core GPU
platforms. Our experiments demonstrate that using
the NVIDIA CUDA technology results in a significant
speedup of verification process.

1. Introduction

Model-checking [1] is a wide-spread technique for
automated formal verification. Given a formal descrip-
tion of a system and desired system property, the
goal of the model-checking procedure is to analyze
reachable system configurations in order to decide
whether the system satisfies the property or not. In
this paper we deal with LTL model checking, which
is the case when the property to be verified is given
as a formula of Linear Temporal ogic (LTL). In LTL
model checking, the question of satisfaction of the
property can be reduced to the problem of detection of
an accepting cycle (cycle through at least one vertex
denoted as accepting vertex) in a directed graph.

All the know algorithms for accepting cycle detec-
tion can be divided into two classes. Algorithms such
as Nested DFS [10] or algorithms based on Tarjan’s
SCC decomposition algorithm [17], [18] exhibit op-
timal (linear) time complexity, but are incompatible
with parallel processing. This is because they strongly
rely on the so called depth-first search (DFS) postorder
for computation of which no scalable parallel algo-
rithm is known [16]. The other group of algorithms
for accepting cycle detection are algorithms such as
OWCTY [9], [12] or MAP [7] that avoid DFS pos-
torder, but exhibit unoptimal time complexity. How-

This work has been supported in part by the Czech Grant
Agency grants No. 201/09/P497, 201/09/1389, 102/09/H042 and the
Academy of Sciences grant No. 1ET408050503.

ever, it has been demonstrated that the unoptimality
is easily outweighted by parallel processing [2], [19].
As a result, the unoptimal algorithms are actually faster
than the optimal sequential algorithms if contemporary
parallel hardware is used.

Moreover, the graph to be analyzed tends to be very
large for realistic systems and it is handled only with
difficulties by a single memory-limited machine. Con-
sequently, optimal utilization of resources of various
hardware platforms have got much attention by the
model checking community. As most modern hardware
platforms are actually parallel platforms, the desire
for full utilization of the power available rendered all
sequential algorithms obsolete.

Modern graphics processing units (GPUs) have
emerged as a revolutionary technological opportunity
due to their tremendous massive parallelism, floating
point capability, low cost, and ubiquitous presence
in commodity computer systems. Many key compu-
tational kernels have been redesigned to exploit the
performance of this modern hardware. The key to
effective utilization of GPUs for scientific computing is
the design and implementation of efficient data-parallel
algorithms that can scale to hundreds of tightly coupled
processing units.

In this paper we show how one of the parallel
algorithms for accepting cycle detection, namely the
MAP algorithm, can be effectively accelerated on GPU
if the input data are given in an appropriate format.
The MAP algorithm was chosen, because, unlike the
OWCTY algorithm, it allows on-the-fly verification.

The rest of the paper is organized as follows. In
Section 2 we briefly recall basics of automata-theoretic
approach to LTL Model Checking. Sections 3, 5
and 6 describe how we adapted the algorithm MAP
to GPU processing and what enhancements we did to
achieve good performance. In Sections 4 we recapit-
ulate NVIDIA CUDA hardware platform a show how
our adapted algorithm can be implemented on CUDA.
Section 7 reports on an experimental evaluation of our
approach, and finally, Section 8 summarizes achieved
results and plots some future directions.
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2. LTL Model Checking

For LTL model checking purposes, the system to
be analyzed has to be described in some modeling
language, ProMeLa [14] for example, and the property
to be checked has to be given as formula of Lin-
ear Temporal Logic (LTL) [1]. To answer the LTL
model checking question, tools, such as SPIN [14]
or DiVinE [5], employ automata-theoretic approach to
reduce the model checking problem to the problem
of non-emptiness of Büchi automata. In particular,
the model of a system S is viewed as a finite au-
tomaton AS describing all possible behaviors of the
system. The property to be checked (LTL formula ϕ)
is negated and translated into Büchi automaton A¬ϕ
describing all the behaviors violating ϕ. In order to
check whether the system violates ϕ, a synchronous
product AS × A¬ϕ of AS and A¬ϕ is constructed de-
scribing those behaviors of the system that violates ϕ,
i.e. L(AS×A¬ϕ) = L(As)∩L(A¬ϕ). The automata AS,
A¬ϕ, and AS×A¬ϕ are referred to as system, property,
and product automata, respectively. System S satisfies
formula ϕ if and only if the language of the product
automaton is empty, which is if and only if there is
no reachable accepting cycle in the underlying graph
of the product automaton. The LTL model checking
problem is thus reduced to the problem of the detection
of an accepting cycle in the product automaton graph.

There are several parallel algorithms for accepting
cycle detection. One of them is the algorithm MAP [7]
which we now briefly introduce in its successor ver-
sion. Let G = (V,E,v0,A) be the graph of the product
automaton, where V is a finite set of vertices, E is a
set of edges, v0 is an initial vertex, and A is a vertex
predicate indicating whether a state is accepting or
not. Let < be a linear ordering of the set of vertices,
given e.g. by the vertex numbering. We extend the
ordering to the set V ∪ {⊥} (⊥/∈ V ) and put ⊥< v
for all v ∈V . Furthermore, let map :: V →V ∪{⊥} is
a function returning the maximal accepting successor
of a given vertex or ⊥ if it does not exist, i.e.
map(u) = max{⊥,v | (u,v) ∈ E+∧A(v)}.

The idea of the algorithm to detect an accepting
cycle is as follows. If a vertex u is its own maximal
accepting successor, i.e. u = map(u), the presence
of an accepting cycle is guaranteed. If there is an
accepting cycle in the graph, but for none of its vertices
u = map(u), then the maximal accepting successor
of all the vertices of the cycle must be the same,
must lie outside the cycle and can thus be marked
as non-accepting. The idea of the algorithm is to
process the graph in a few iterations so that each
iteration computes map values for all the vertices. If
no accepting cycle is discovered, all maximal accepting

successors that occur in map(u) for some u are marked
as non-accepting for all the following iterations. The
algorithm iterates until an accepting cycle is found or
the set of accepting vertices becomes empty. See the
pseudo-code in Algorithm 1. A key procedure of the

Algorithm 1 Algorithm MAP
Input: directed graph G = (V,E,v0,A) of AS×¬ϕ

linear ordering < on V
Output: true, if AS×¬ϕ contains accepting cycle

false, otherwise

1: while (∃v ∈V : A(v) = true) do
2: COMPUTEALLMAPS(G,<)
3: if (∃u ∈V : u = map(u)) then
4: return true
5: end if
6: A(v)← false
7: end while
8: return false

algorithm is COMPUTEALLMAPS() that is responsible
for computing the values of the function map for
all the vertices reachable from the initial vertex. See
the pseudo-code in Algorithm 2. Initially, the values
of map(u) are set to ⊥ for all u ∈ V . These values
are then repeatedly updated until a global fix-point is
reached, i.e. no update can be done for any value of
map(u). Suppose a directed edge (u,v) from u to v, the
new value of map(u), the so called update along the
edge (u,v), is computed using function maxacc(u,v)
as follows:

maxacc(u,v) =
{

max{map(u),map(v),v} if A(v)
max{map(u),map(v)} otherwise.

Algorithm 2 COMPUTEALLMAPS(G,<)
Input: directed graph G = (V,E,v0,A)

linear ordering < on V
Output: value of map(u) for all u ∈V

1: for all (u ∈V ) do
2: map(u) =⊥
3: end for
4: while (¬ fix-point) do
5: for all ((u,v) ∈ E) do
6: if (v ∈ A) then
7: map(u)← max{map(u),map(v),v}
8: else
9: map(u)← max{map(u),map(v)}

10: end if
11: end for
12: end while
13: return map

Henceforward, we also refer to the iterations of the
while loop of Algorithm MAP given in Algorithm 1
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as of outer iterations, and the iterations of the while
loop of procedure COMPUTEALLMAPS given in Al-
gorithm 2 as of inner iterations.

The practical performance of the basic algorithm
may be further enhanced if the graph to be checked for
the presence of an accepting cycle is partitioned into
subgraphs so that no cycle of the original graph maps
to multiple partitions. In that case the inner iterations
as performed in procedure COMPUTEALLMAPS may
be prevented from propagating values of map along
edges that cross partition boundaries. This brings no
complexity improvement, but it generally reduces the
number of inner iterations needed to achieve the fix-
point.

One technique to partition the product automaton
graph is part of the algorithm itself. It builds upon
the fact that if two vertices differ in their values of
map, they cannot lie on the same cycle. Therefore, the
propagation in procedure COMPUTEALLMAPS may be
localized to those edges (u,v) for which the values of
map(v) and map(u) computed in the previous outer
iteration are the same. The values of map function
from the previous outer iteration are referred to as
oldmap values.

3. Reformulation of MAP algorithm

In order to accelerate the MAP algorithm on CUDA
we reformulate it as a matrix-vector multiplication
algorithm.

Let us assume the graph G of the product automaton
AS×¬ϕ is represented as an adjacency matrix M. The
matrix keeps value 1 at row u and column v for every
directed edge (u,v). See Figure 1. Additional data to
be stored with every vertex of the graph are not stored
directly in the matrix, but they are rather organized
in separate vectors. Namely, vector ~m of map values,
vector ~o of oldmap values, vector ~A of values of the
predicate A , and an output vector~r of bits indicating a
recent update to the value of map. Vector ~r is used to
detect the fix-point of computation of inner iterations,
i.e. the situation when no update to map function
occurs in two successive inner iterations.

The algorithm proceeds as illustrated in Figure 1.
Initially, all map and oldmap values are set to ⊥, see
the column vectors ~m and ~o. The algorithm repeat-
edly updates values of the vector ~m until a fix-point
is reached (the three topmost matrix-vector product
equations). Since map(v) 6= v for all vertices v, the
maximal accepting vertex v3 cannot be part of an
accepting cycle (map(v3) < v3). The algorithm resets
its accepting status, copies map values to oldmap
values and sets all values of map to ⊥. Note that there
are two subgraphs to be further processed identified

u

v0 v1 v3

v0 v1 v3 ~m ~o ~A ~m ~o ~A ~r

u

 0 0 0 0
0 0 1 0
1 1 0 1
0 0 0 0

 × ⊥ ⊥ 0
⊥ ⊥ 1
⊥ ⊥ 0
⊥ ⊥ 1

=

⊥ ⊥ 0 0
⊥ ⊥ 1 0
3 ⊥ 0 1
⊥ ⊥ 1 0

v1

 0 0 0 0
0 0 1 0
1 1 0 1
0 0 0 0

 × ⊥ ⊥ 0
⊥ ⊥ 1
3 ⊥ 0
⊥ ⊥ 1

=

⊥ ⊥ 0 0
3 ⊥ 1 1
3 ⊥ 0 0
⊥ ⊥ 1 0 0 0 0 0

0 0 1 0
1 1 0 1
0 0 0 0

 × ⊥ ⊥ 0
3 ⊥ 1
3 ⊥ 0
⊥ ⊥ 1

=

⊥ ⊥ 0 0
3 ⊥ 1 0
3 ⊥ 0 0
⊥ ⊥ 1 0

m o A
⊥ ⊥ 0
3 ⊥ 1
3 ⊥ 0
⊥ ⊥ 1

=⇒

m o A
⊥ ⊥ 0
3 ⊥ 1
3 ⊥ 0
⊥ 3 0

=⇒

m o A
⊥ ⊥ 0
⊥ 3 1
⊥ 3 0
⊥ 3 0 0 0 0 0

0 0 1 0
1 1 0 1
0 0 0 0

 × ⊥ ⊥ 0
⊥ 3 1
⊥ 3 0
⊥ 3 0

=

⊥ ⊥ 0 0
⊥ 3 1 1
1 3 0 0
⊥ 3 0 0 0 0 0 0

0 0 1 0
1 1 0 1
0 0 0 0

 × ⊥ ⊥ 0
⊥ 3 1
1 3 0
⊥ 3 0

=

⊥ ⊥ 0 0
1 3 1 0
1 3 0 0
⊥ 3 0 0

Figure 1. Matrix vector computation of MAP.

by the oldmap values. Vertex v3 is part of one of the
subgraphs, but since it is not accepting anymore, it
cannot influence any future values of map computed
for vertices within the subgraph. Then the next outer
iteration proceeds. The algorithm detects (using two
inner iterations) that map(v1) = v1 and so it terminates
reporting accepting cycle through vertex v1.

The key observation is that the vector of map
values computed in each inner iteration is computed
as a matrix-vector product by substituting max for the
standard + operation, and maxacc for the standard ·
operation. The result, however, considers only those
summands for which oldmap values are the same as
oldmap value of the updated vertex. For example, the
resulting value of ~m[u] is computed as

~m[u] = max1<i≤4 (M[u][i] ·old ·maxacc(i,u))
where old equals to 1 if ~o[u] =~o[i] and equals to 0 in
the other case. Also note that values of ~A are accessed
within maxacc operation and that 0 encodes ⊥.
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Figure 2. CUDA hardware model

4. CUDA Architecture

The Compute Unified Device Architectures
(CUDA) [11], developed by NVIDIA, is parallel
programing model and software environment providing
general purpose programming on Graphics Processing
Units. At the hardware level, GPU device is a
collection of multiprocessors each consisting of eight
scalar processor cores, instruction unit, on-chip shared
memory, and texture and constant memory caches.
Every core has a large set of local 32-bit registers but
no cache. See the structure as depicted in Figure 2.
The multiprocessors follow the SIMD architecture,
i.e. they concurrently execute the same program
instruction on different data. Communication among
multiprocessors is realized through the shared device
memory that is accessible for every processor core.

On the software side, the CUDA programming
model extends the standard C/C++ programming lan-
guage with a set of parallel programming supporting
primitives. A CUDA program consist of a host code
running on a CPU and a device code running on the
GPU. The device code is structured into so called
kernels. A kernel executes the same scalar sequential
program in many data independent parallel threads.
Within the kernel, threads are organized into thread
blocks forming a grid of one or more blocks, see
Figure 3. Each thread is given a unique index within
its block threadIdx and each block is given a unique
index blockIdx within the grid. The threads of a
single block are guaranteed to be executed on the
same multiprocessor, thus, they can easily access data
stored in shared memory of the multiprocessor. The
programmer specifies both the number of blocks and
number of threads per block to be created before a
kernel is launched. These values are available to the
kernel as gridDim and blockDim values, respectively.

Figure 3. CUDA programming model

M =


a b c 0
0 d e 0
0 0 0 0
f 0 g h


Row 0 Row 1 Row 3

Mr[8] = { a b c d e f g h }
Mc[8] = { 0 1 2 1 2 0 2 3 }
Mn[4] = { 0 3 5 8 }

Figure 4. A sparse matrix and its CSR representation.

Using CUDA to accelerate the computation is easily
exemplified on a vector summation problem. Suppose
two vectors of length n to be summed. In the stan-
dard imperative programming language, a programmer
would use a for loop to sum individual vector elements
successively. Using CUDA, however, the vector ele-
ments can be summed concurrently in a single kernel
call populated with n threads, each responsible for
summation of a single pair of vector elements at the
position given be the thread index.

5. CUDA Accelerated Algorithm MAP

Data structures used for CUDA accelerated compu-
tation must be designed with care. First, they have
to allow independent thread-local data processing so
that the CUDA hardware can employ massive par-
allelism. And second, they have to be small so that
the high latency device-memory access and limited
device-memory bandwidth are not large performance
bottlenecks. As for the algorithm MAP, it is the matrix
representation of the graph AS×¬ϕ to be encoded ap-
propriately at the first place. Note that uncompressed
matrix or dynamically linked adjacency lists violate
the requirements and as such they are inappropriate
for CUDA computing.

We decided to encode the matrix of the product
automaton graph as a sparse matrix using compresse
sparse row (CSR) format. In this format a sparse
matrix is encoded using three one-dimensional arrays
Mr, Mc, and Mn as follows. All the non-zero elements
of a matrix M are stored in the array Mr in left-to-
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Algorithm 3 CUDA MAP Algorithm - host code
Input: directed graph G = (V,E,v0,A) of AS×¬ϕ
Output: true, if AS×¬ϕ contains accepting cycle

false, otherwise

1: CREATE CSR REPRESENTATION(G,Mc,Mn,~m)
2: acc cycle found← false
3: repropagate← true
4: unmarked← true
5: copy (Mc,Mn,~m) to GPU (gMc,gMn, ~gm)
6: while unmarked ∧¬acc cycle found do
7: while repropagate ∧¬acc cycle found do
8: repropagate← false
9: map Kernel(gMc,gMn, ~gm,acc cycle found)

10: check repropagate Kernel( ~gm,repropagate)
11: end while
12: unmarked← false
13: unmark acc vertices Kernel( ~gm,unmarked)
14: end while
15: return acc cycle found

right and top-to-bottom order. The array Mc keeps the
corresponding column indices for every element in Mr,
while the array Mn keeps positions of first elements of
rows of M in arrays Mn and Mr. See Figure 4. Note that
in our case all the non-empty elements of the matrix
are the same, hence, the array Mr is redundant for our
purposes and we do not maintain it at all.

The other data structures are organized as vectors,
which is compatible with CUDA processing. The val-
ues of map, old map, A predicate, and repropagation
bit r for vertex i are available in the pseudo-code
as m[i].map, m[i].old, m[i].acc and m[i].repropagate,
respectively. Since the values of map and oldmap
are technically pointers, we were able to store the
two other bits of information into unused pointer bits
reducing thus the space needed to record all the data
for one vertex to two times 4 Bytes.

As explained in Section 3, the major computation
part of the algorithm MAP can be formulated in
terms of matrix-vector product. Given CSR matrix
representation and a column vector, an efficient CUDA
accelerated matrix-vector product procedure was de-
scribed in [6], [13]. The idea of the procedure is to
map every row of the matrix to one thread. Since
in our case the edges of the graph are more or less
uniformly spread in the matrix, this approach leads to
a satisfactory balanced load of CUDA cores.

The pseudo-code of the CUDA accelerated algo-
rithm MAP follows. Algorithm 3 lists the overall host
code, i.e. the part that is executed on the CPU. The
inner and outer while loops listed in the pseudo-
code correspond with the inner and outer iterations as
introduced in Section 2.

There are three kernel functions called from the

Algorithm 4 device code - map Kernel
proc map Kernel(gMc,gMn, ~gm,acc cycle found)

1: row← blockIdx∗blockDim+ threadIdx
2: if row< | ~gm| then
3: row begin← gMn[row]
4: row end← gMn[row+1]
5: u← gm[row]
6: propagate← ⊥
7: u.updated← false
8: for column← row begin to row end−1 do
9: v← gm[gMc[column]]

10: if u.map = v.old∧u.old 6= v.old then
11: u.old← v.old
12: u.map← ⊥
13: propagate← ⊥
14: u.repropagate← true
15: break
16: else if u.old = v.old then
17: propagate← max(propagate,maxacc(u,v))
18: end if
19: end for
20: if propagate = row then
21: acc cycle found← true
22: end if
23: if propagate> u.map then
24: u.map← propagate
25: u.repropagate← true
26: end if
27: gm[row]← u
28: end if

host code. The most important one, map Kernel, is
listed as Algorithm 4. Every call to map Kernel
performs one matrix-vector product operation, i.e. it
propagates the map values once along every edge (see
lines 17 and 23-26 of Algorithm 4). Note however,
that the very first call to the kernel in every outer
loop does a slightly different job. In particular, it
copies map values to oldmap values to decompose
the graph according to map values from the previous
outer iteration (see lines 10-15 of Algorithm 4). If
no accepting cycle is found and map Kernel returns,
check repropagate Kernel is called to detect a fix-
point. check repropagate Kernel is listed as Algo-
rithm 5. If there is no map value to be further
propagated, the outer iteration is completed by a
call to unmark acc vertices Kernel to unset accepting
predicate for accepting states proven to be outside an
accepting cycle. unmark acc vertices Kernel is listed
as Algorithm 6.

Note that an update of map value of a single
vertex requires access to all immediate successors
of it, which can be done effectively in CSR matrix
representation. If we opted for the predecessor version
of the algorithm, the algorithm would require to access
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Algorithm 5 device code - check repropagate Kernel
proc check repropagate Kernel( ~gm,repropagate)

1: row← blockIdx∗blockDim+ threadIdx
2: if row< | ~gm| then
3: u← gm[row]
4: if u.repropagate then
5: repropagate← true
6: end if
7: end if

Algorithm 6 dev.code - unmark acc vertices Kernel
proc unmark acc vertices Kernel( ~gm,unmarked)

1: row← blockIdx∗blockDim+ threadIdx
2: if row< | ~gm| then
3: u← gm[row]
4: if u.acc∧u.map< row then
5: u.map← ⊥
6: u.old← row
7: u.acc← false
8: gm[row]← u
9: unmarked← true

10: end if
11: end if

immediate predecessors of vertices, which would mean
to transpose the matrix first. This would prevent on-
the-fly computation at all.

6. On-The-Fly Verification

The last not-yet-discussed but quite essential pro-
cedure of the whole verification process is the trans-
formation of the input data as given to the model
checker into the form suitable for CUDA accelerated
computation. In the model checking process, the graph
to be searched for accepting cycles is given implicitly.
Implicit definition of a graph involves a function to
enumerate initial vertices, a function to enumerate
edges emanating from a given vertex, and a function to
check for accepting status of a given vertex. In order
to use our CUDA accelerated accepting cycle detection
algorithm, we have to turn the implicit definition of the
graph into an explicit one. This process is generally
referred to as state space generation. In addition to
explicit state space construction we also build its CSR
representation.

A distinguished property of the MAP algorithm is
that it can be altered to work on-the-fly [7]. An on-the-
fly algorithm can detect the presence of an accepting
cycle before the state space generation procedure com-
pletes its task. We were able to adapt our implementa-
tion to mimic this behavior as well. In particular, we
let the CPU to perform state space generation during
which we let the GPU to apply CUDA accelerated

MAP algorithm on partially constructed graph. If the
part of the graph constructed so far contains an accept-
ing cycle, CUDA accelerated MAP algorithm simply
reveals it before the state space generation is complete.

To further accelerate CUDA computation, we em-
ployed another technique to decompose the product
automaton graph [4], [15]. The idea is to decompose
the property automaton into strongly connected com-
ponents and then project this decomposition to the final
graph. Moreover some parts of the product automata
graph are known to be without accepting vertices in
advance and may be omitted when constructing CSR
representation of the graph. This technique signifi-
cantly reduced the size of the matrix as well as the
number of repropagations needed.

7. Experimental evaluation

We have implemented the algorithm as a part of
the DiVinE-Cluster model checker version 0.8.2 [5].
We compared the performance of the CUDA imple-
mentation against the algorithms MAP and OWCTY
as provided by the model checker. To order vertices
as required by the algorithm, we employed inverse
ordering on row numbers since with this ordering the
numbers of inner iterations were very small. For the
details on how the ordering influences performance of
the algorithm, see [8].

To compare the CUDA algorithm with the existing
algorithms implemented in the DiVinE Cluster model
checker, we used DiVinE native models as listed in
Table 1. All the experiments were run on a Linux work-
station equipped with two AMD Phenom(tm) II X4
940 Processors @ 3MHz, 8 GB DDR2 @ 1066 MHz
RAM and NVIDIA GeForce GTX 280 GPU with 1GB
of GPU memory.

Table 2 captures various statistics of our experi-
ments. The difference between stored and generated
states illustrates how much of the state space is made
of subgraphs without accepting states. Note that if
the graph contains an accepting cycle, the reported
numbers refer to numbers of states and transitions
generated and stored before the accepting cycle was
discovered. #MAP iterations reports the number of
outer iterations, #kernel executions gives the total
number of calls to CUDA kernels, and avg kernel time
gives an average time a single call to a CUDA kernel
took.

Table 3 provides details on run-times of individual
algorithm parts. As for the CUDA MAP algorithm, the
total run-time includes the initialization time (not re-
ported in the table), CSR construction time (CSR time),
and time spent on CUDA computation (CUDA time).
Note that the first iteration of CPU MAP is actually
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Models Model description Inspected LTL properties

elevator the elevator controller
1: if level 1 is requested, it is served eventually
2: if level 1 is requested, it is served as soon as the cab passes the level 1

peterson Peterson’s mutual exclusion algorithm
1: infinitely many times someone is in the critical section
2: if process 0 is not in the critical section then it will eventually reach it

leader leader election algorithm based on filters eventually leader will be elected

anderson
Anderson’s queue lock mutual exclusion
algorithm

for each process holds that if the process is active infinitely often then it
is in the critical section infinitely often

bakery Bakery mutual exclusion algorithm
for each process holds that if the process is active infinitely often and
starts wait then it waits until reaches the critical section and eventually
reaches it

phils dining philosophers problem infinitely many times someone eats

Table 1. The used experimental models.

# generated # stored # generated # stored accepting # MAP # kernel avg. kernel
Model states states transitions transitions cycle iterations executions time [ms]

elevator 1 5 015 528 1 722 344 63 110 616 20 483 544 N 14 539 18

leader 26 302 351 26 302 351 84 124 038 84 124 038 N 2 3 58

peterson 1 18 995 033 9 497 514 124 897 292 41 457 112 N 10 160 40

anderson 10 728 476 6 170 260 46 795 735 26 328 440 N 4 223 27

elevator 2 6 645 826 3 354 971 76 052 914 32 562 797 Y 1 42 22

phils 6 976 798 2 278 932 63 492 002 7 470 054 Y 1 1 12

peterson 2 5 797 524 2 933 213 38 297 450 12 943 640 Y 4 525 11

bakery 6 986 289 4 333 229 37 438 316 18 145 482 Y 1 1 23

Table 2. The statistic of CUDA MAP algorithm.

CUDA MAP CPU MAP CPU OWCTY
accepting CSR CUDA total 1st iter. other iter. total reachability total

Model cycle time time time time time time # iter. time time

elevator 1 N 26 7 34 44 56 100 16 24 41

leader N 87 1 90 97 600 697 17 90 297

peterson 1 N 105 6 113 175 270 445 16 110 188

anderson N 31 7 39 64 51 115 5 33 113

elevator 2 Y 33 1 35 50 – 50 1 41 177

phils Y 45 1 47 295 102 397 5 180 576

peterson 2 Y 25 5 31 173 – 173 1 114 404

bakery Y 24 1 26 240 – 240 1 219 907

Table 3. The run-times in seconds.

CUDA MAP CPU MAP CPU OWCTY
Models total time total time CUDA MAP speedup total time CUDA MAP speedup

non-accepting 276 1357 4.92 639 2.32

accepting 139 860 6.19 2064 14.87

both 415 2173 5.24 2730 6.51

Table 4. The overall run-times in seconds, and speedup of the whole model checking procedure.
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slower than construction of the CSR representation.
This is because the first iteration of the CPU MAP not
only generates the state space, but also computes first
stable values of map. Also note the different number of
outer iterations in CUDA MAP (reported in Table 2)
and CPU MAP. The difference is a result of employing
maximal accepting predecessors in CPU MAP and
maximal accepting successors in CUDA MAP. The
number of iterations of CUDA MAP is consistently
smaller, for which we have no good explanation yet.
Algorithms MAP and OWCTY were running on a
single core.

Finally, Table 4 gives a comparison of overall run-
times for both valid and invalid model checking in-
stances. We can see that if the whole model checking
procedure is considered, the speedup is not that impres-
sive. This is obviously due to the CSR representation
preparation. Though, the speedup is still significant.

8. Conclusions

We demonstrated successful reformulation of the
LTL model checking algorithm MAP in terms of
matrix-vector product that allows for significant GPU
accelerated model checking process. The main bottle-
neck of the whole approach is the costly procedure
of preparation of data structures that are necessary for
efficient acceleration. Though we put significant effort
in designing accelerated CSR representation computa-
tion, we did not achieve a procedure with consistent
speed-up. Therefore, we consider GPU accelerating of
the data structures preparation to be the next challenge
for model checking community.

We are aware of other representations that could
be used for CUDA efficient matrix-vector product,
the other representations even exhibit better CUDA
performance, however, their preparation is generally
more complex, hence not very suitable for our domain.

In the future we would like to accelerate slow
CSR representation preparation at least by means of
multi-core processing, which we believe may bring
similar speed-up as in the case of state space gen-
eration [3]. Another problem we are aware of is the
limited memory size of a single CUDA device. We
intend to overcome this limit by employing multiple
CUDA devices for which we already have some initial
thoughts.
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Distribution of Nested DFS. In 3rd International
Workshop on Verification and Computational Logic
(VCL’02), pages 1–10. University of Southampton, UK,
Technical Report DSSE-TR-2002-5, 2002.

[5] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai,
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Parallel Algorithms for Finding SCCs

in Implicitly Given Graphs�

Jǐŕı Barnat and Pavel Moravec
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Masaryk University Brno, Czech Republic

Abstract. We examine existing parallel algorithms for detection of str-
ongly connected components and discuss their applicability to the case
when the graph to be decomposed is given implicitly. In particular, we
list individual techniques that parallel algorithms for SCC detection are
assembled from and show how to assemble a new more efficient algorithm
for solving the problem. In the paper we also report on a preliminary
experimental study we did to evaluate the new algorithm.

1 Introduction

The problem of finding strongly connected components (SCCs), known also as
SCC decomposition, is one of the basic graph problems that finds its applications
in many research fields even beyond the scope of computer science. An efficient
algorithmic solution to this problem is due to Tarjan [20] who showed that
given a graph with n vertices and m edges, it is possible to identify and list all
strongly connected components of the graph in O(n + m) time and O(n) space.
Besides Tarjan’s serial algorithm, several parallel algorithms have been designed
to solve the problem. Tarjan’s algorithm (and its variants) strongly rely on the
depth-first search post-ordering of vertices whose computation is known to be P -
complete [19], and thus, difficult to be parallelized. Therefore, parallel algorithms
avoid the depth-first search of the graph and build on different approaches.

A parallel algorithm relying on matrix multiplication was described in [14] and
further improved in [10,1]. The algorithm works in O(log2 n) time in the worst
case, however, to achieve the complexity it requires O(n2.376) parallel proces-
sors. As graphs that we are typically dealing with in practice contain millions
of vertices the algorithm is practically unusable and is only interesting from the
theoretical point of view. Another parallel algorithm for finding SCCs was given
in [12]. Its general idea is to repeatedly pick a vertex of the graph and identify
the component the vertex belongs to using two parallel reachability procedures.
The algorithm proved to be efficient enough in practice, which resulted in sev-
eral theoretical improvements of it [17,15]. The worst time complexity of the
algorithm is O(n · (n + m)), nevertheless, the algorithm exhibits O(m · log n)
expected time [12].
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338.
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In this paper, we discuss known as well as suggest new techniques used for par-
allel SCC decomposition, and we explore their restrictions if they are applied to
implicitly given graphs. Efficient parallel algorithms for SCC decomposition will
find their application in distributed formal verification tools such as DiVinE [2],
CADP [13], DUPPAAL [4], LiQuor [8], etc. Namely, they will allow the tools to
verify stochastic systems, compute τ -confluence, or verify systems with fairness
constraints or properties given by other than Büchi automata.

The rest of the paper is organized as follows. We recapitulate basic terms
and definitions in Section 2, describe known and new techniques used in parallel
algorithms for solving the problem in Section 3, and list known parallel algo-
rithms along with their pseudo-codes in Section 4. In Section 5 we report on an
experimental study we performed, and in Section 6 we conclude the paper with
several remarks and plans for future work.

2 Preliminaries

We start by brief summary of basic terms and definitions. Let V be a set of
vertices, E ⊆ V × V a set of directed edges, and v0 ∈ V a vertex. We denote by
G = (V, E, v0) a directed graph with initial vertex v0.

Let G = (V, E, v0) be a directed graph. A sequence of edges (u0, u1), (u1, u2),
. . . , (un−1, un) is called a path from vertex u0 to vertex un. We say that vertex
v is reachable from vertex u if there is a path from u to v or u = v. A strongly
connected component (SCC) is a subset C ⊆ V such that for any vertices u, v ∈ C
u is reachable from v. A strongly connected component C is maximal if there
is no strongly connected component C′ such that C � C′. A maximal strongly
connected component C is trivial if C is made of a single vertex c and (c, c) /∈
E. Henceforward, we speak of maximal strongly connected components as of
strongly connected components.

Let WG be the set of all strongly connected components of graph G =
(V, E, v0). A directed graph of strongly connected components of graph G is
defined as SCC(G) = (WG, HG, w0), where w0 is the component that contains
the initial vertex v0, and HG ⊆ WG ×WG is the set of edges between members of
WG. (w1, w2) ∈ HG if there are vertices u1 ∈ w1 and u2 ∈ w2 such that (u1, u2) ∈
E. Note that the graph of strongly connected components of any directed graph
is acyclic.

A graph could be given in many ways. For purpose of this paper (and accord-
ing to our needs) we consider graphs that are given implicitly. A graph is given
implicitly if it is defined by its initial vertex and a function returning immediate
successors of arbitrary vertex. Within the context of implicitly given graphs there
are some restrictions the algorithms have to follow. If an algorithm requires any
piece of information that cannot be concluded from the implicit definition of the
graph, the algorithms have to compute the information first. For example, there
is no way to directly identify immediate predecessors of a given vertex from the
implicit definition of the graph. If the algorithm needs to enumerate immedi-
ate predecessors, then all the predecessors must be computed and stored first.
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Fig. 1. Component detection, identified subgraphs, and trivial components

Similarly, to number vertices of an implicitly given graph means to enumerate
all its vertices first. For numbering vertices of implicitly given graphs a parallel
procedure was introduced in [13]. Note that vertices of an implicitly given graph
are trivially reachable from the initial vertex.

The reason for dealing with implicitly given graphs comes from practice. In
many cases, the description of rules according to which the graph could be
generated is more space efficient than the enumeration of all vertices and edges.
The difference might be quite significant. For example, in the context of model
checking [9], the implicit definition of the graph is up to exponentially more
succinct compared to the explicit one. This is commonly referred to as the state
explosion problem [9].

3 List of Techniques

Before describing individual parallel algorithms we give the basic principles and
list common techniques that all later given algorithms use. We hope this allow
us to describe the algorithms and analyze their behavior in more compact and
clear way.

Basic Principle

All parallel algorithms we present in Section 4 build on the same technique that
was originally presented in [12]. The graph to be decomposed is split into two
parts. The decomposed part of the graph consisting of already identified compo-
nents, and the not-yet-decomposed part of the graph consisting of vertices that
have not been classified into strongly connected components yet. The basic step
of each algorithm consists of picking a vertex from the not-yet-decomposed part
of the graph, the so called pivot, and identifying the component the selected
vertex belongs to. Having a pivot, the strongly connected component the pivot
belongs to is determined as the intersection of sets of all predecessors and succes-
sors of the given pivot [12]. The structure of all algorithms is then a simple loop
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in which the basic step is repeated until the not-yet-decomposed part becomes
empty. The basic step is illustrated on the example graph depicted in Figure 1.
Note that the not-yet-decomposed part of the graph is further structured as
explained below.

Reachability Relation

Computation of the reachability relation is the core procedure used in all the
algorithms. The task of the procedure is to identify all vertices that are reachable
from a given vertex. The standard breadth-first or depth-first traversals of the
graph can be employed to do so using O(n) space and O(n + m) time.

The reachability procedures are the first place where parallelism appears in the
algorithms. The parallelization of a reachability procedure became the standard
technique [6,7,21,16]. The so called partition function is used to assign every
vertex of the graph to a single processor that is responsible for exploration of
the vertex. Every processor participating the parallel computation maintains its
own set of already explored vertices and its own list of vertices to be explored. If
a vertex has been explored previously (it is in the set of explored vertices), then
its re-exploration is omitted, otherwise, its immediate successors are generated
and distributed into lists of vertices to be explored according to the partition
function.

The algorithms we describe in the next section use, in addition to the notion
of forward reachability, the notion of backward reachability. The task of a back-
ward reachability procedure is to identify all vertices that a given vertex can be
reached from. The procedure for backward reachability mimics the behavior of
the procedure for the forward reachability except it uses immediate predecessors
instead of immediate successors during graph traversal. While forward reachabil-
ity can be performed using only the implicit definition of the graph, the backward
reachability, as explained above, requires a list of immediate predecessors to be
computed and stored for every vertex first.

Trivial Strongly Connected Components

Considering the basic algorithmic approach to SCC decomposition, the detection
of trivial components is quite inefficient. If the pivot itself is a trivial component,
both forward and backward reachability procedures perform useless work. There
is rather small improvement in omitting the backward reachability procedure
in the case the forward procedure did not hit the pivot, however, the forward
procedure still performs O(n+m) work. Therefore, any technique that prevents
trivial components from becoming pivots has significant impact on practical
performance of the algorithm.

A possible approach for doing so builds on the elimination of leading and
terminal trivial components from the not-yet-decomposed part of the graph. In
particular, every vertex that has zero predecessors must be a trivial component
and as such it can be immediately removed (along with all incident edges) from
the not-yet-decomposed part of the graph. Removing such a vertex may, how-
ever, produce new vertices without predecessors that can be removed in the same
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way. We refer to this recursive elimination technique as to the One-Way-Catch-
Them-Young elimination (OWCTY) [11]. The technique can be applied in the
analogue way also to vertices without successors (Reversed OWCTY). The im-
proved version of the basic parallel algorithm that perform OWCTY elimination
procedures before selection of the pivot was described in [15]. We stress that only
leading and terminal trivial components may be identified in this way. Trivial
components that are neither leading nor terminal may still be chosen as pivots.
The graph depicted in Figure 1 contains all three types of trivial components:
leading trivial components (LT), terminal trivial components (TT), and trivial
components that are neither leading nor terminal (T).

Regarding implicitly given graphs the OWCTY elimination techniques suffer
from the difficulty of identifying vertices with zero predecessors or zero succes-
sors. Basically, a complete reachability of the not-yet-decomposed part of the
graph has to be performed to list those vertices. This reachability does not in-
crease the theoretical complexity, however, it may play significant role in the
practical performance of the algorithm.

Finally, let us mention that in many cases trivial components of the graph
are of a little interest. Therefore, it make sense to save running time by avoiding
their explicit enumeration that can be done using a single additional reachability
procedure.

Pivot Selection

Pivot selection plays a significant role in the complexity of the algorithm. Imag-
ine we always pick a pivot belonging to a component that has no descendant
components in the component graph of the not-yet-decomposed part. Due to the
acyclicity of the component graph such a component always exists. Having such
a pivot all vertices belonging to the corresponding component can be identified
using only a single forward reachability initiated at the pivot and restricted to
the not-yet-decomposed part of the graph. Decomposing the graph to SCCs in
this manner results in a linear time procedure. Unfortunately, to pick pivots
so that the condition above is satisfied means to pick pivots in the depth-first
search post-ordering, which is, as stated in the introduction, difficult to be done
in parallel. Since the optimal pivot selection is difficult, pivots are typically se-
lected randomly. A random pivot selection leads to O(m · log n) expected time
as claimed in [12].

In the explicit case, we can presuppose that vertices are numbered. Therefore,
picking a random pivot corresponds to the generation of a random number.
However, the problem occurs if a pivot has to be selected among vertices of the
not-yet-decomposed part of the graph. As we are not aware of any O(1) time
and O(1) space technique for a single pivot selection, we suggest a technique
whose complexity is O(n) space and O(n) time if time and space complexity
are summed for all pivot selection procedures called within a single run of the
algorithm. The technique is applicable to implicitly given graphs as well. First,
each participating processor enqueues newly discovered vertices in a local queue
when doing the very first forward reachability of the graph. Then, a new pivot
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Fig. 2. Subgraphs identified with maximal predecessors (MP) and maximal succes-
sors (MS) if the propagations of MPs and MSs are initiated at pivot vertex

can be selected among the heads of the local queues. However, if the vertex on
the head of a local queue belongs to the decomposed part of the graph, it is
dequeued and the next head is considered to be a candidate for pivot selection.
Moreover, in the case of implicitly given graphs, the procedure organizing vertices
into local queues can be combined with the procedure computing the immediate
predecessors of vertices producing thus no overhead at all.

As we are typically not interested in trivial components, we suggest a com-
pletely new improvement in pivot selection. The idea is to prevent some trivial
strongly connected components from being selected as pivots. We achieve this
with the definition of the so called candidate set, i.e. the set of vertices among
which pivots are chosen. Our intention is to terminate the algorithm once all can-
didate pivots have been selected and the corresponding components identified. If
the candidate set contains initially at least one vertex for every non-trivial com-
ponent of the graph, it must be the case that after the algorithm terminates the
remaining not-yet-decomposed part of the graph is made of trivial components
only. Generally, the smaller the candidate set is, the fewer trivial components
are chosen as pivots. What we use for computing the candidate set is the con-
cept of the so called back-level edge [3]. It is known that every cycle, and thus
every non-trivial strongly connected component, contains at least one back-level
edge, which is an edge that leads from a vertex with some distance from the
initial vertex of the graph to a vertex with equal or smaller distance from the
initial vertex of the graph. Let us call the destination vertex of a back-level edge
a BL-edge vertex. We suggest the candidate set to be the set of BL-edge ver-
tices. Note that BL-edge vertices can be computed during the initial reachability
procedure using the level-synchronized breadth-first search of the graph [3]. As
depicted in the graph in Figure 1, some trivial components can never become
pivots considering BL-edge vertices as pivot candidates.

Independent Subgraphs

In every iteration of the outermost loop of the basic algorithm the not-yet-
decomposed part of the graph is split into several disjoint subgraphs. Let alone
the identified component, these are the subgraph induced by vertices out of the
component but explored during the forward reachability, subgraph induced by
vertices out of the component but explored during the backward reachability,
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Fig. 3. Two steps of OWCTY-BWD-FWD independent subgraph identification

and subgraph induced by vertices that were not explored in that iteration at
all. See example in Figure 1. An important observation [12] is that decompos-
ing one of these subgraphs into strongly connected components is completely
independent of the decomposition of other subgraphs. Therefore, the subgraphs
may be viewed as if they were three independent graphs for the next step of
the algorithm, which introduces two major improvements. First, three indepen-
dent decomposition procedures may be performed in parallel increasing thus the
amount of parallelism, second, every independent procedure may be restricted to
explore vertices within the subgraph avoiding thus useless exploration of vertices
out of the subgraph. Let us call the number of independent subgraphs produced
in every iteration of the outermost loop (excluding the identified component)
the degree of parallelism of the algorithm. Note that the number of the indepen-
dent subgraphs grows exponentially with the number of iterations. Thus, if p is
the number of available processors and d is the degree of parallelism, then after
logd(p) iterations the number of independent subgraphs may exceed the number
of available processors.

In the case of implicitly given graphs, vertices of a given subgraph are parti-
tioned among processors according to the partition function. Therefore, all the
single decomposition procedures share all processors participating the computa-
tion. Unfortunately, this requires to perform as many independent distributed
termination detection procedures as there are single decomposition procedures
running in parallel, which is quite technically involved and may actually be a
reason for preventing individual decomposition procedures from being executed
concurrently in practice. Also note that considering independent subgraphs,
efficient pivot selection becomes complicated. In particular, we are not aware
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of any technique that could be used for selection of a random pivot from a sub-
graph without actually performing the whole subgraph exploration first. Also
identifying leading and terminal trivial components in a subgraph results in a
reachability procedure performed on the subgraph before the subgraph is de-
composed. That is why we did not considered the leading and terminal trivial
components elimination in all of the algorithms.

There is a technique that allows to identify more than three subgraphs in a
single iteration [17]. Suppose the vertices of the graph are arbitrarily linearly
ordered. Then, the maximal preceding vertex and maximal succeeding vertex
can be computed for any vertex of the graph using an O(n · m) procedure [5].
If the forward and backward reachability procedures are extended to propagate
maximal preceding and succeeding vertices, respectively, new subgraphs can be
identified according to the maximal predecessors and successors associated to
vertices in the subgraph. All vertices of the strongly connected component that
the selected pivot belongs to, must have the same maximal predecessor and suc-
cessor. Due to the pivot selection the maximal predecessors are computed only in
the subgraph induced by vertices reachable from the pivot (forward reachability)
while the maximal successors are computed for vertices that can reach the pivot
(backward reachability). A possible result after a single iteration on a subgraph
is depicted in Figure 2. In the original approach described in [17], the maximal
predecessors and successors were computed over the complete graph. Regarding
the number of identified components none of the approaches is better.

In the following we suggest a completely new technique to identify independent
subgraphs in O(n + m) time. The technique employs OWCTY elimination tech-
nique succeeded with backward and forward reachability procedures. A graph
and two steps of the new technique performed on the graph are depicted in
Figure 3. The OWCTY elimination procedure, if initiated from the vertex with
zero predecessors, eliminates all leading trivial components and visits some ver-
tices of all components immediately reachable from the eliminated trivial ones.
Visited but not eliminated vertices are shown as vertices with a little cross. A
backward reachability performed from vertices with the little cross identifies one
independent subgraph. Note that this subgraph contains exactly all strongly
connected components immediately reachable from the eliminated trivial com-
ponents. Having the subgraph a forward reachability procedure restricted to the
subgraph is performed from the vertices with little cross. This procedure stops
on vertices outside the subgraph but immediately reachable from the subgraph
(vertices with the little circle). Among these vertices there might be some that
have predecessors only in the previously identified subgraph. These vertices must
be trivial components, and therefore, they can be used as vertices to start the
next OWCTY elimination procedure from. Figure 3 shows two successive steps
of the subgraph identifying procedure OWCTY-BWD-FWD. We stress that
the procedure may detect many independent subgraphs while performing only
O(n + m) work.
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4 Algorithms

Having described all the techniques, we can now present individual algorithms.
All pseudo-codes listed below describe the core parts of the algorithms. We
neither list the initial reachability procedure that must be performed in order to
compute the predecessor function in the implicit case, nor we list many technical
details related to implementation, parallelization, distribution, etc.

F-B

The F-B algorithm [12] is the basic algorithm that all other presented algorithms
build on. In the following pseudo-code, we describe a single procedure that is
initially called for the complete set of vertices of the graph to be decomposed
and then called recursively for identified independent subgraphs. A pivot is se-
lected using procedure PIVOT and the set of vertices reachable in forward and
backward manner are computed using parallel reachability procedures FWD
and BWD. Both reachability procedures have two parameters. Besides the ver-
tex or vertices to start from, each reachability procedure is also given a set of
vertices that its exploration is limited to. This ensures that given a subgraph,
the procedure will explore only immediate successors or predecessor of vertices
within the subgraph. The sets of vertices as computed by forward and backward
reachability procedures are referred to as F and B, respectively. Having com-
puted both sets F and B, a new component is identified as the intersection of F
and B, and recursive calls for three new subgraphs are made. Note that if it is
necessary, the procedure is able to select pivots among given set of candidates.

1 proc F-B(V , candidates)
2 if (V �= ∅)
3 then p := PIVOT(V ∩ candidates)
4 F := FWD(p, V )
5 B := BWD(p, V )
6 SCCs := SCCs ∪ {F ∩ B}
7 in parallel do

8 F-B(F � B, candidates)
9 F-B(B � F, candidates)

10 F-B(V � (F ∪ B), candidates)
11 od
12 fi
13 end

In our experimental study we also considered a slightly modified version of the
basic algorithm. In particular, we implemented a version in which the backward
reachability procedure was restricted to the vertices discovered by the preceding
forward reachability procedure, i.e. line 5 in the pseudo-code is changed to

B := BWD(p, F).
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This modification decrease the degree of parallelism, but produce a procedure
where exploration of some vertices is omitted compared to the original algo-
rithm. One could tend to see this technique as an improvement, however, our
experiments proved that neither of the versions was significantly better then the
other. Our explanation for the lack of improvement in some cases is that the
subgraphs identified as (V � (F ∪ B)) become actually larger causing thus more
work to be done in subsequent recursive calls to the procedure.

MP-MS

Algorithm MP-MS [17] extends the previous algorithm with the maximal pre-
decessors and maximal successors concept. Compared to algorithm F-B, the im-
provement is in the subgraph detection, see Section 3. In order to compute the
maximal predecessors and successors, parallel procedures FWD and BWD have
to be replaced with new parallel procedures FWD-MAXPRED and BWD-
MAXSUCC, respectively. Besides computing the same reachability relation as
procedures FWD and BWD, the new procedures also identify subgraphs ac-
cording to the maximality of predecessors or successor and return lists of those
vertices whose order is used to refer to a subgraph. These SuccList and PredList
are then used to perform parallel recursive calls on identified subgraphs. See the
pseudo-code below. Recall that the time complexity of both new procedures is
O(n · m), which is worse than if simple reachability procedures are used. How-
ever, the bad complexity is paid off with the degree of parallelism being much
higher compared to the degree of parallelism of algorithm F-B. Finally, let us
mention that also algorithm MP-MS is capable of selecting pivots among given
set of candidates.

1 proc MP-MS(V , candidates)
2 if (V �= ∅)
3 then p := PIVOT(V ∩ candidates)
4 F, PredList := FWD-MAXPRED(p, V )
5 B, SuccList := BWD-MAXSUCC(p, V )
6 SCCs := SCCs ∪ {F ∩ B}
7 in parallel do

8 MP-MS(V � (F ∪ B), candidates)
9 MP-MS(F[k, −], candidates) foreach k ∈ PredList

10 MP-MS(B[−, k], candidates) foreach k ∈ SuccList
11 od
12 fi
13 end

O-B-F

Algorithm O-B-F is completely a new algorithm we suggest in this paper. The
core idea of the algorithm is to partition the component graph to the so called O-
B-F levels and then call any algorithm (F-B in our case) to decompose individual
levels of the component graph into strongly connected components. Recall that
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the component graph can be partitioned to those levels in linear time using the
new technique described in Section 3.

The procedure O-B-F performs the detection of levels in the level by level
manner. It is started with the complete set of vertices as the graph to be decom-
posed, and with the initial vertex as the vertex to start the exploration from.
In every single call of the procedure one O-B-F level is detected. The set of
remaining vertices, denoted with V , is appropriately shrunk, candidates for ini-
tial vertices of V (the so called Seeds) are computed, and two procedures are
initiated in parallel. First, a procedure to decompose the subgraph identified
with the O-B-F level, second, procedure O-B-F to identify other levels in the
remaining set V . Recursive calls to procedure O-B-F terminates when all the
levels are recognized and the set of remaining vertices is empty.

Every single O-B-F level is detected using standard procedures. First of all,
leading trivial components of the remaining graph are eliminated using proce-
dure OWCTY. The procedure computes the set of leading trivial components
(Eliminated) and the set of vertices on which the elimination process stopped
(Reached). Eliminated vertices are removed from set V of remaining vertices
and the standard backward reachability procedure is performed from vertices
in Reached and restricted to vertices in V . As the backward procedure is re-
stricted to V , it computes exactly vertices belonging to the top most level in
the component graph of V . These vertices (denoted with B) are removed from
set V of remaining vertices and the decomposition of the level is initiated as
an independent parallel procedure. Note that the set of potential pivots can be
restricted to vertices in Reached because every strongly connected component
belonging to the level must contain at least one vertex from Reached. A for-
ward reachability (FWD-SEEDS) is also performed on vertices in B in order
to identify vertices immediately below the current level, which are exactly ver-
tices that become Seeds for the next call to procedure OWCTY in the next
recursive call of the procedure O-B-F. Note that vertices in Seeds that belong
to non-trivial strongly connected components are moved directly to set Reached
within procedure OWCTY.

1 proc O-B-F(V , Seeds)
2 if (V �= ∅)
3 then Eliminated, Reached = OWCTY(Seeds, V )
4 V := V � Eliminated
5 B := BWD(Reached, V )
6 V := V � {B}
7 F, Seeds := FWD-SEEDS(Reached, B)
8 in parallel do

9 F-B(B, B)
10 O-B-F(V , Seeds)
11 od
12 fi
13 end
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5 Experimental Evaluation

We have implemented and experimentally evaluated quite a few algorithms de-
scribed in this paper. The algorithms were implemented using the DiVinE Li-
brary [2] as the library providing support for parallel and distributed genera-
tion of implicitly given graphs. The common library used gives approximately
the same level of enhancement of all implementations, thus, the experimental
comparison is quite fair. All experiments were conducted on a network of ten
Intel Pentium 4 2.6 GHz workstations each having 1 GB of RAM and 100Mbps
switched Ethernet connection.

The graphs we use to evaluate our implementations come from DiVinE Li-
brary distribution. They are listed in Table 1 along with their important char-
acteristics, namely, the number of vertices (Vertices), number of edges (Edges),
numbers of trivial and non-trivial strongly connected components (T. SCCs,
N. SCCs), and the time needed for sequential decomposition into strongly con-
nected components using Tarjan’s algorithm (Tarjan). Value n.a. means that
the sequential decomposition algorithm exceeded available amount of RAM. For
the purpose of the distributed experiments, all the graphs were distributed using
the default hash-based partition function implemented in DiVinE Library.

We implemented and experimentally evaluated six different algorithms. Algo-
rithms F-B, MP-MS, and O-B-F directly correspond to algorithms presented
in Section 4. Algorithm F-RB is the modified version of algorithm F-B, i.e.
the version where the backward reachability procedure is restricted to vertices
explored during the preceding forward reachability procedure. If the name of the
algorithm is extended with suffix (B), then the algorithm was initiated consid-
ering BL-edge vertices as pivot candidates. We have not implemented the mod-
ification of algorithms F-B and MP-MS that includes elimination of leading
and terminating trivial components on the given subgraph before the subgraph
is decomposed [15,18]. The reason is that we are not aware of any technique that
would identify vertices with zero predecessors or zero successors in the given sub-
graph without actually exploring the subgraph first, which makes the approach
inefficient in the case of implicitly given graphs.

All our implementations explicitly avoid concurrent performance of the de-
composition procedures on independent subgraphs. In particular, if an indepen-
dent decomposition procedure is about to be initiated, its assignment is stored
and its initiation postponed. There are several reasons for this. First, the number
of processors we have at our hand is very limited. Therefore, parallel procedures
would very soon produce a non-trivial overhead caused by switching the context
of CPUs depreciating thus the measured values. Second, as already mentioned
in Section 3, appropriate termination detection becomes technically involved if
independent parallel procedures share CPUs. Moreover, pivot selection within
the given subgraph would generally introduce additional reachability procedure
performed on every discovered independent subgraph if the subgraphs should
be decomposed in parallel. And third, as the algorithms perform parallel reach-
ability procedures most of the time, we have not observed idling of individual
workstations. Therefore, we believe that the parallelism of the decomposition
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Table 1. Summary of graphs

Name Vertices Edges T. SCCs N. SCCs Tarjan

DrivingPhilsK3 6307240 12950475 16 1 4:51

DrivingPhilsK3 4 10301529 24055321 3170354 2680 10:27

Elevator12 2 8591334 89419176 2004966 2 13:21

Lifts6 16364845 50088312 7231789 8052 n.a.

LookUpProc10 3 16562363 33464135 1603283 2 n.a.

MutBak4 9384762 31630895 1881088 15 30:07

MutMcs4 1241948 4456310 9718 39 33

Phils14 1 9565935 124357142 531442 28 n.a.

Pet6err 1060048 6656522 208436 25075 4:29

Rether9 2 7663993 9624242 81831 5 16:38

Train8 2 11740214 37389502 5273750 50858 3:10:44

Table 2. Runtimes (hours:minutes:seconds)

Graph F-B F-B (B) F-RB (B) MP-MS MP-MS (B) O-B-F

DrivingPhilsK3 2:13 1:58 2:08 17:20 22:43 1:57

DrivingPhilsK3 4 n.a. 3:41:37 n.a. n.a. n.a. 4:30:36

Elevator12 2 n.a. n.a. n.a. n.a. n.a. 9:06

Lifts6 n.a. 5:15:46 n.a. n.a. n.a. 5:47:44

LookUpProc10 3 n.a. n.a. n.a. n.a. n.a. 16:36

MutBak4 n.a. 2:31:31 1:42:31 n.a. n.a. 1:29:09

MutMcs4 7:32 37 23 26:21 34:32 23

Phils14 1 2:42:03 18:36 18:30 n.a. n.a. 21:31

Pet6err n.a. n.a. n.a. n.a. n.a. 4:53:47

Rether9 2 1:13:01 27:57 8:23 4:13:29 2:14:05 17:11

Train8 2 n.a. 2:09:54 1:52:21 n.a. n.a. n.a.

procedures would bring nothing but increased complexity of the implementa-
tions. Actual runtimes needed by all the algorithms to decompose the graphs
are reported in Table 2. Value n.a. denotes now that the runtime of the algo-
rithm exceeded 10 hours time limit.

We find the experimental results very interesting. First, we were slightly sur-
prised with the practical inefficiency of the algorithm based on maximal pre-
decessors and maximal successors. Its performance is far beyond performance
of other algorithms proving that the decomposition into many subgraphs is not
worth unless it is done in O(n+m) time. Second, quite interesting result is that
the restriction of the set of vertices that can be selected for pivots play significant
role in practice. Note that in the case of algorithm F-B, the BL-edge vertices
yielded roughly speed up of to ten. In the case of algorithm MP-MS they did
not generally help at all, for which we blame the procedures with O(n · m) time
complexity whose bad performance cut off any improvements made in pivot
selection. Third, algorithm O-B-F proved to have big potential as it was the
fastest algorithm in many cases, and sometimes even the only algorithm that was
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able to perform the decomposition within the given time limit. Finally, let us
mention that according to our preliminary experiments, there were cases where
the parallel algorithms if executed on ten workstations, outperformed even the
optimal Tarjan’s algorithm.

6 Conclusion and Future Work

In this paper we tried to list and evaluate all known techniques used in paral-
lel algorithms for decomposition of implicitly given graphs into strongly con-
nected components, and compare the parallel algorithms that exploit them.
We also introduced two completely new techniques that the parallel algorithms
can employ. In particular, we suggested how BL-edge vertices can be profited
from if they are used as pivot candidates, and how the graph can be decom-
posed into subgraphs preserving SCCs using linear time and parallel technique
OWCTY-BWD-FWD. Both newly suggested techniques have shown their su-
perior strength in our experimental study.

We would especially like to emphasize that the newly suggested procedure shows
not only practical usefulness, but also a theoretically interesting behavior. In par-
ticular, it may be proved that graphs whose components exhibit a chain-like struc-
ture, can be decomposed in parallel in the optimal linear time. Generally, using the
technique we are able to give a parallel algorithm for solving the SCC decomposi-
tion problem working in O(h · (n + m)) time, where h is the maximal number of
strongly connected components on an acyclic path in a single O-B-F level.

Although, the preliminary results are encouraging, we are well aware of the
immaturity of our experimental evaluation. We intend to perform thorough ex-
perimental study on larger set of inputs including algorithms with elimination
of leading and terminal trivial components in the future. We also intend to im-
prove implementations of the algorithms, in particularly, we would like to come
up with a reasonable pivot selection procedure that would allow us to implement
and experimentally evaluate virtually concurrent decomposition of the indepen-
dent subgraphs. Finally, we intend to incorporate the best algorithms in the
distributed verification environment DiVinE, so that the tool is capable of dis-
tributed and parallel verification of stochastic systems as well as verification of
properties given by other than Büchi automata.

Let us also mention that we have tried to come up with some algorithms
that avoid backward reachability procedure being thus perfectly suitable for the
decomposition of implicitly given graphs. However, all our attempts resulted in
algorithms whose practical performance was quite poor and discouraging.
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Abstract
We study existing parallel algorithms for the decomposition of a partitioned graph into its strongly connected components
(SCCs). In particular, we identify several individual procedures that the algorithms are assembled from and show how to
assemble a new and more efficient algorithm, called Recursive OBF (OBFR), to solve the decomposition problem. We
also report on a thorough experimental study to evaluate the new algorithm. It shows that it is possible to perform SCC
decomposition in parallel efficiently and that OBFR, if properly implemented, is the best choice in most cases.

Keywords: parallel algorithms, strongly connected components

1 Introduction

The problem of finding strongly connected components (SCCs), known also as SCC decomposition,
is one of the basic graph problems that finds its applications in many research fields, even beyond
the scope of computer science. An efficient algorithmic solution to this problem is due to Tarjan [25],
who showed that, given a graph with n vertices and m edges, it is possible to identify and list all
SCCs of the graph in O(n+m) time and O(n) space.

Among many applications, the algorithm may be used also for the analysis of computer
systems. In particular, algorithms for SCC decomposition find their application in distributed formal
verification tools such as CADP [18], DiVinE [2], DUPPAAL [5], LiQuor [12], µCRL [6], etc.
Namely, they allow the tools to verify quantitative properties of probabilistic systems, compute
τ -confluence [8], form a pre-processing step for branching bisimulation reduction, or verify systems
with fairness constraints or properties given by extensions of Büchi automata.

Unfortunately, graphs modelling complex computer systems tend to be very large, which makes
it hard to handle them on a single machine. One way to tackle this problem is to distribute the graph
across a cluster of workstations and employ a distributed algorithm to decompose the partitioned
graph. However, Tarjan’s algorithm (and all other linear algorithms for SCC decomposition,
e.g. Kosaraju’s algorithm also known as Double DFS [15]) strongly rely on the depth-first search
post-ordering of vertices, whose computation is known to be P-complete [23], and thus, difficult to
be computed in parallel. Therefore, different approaches have been used to design parallel algorithms
for solving the problem.

© The Author, 2009. Published by Oxford University Press. All rights reserved.
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A parallel algorithm based on matrix multiplication was described in [19] and further improved
in [1, 14]. The algorithm works in O(log2n) time in the worst case. However, to achieve this low time
complexity it requires O(n2.376) parallel processors. As typical graphs that we are interested in
contain millions of vertices the algorithm is practically unusable and is only interesting from a
theoretical point of view. Another parallel algorithm for finding SCCs was given in [17]. It exploits
the fact that it is possible to efficiently compute the set of vertices reachable from a certain vertex
or set of vertices in parallel. The general idea of the algorithm is to repeatedly pick a vertex of the
graph and identify the component to which it belongs, by using a forward and a backward parallel
reachability procedure. The algorithm proved to be efficient enough in practice, which resulted
in several theoretical improvements of it [20, 22]. The worst-time complexity of the algorithm is
O(n ·(n+m)). Nevertheless, the algorithm exhibits O(m ·logn) expected time [17]. Another algorithm
was introduced in [22]. That algorithm is more involved, but still, its basic building block is a simple
parallel value iteration technique.

In this article, which can be viewed as a full version of [3, 4], we summarize a number of known
procedures used for distributed SCC decomposition. Moreover, we present a new algorithm based on
re-arranging these procedures, and extensively compare its implementation with existing algorithms.
The rest of the article is organized as follows. We recapitulate basic terms and definitions in Section 2,
describe known techniques and algorithms for solving SCC decomposition in Section 3. The new
algorithm based on recursive application of OBF [3, 4] is described in Section 4. Compared with
[3], we added full proofs for the correctness and the complexity claims. Results of experiments are
in Section 5. In particular, we compare our new algorithm with the algorithms from [17, 22], and we
measure the effect of decomposing sub-graphs one by one, or in parallel. Contributions of the article
are summarized and future work is outlined in Section 6.

2 Preliminaries

2.1 Directed graphs

A (directed) graph G is a pair (V, E), where V is a set of vertices, and E ⊆V ×V is a set of (directed)
edges. If (u,v)∈E, then v is called (immediate) successor of u and u is called (immediate) predecessor
of v. The indegree of a vertex v is the number of immediate predecessors of v. GT = (V ,ET ), the
transposed graph of G= (V ,E), is the graph G with all edges reversed, i.e. ET ={(u,v) | (v,u)∈E}.

Let G= (V ,E) be a directed graph. Let E∗ be a transitive and reflexive closure of E and s,t ∈V
two vertices. We say that vertex t is reachable from vertex s if (s,t)∈E∗. If sk is reachable from s0,
then there is a sequence of vertices s0,...,sk , s.t. (si,si+1)∈E for all 0≤ i<k. We call this sequence a
path. A path is simple if it contains no duplicated vertices. The length of the path is k, i.e. the number
of edges. A graph is rooted if there is an initial vertex s0 ∈V such that all vertices in V are reachable
from s0. Given a graph G, we use n, m and l, to denote the number of vertices and edges, and the
length of the longest simple path between any two vertices in G, respectively.

A set of vertices C ⊆V is strongly connected, if for any vertices u,v∈C, we have that v is reachable
from u. A strongly connected component (SCC) is a maximal strongly connected C ⊆V , i.e. such
that no C′ with C �C′ ⊆V is strongly connected. A maximal SCC C is trivial if C is made of a single
vertex c and (c,c) /∈E, and is non-trivial otherwise. Henceforward, an SCC is also referred to simply
as a component.

Let WG be the set of all SSCs of graph G= (V ,E). The quotient graph of graph G is a directed graph
SCC(G)= (WG,HG), where HG ={(w1,w2) | (∃u1,u2 ∈V )(u1 ∈w1 ∧u2 ∈w2 ∧(u1,u2)∈E)}, i.e. there
is an edge between SCCs if and only if there is an edge between some members of the SCCs in the
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original graph. Note that the quotient graph of any directed graph is acyclic. Given a graph G, we
denote by N , M and L, the number of vertices and edges, and the length of the longest (simple) path
in the quotient graph of G, respectively. An SCC is leading if it has no predecessors in the quotient
graph. A set S ⊆V is SCC-closed if each SCC in the graph is either completely inside the set or
completely outside the set; such S is also referred to as an independent sub-graph.

For v∈W ⊆V , the forward closure of v in W is the set of reachable states from v in the graph
(V ,EW ), where EW ={(x,y) | (x,y)∈E∧x,y∈W}. If W is not specified, the whole graph is meant.
The forward closure of S ⊆W in W is the union of forward closures of all vertices from S in W .
Finally, the backward closure of v (or S) in W is the forward closure of v (or S) in W in the graph GT .

2.2 Graph representation

A directed graph can be given in many ways. We restrict ourselves to explicit vertex representations,
excluding symbolic representations, e.g. based on binary decision diagrams.

Beside the standard representations by adjacency lists or an adjacency matrix we also mention
graphs that are given implicitly (do not confuse with symbolic representation, this is still an explicit
vertex representation). A rooted graph is given implicitly if it is defined by its initial vertex and a
function returning immediate successors of an arbitrary vertex. Within the context of implicitly given
graphs there are some restrictions that algorithms have to follow. If an algorithm requires any piece
of information that cannot be concluded from the implicit definition of the graph, it has to compute
the information first. For example, there is no way to directly identify immediate predecessors of a
given vertex from the implicit definition of the graph. If the algorithm needs to enumerate immediate
predecessors, then the predecessors must be stored, while enumerating the whole graph first. Similarly,
in order to number the vertices of an implicitly given graph, one must enumerate all its vertices first.
For numbering the vertices of implicitly given graphs a parallel procedure was introduced in [18].
Note that all vertices of an implicitly given graph are reachable from the initial vertex by definition.

The reason for dealing with implicitly given graphs comes from practice. In many cases, the
description of rules according to which the graph can be generated is more space efficient than
the enumeration of all vertices and edges. The difference might be quite significant. For example,
in the context of model checking [13], the implicit definition of the graph is up to exponentially
more succinct compared with the explicit one. This is commonly referred to as the state explosion
problem [13]. However, it turns out that, in the situation where the graph has to be traversed more
than once, which is the case for all parallel SCC decomposition algorithms, it is advantageous to
first generate the whole graph and store it in an explicit form. All subsequent computations are then
performed using the explicit representation. We save the time for repeated generation of successors
and since the graphs we are interested in are mainly sparse, the needed memory is proportional to
the number of vertices only.

3 Known algorithms

Before describing individual parallel algorithms, we describe the basic techniques that the later
algorithms will use. This allows us to describe the algorithms and analyse their behaviour in a more
compact and clearer way.

All parallel algorithms presented in this article build on the same basic principle. The graph to
be decomposed is divided into independent (SCC-closed) sub-graphs. These are further divided into
smaller independent sub-graphs until they become SCCs. All the algorithms take advantage of the
fact that computation on separate independent sub-graphs can be done in parallel.
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3.1 Reachability relation

Computation of the reachability relation is the core procedure used in all the algorithms. The task
of the procedure is to identify all vertices that are reachable from a given vertex, i.e. to compute its
forward closure. The standard breadth-first or depth-first traversals of the graph can be employed to
do so using O(n) space and O(n+m) time.

The reachability procedure is the first place where parallelism comes into play in the algorithms.The
parallelization of a reachability procedure has by now become a standard technique [10, 11, 21, 24].
A so called partition function is used to assign vertices to processors. Each processor is responsible
for the exploration of the vertices assigned to it by the partition function. Each processor maintains
its own set of already visited vertices and its own list of vertices to be explored. If a vertex has been
visited previously (it is in the set of visited vertices), then its re-exploration is omitted. Otherwise,
its immediate successors are generated and distributed into lists of vertices, to be explored according
to the partition function.

The algorithms described in the next section use the notion of backward reachability, in addition
to the notion of forward reachability. The task of a backward reachability procedure is to identify all
vertices that a given vertex can be reached from. The procedure for backward reachability mimics
the behaviour of the procedure for the forward reachability except it uses immediate predecessors
instead of immediate successors during graph traversal.

Note that in many cases, the forward and backward reachability procedure are restricted to a
particular independent sub-graph of the original graph. This can be achieved by an additional marking
of that sub-graph, or simply by deleting edges that leave that sub-graph.

3.2 Pivot selection

In several algorithms, there is a point at which a certain vertex (called pivot) must be selected from
the current independent sub-graph to start the decomposition of that sub-graph. Pivot selection plays
a significant role in the complexity of the algorithms. Imagine, we always pick a pivot belonging
to a component that has no descendant components in the component graph of the sub-graph being
decomposed. Due to the acyclicity of the component graph such a component always exists. Having
such a pivot, all vertices belonging to the corresponding component can be identified using only a
single forward reachability initiated at the pivot. Decomposing the graph to SCCs in this manner
results in a linear-time procedure. Unfortunately, to pick pivots so that the condition above is satisfied
means to pick pivots in the depth-first search post-ordering, which is, as stated in the Section 1,
difficult to be done in parallel. Since the optimal pivot selection is difficult, pivots are typically
selected randomly.

3.3 Trivial SCCs

This sub-section presents an efficient technique for the elimination of leading and terminal trivial
(LT and TT, respectively) components from any independent sub-graph. Use of this technique can
significantly speed up all the SCC decomposition algorithms, since they are not that efficient on
detecting trivial components.

Every vertex that has zero predecessors must be a trivial component and as such it can be
immediately removed (along with all incident edges) from the graph. Removing such a vertex may,
however, produce new vertices without predecessors that can be removed in the same way. We refer
to this recursive elimination technique as One-Way-Catch-Them-Young (OWCTY) elimination [16].
The technique can be applied in an analogous way to vertices without successors (Reversed OWCTY)
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Figure 1. Component detection, identified sub-graphs and trivial components

as well. An improved version of the basic parallel algorithm that performs OWCTY elimination
before selection of the pivot was described in [20]. We stress that only LT and TT components may
be identified in this way. Trivial components in between non-trivial SCCs will not be identified. These
components, however, may become leading or terminal when the graph is further divided. The graph
depicted in Figure 1 contains all three types of trivial components: LT, TT and trivial components
that are neither leading nor terminal (T).

Having described the basic techniques, we can now present individual algorithms.All pseudocodes
listed below describe the core parts of the algorithms. We neither list the initial reachability procedure
that must be performed in order to compute the explicit representation from the implicit one, nor the
many technical details related to implementation, parallelization, distribution, etc.

3.4 FB

The FB algorithm [17] is the basic algorithm, outlined in Section 1. We illustrate the basic principle of
this algorithm. Figure 1 shows the basic step of the algorithm. First, a vertex (called pivot) is selected
at random from an independent sub-graph (the whole graph in this situation) that is not known to be
a single SCC yet. Second, the forward and the backward closure of the pivot are computed; these
are depicted by shaded regions. This procedure divides the graph into four independent sub-graphs.
The vertices that are both in the forward and the backward closure form the SCC of pivot and need
not be further processed. The other three sub-graphs are: vertices in the forward closure but not in
the backward closure, vertices in the backward closure but not in the forward closure and vertices
that are neither in the forward nor in the backward closure. These three sub-graphs have to be further
decomposed. They can be decomposed independently and hence in parallel. Recursive application
of the basic step is used to do it.

The pseudocode of the algorithm is in Figure 2. A pivot is selected using procedure PIVOT and its
forward and backward closures are computed using parallel reachability procedures FWD and BWD.
Both reachability procedures have two parameters. Besides the vertex or vertices to start from, each
reachability procedure is also given a set of vertices that its exploration is limited to. This ensures
that given a sub-graph, the procedure will explore only immediate successors or predecessor of
vertices within the sub-graph. The sets of vertices as computed by forward and backward reachability
procedures are referred to as F and B, respectively. Having computed both sets F and B, a new
component is identified as the intersection of F and B, and recursive calls for three new subgraphs
are made. As stated in Section 1, the time complexity of the algorithm is O(n ·(n+m)).
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Figure 2. FB algorithm
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Figure 3. Sub-graphs identified with maximal predecessors

3.5 Colouring/heads-off

The colouring algorithm was introduced in [22]. It uses a totally ordered set of colours. Initially,
each vertex has its own colour. The colours are repeatedly propagated to successors with a smaller
colour, until all edges are non-decreasing. A forward reachability procedure augmented to propagate
maximal visited colours can be used for this task. Note that a vertex can be re-coloured several times,
which results in time complexity of O(n ·m) [9]. The final colour of a vertex is the colour of its
maximal predecessor, i.e. predecessor with maximal colour. Here a predecessor does not necessarily
mean an immediate predecessor (as in the rest of this article), but here it means any vertex in the
backward closure. After colouring, all vertices in a single SCC have the same colour. This is because
all vertices in a single SCC share the same set of predecessors. So all edges between vertices of
different colours can be removed. This technique is able to divide the graph into more than four parts,
as opposed to the technique presented in Sub-section 3.4. Unfortunately, we do not know how to do
this in linear time. A graph division obtained after colouring is depicted in Figure 3.

In the second step, one takes as roots those vertices that kept their initial colour. The SCC of each
root consists of those vertices that are backward reachable (within the same colour) from it. These
SCCs are removed (heads-off) and the algorithm proceeds with the remaining sub-graph and with
the original colour assignment.

The pseudocode of the algorithm is in Figure 4. Computation of maximal predecessors is done by
the procedure FWD-MAXPRED, which returns the list of roots as PredList. It also computes for each
k ∈PredList the set Vk of vertices with maximal predecessor k. The SCCs of the roots are identified
by the standard procedure BWD, which performs backward reachability. The removal of these SCCs
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Figure 4. Colouring/heads-off (CH) algorithm

Figure 5. OBF algorithm

on line 8 was referred to as heads-off in the previous paragraph. Edges are not removed there. Instead,
separate recursive calls of the main procedure restricted to the appropriate sub-graphs are used.

The time complexity of the algorithm is O((L+1)·n ·m)), where O(n ·m) comes from the
complexity of the FWD-MAXPRED procedure. The total complexity follows from the fact that
every time a recursive call is invoked, it is on a graph with strictly shorter longest path in the quotient
graph.

3.6 OBF

This algorithm is based on a recent technique OWCTY-BWD-FWD (OBF) [3, 4] which gave name
to the whole algorithm. It identifies a number of independent sub-graphs (called OBF slices) in
O(n+m) time. The slices are then decomposed using the FB algorithm. This algorithm assumes the
input graph to be rooted, i.e. we have an initial vertex from which all other vertices are reachable.

The OBF technique repeatedly employs OWCTY elimination, succeeded with backward and
forward reachability. Each iteration identifies one OBF slice. The pseudocode of the algorithm is
in Figure 5. A graph and two steps of the technique performed on the graph are depicted in Figure 6.
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where OWCTY is stopped

where FWD is stopped

OWCTY−eliminated vertices

Identified subgraphs

T T

T

T TTT

T

T T

T

T TTT

T

Figure 6. Two steps of BF independent sub-graph identification

We simultaneously describe the figure and the pseudocode. We start with the initial vertex (the
vertex with no predecessors in the figure, the vertex v in the pseudocode). The OWCTY elimination
procedure (line 5 in pseudocode) eliminates all LT components (the set Eliminated in the pseudocode)
and visits some vertices of all components immediately reachable from the eliminated trivial ones.
Visited but not eliminated vertices are shown as vertices with a little cross (the set Reached). A
backward reachability (BWD()) performed from vertices with the little cross identifies the first
OBF slice (the set B). Note that the slice contains exactly all SCC immediately reachable from the
eliminated trivial components. The decomposition of the slice is initiated as an independent parallel
procedure (line 10). Then a forward reachability procedure that stops on immediate successors of
vertices in the slice is executed (FWD-SEEDS()). These successors (vertices with the little circle in
the figure, Seeds on line 12 in the pseudocode) are used to start the next iteration of OBF. The time
complexity of the algorithm is O(n ·(n+m)), the same as for the FB algorithm.

4 Recursive OBF

As shown in [4], OBF performs better than FB in a number of experiments. Note that in OBF the
graph is split into slices in linear time. On each slice, algorithm FB is applied. But, as OBF is better
than FB, we now propose to recursively apply OBF to the slices.

However, the slice may not be rooted, so we must:

− repeatedly pick a vertex from the slice and compute its forward closure within the slice; we
call this a ‘rooted chunk’. Subsequently run OBF on each rooted chunk within the slice;

− add a termination criterion in case the whole slice is one SCC.

Adding a termination criterion is easy. No special work has to be done. We simply count the vertices
visited during the first backward search in the first rooted chunk (The ‘B’ part of OBF). If the slice
consists of exactly one SCC there will be only one rooted chunk in it; O will not eliminate any vertex,
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Figure 7. OBFR

and so B will be started from the root and explores the whole slice. Conversely, if B starting from
the root of the first chunk explores the whole slice, the slice is one SCC, for it is both the forward
and the backward closure of the root. We now describe Recursive OBF (OBFR) in more detail.

The pseudocode of OBFR is in Figure 7. The suffix ‘-P’ in the name of the procedure means that
it runs in parallel on independent subgraphs. The term OBFR without any suffixes is used to refer to
Recursive OBF as such, without specifying the degree of parallelism (see Sub-section 4.1).

We start with the whole graph. Vertices in recognized SCCs are removed from the ‘working’ set
V until we end up with an empty set at which point all SCCs have been identified.

Initially, we assume that we do not have a vertex from which all other vertices are reachable (initial
vertex). To start OBF we need such a vertex, so we pick one vertex (line 3) and compute its forward
closure Range in V using procedure FWD() (line 4). OBF is then applied on Range. Vertices from
V \Range will be processed in the next iterations of the main while-loop (lines 2–24).

Before OBF is started on Range, Range is saved into OriginalRange, this will enable us to determine
if a slice found by OBF is an SCC. Of course, in the actual implementation we only store the size of
OriginalRange. On line 9, there is an invariant ‘(The forward closure of Seeds in Range) = Range’.
In the first iteration of the while-loop on lines 8–23 the invariant holds trivially, because Seeds
contains just one vertex and Range was computed as a forward closure of that vertex. Procedure
OWCTY() eliminates LT components by repeatedly removing indegree 0 vertices reachable from
Seeds. Eliminated vertices are returned as the set Eliminated, and subsequently removed from Range.
Vertices at which OWCTY() stops (they have positive indegree) are returned as the set Reached.
The forward closure of Reached in Range equals Range, since any path that leads from Seeds to a
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non-eliminated vertex has to contain some vertex from Reached. All elements from Eliminated are
trivial SCCs. Now a backward search is started from vertices in Reached. This search is implemented
by procedure BWD(). Backward closure of Reached in Range is returned as the set B. This is the
first SCC-closed slice found by OBF. If the set B equals the set OriginalRange, it means that all
vertices in the SCC-closed set OriginalRange are reachable from the same single vertex (note that
B=OriginalRange is only possible in the first iteration of the while-loop 8–23) and so B is indeed
an SCC. Consequently, Range\B is the empty set and the while-loop finishes.

If B �=OriginalRange we run OBFR-P() on B recursively. Moreover, note that the nested procedure
can be run in parallel, which increases parallelism. Seeds for the next iteration of the while-loop 8–23
are computed by the procedure FWD-SEEDS, which simply returns all vertices from Range that are
immediate successors of vertices in B but not in B. Since all paths that reach vertices in Range\B
from B must contain some vertex from Seeds, after we subtract B from Range, the invariant of line 9
is satisfied. When Range=∅, the while-loop 8–23 finishes and we handle the remaining vertices in V .

We now formally prove the correctness of the algorithm. The key point is the invariant on line 9.
It ensures that the whole graph is eventually processed. As argued earlier, it trivially holds in the first
iteration of the while-loop on lines 8–23. Thus, it remains to show that, if the invariant holds in iteration
i, then it holds also in iteration i+1. Together with the fact than Range gets smaller in every iteration,
it implies that the whole rooted chunk computed on line 4 is processed on lines 8–23. Another
important point is that the set B computed on line 13 is an independent (SCC-closed) sub-graph.
This implies partial correctness. Since line 18 is executed only if B is smaller than OriginalRange,
finite depth of recursion and thus termination of the algorithm is ensured. All the statements in this
paragraph are proved below.

We sometimes use a set of vertices to refer to the graph induced by that set. To prove the invariant,
we need to strengthen it a bit. In addition to the fact that the forward closure of Seeds in Range is
equal to Range, we argue that Range is an independent sub-graph of OriginalRange. Since initially
Range=OriginalRange, the strengthened invariant holds in the first iteration of the while-loop.

The following lemmata analyse one iteration of the while-loop on lines 8–23. In the whole iteration
Range is used to refer to the set Range on line 9, i.e. at the very beginning of the iteration. The same
goes for Seeds. The set Range computed on line 11 is referred to as Range′. The set Range computed
on line 22 is referred to as Range′′. The set Seeds computed on line 20 is referred to as Seeds′.
Lemma 1
Vertices eliminated by OWCTY() (the set Eliminated on line 10) are trivial SCCs of OriginalRange.

Proof. Let us suppose, for the sake of contradiction, that OWCTY() eliminates a vertex v such that
there is a vertex v′ such that there is a path in OriginalRange from v to v′ and vice versa. Range is an
independent sub-graph of OriginalRange. It follows, that Range contains a cycle c= (v0,v1,...,vk)
with v0 =vk =v. At the moment when v was eliminated it must have had indegree 0, which means
that vertex vk−1 must have been eliminated earlier, since there is an edge from vk−1 to v. By repeating
this argument, we get that all vertices vk−2,vk−3,...,v0 were eliminated before v and since v0 =v, it
means that v was eliminated before v. An obvious contradiction. �
Lemma 2
Let Reached be the set of vertices at which OWCTY() stops (cf. line 10; these are the non-eliminated
vertices from Seeds and the non-eliminated successors of the eliminated vertices). Then the forward
closure of Reached in Range′ is equal to Range′.
Proof. Since the forward closure of Seeds in Range is equal to Range, for each v∈Range′ there is
w∈Seeds such that there is a path p= (v0,v1,...,vk), where v0 =w, vk =v and k ≥0. Since OWCTY()
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eliminates only indegree 0 vertices, there is j≥0 such that vertices v0,...,vj−1 were eliminated and
vertices vj,...,vk were not, and vertex vj is in the set Reached. It follows that v is reachable from vj
in Range′. Therefore, the forward closure of Reached in Range′ is Range′. �
Lemma 3
The set B computed on line 13 (The backward closure of Reached in Range′) is an independent
sub-graph of Range′. (No SCC has vertices both in B and Range′ \B).

Proof. It is sufficient to show that there is no edge from Range′ \B to B. However, that is obvious
for the existence of such edge (w,v) would imply that w∈B, which is impossible since, according to
the assumption, w∈Range′ \B. �
Lemma 4
Let Seeds′ be the successors of the vertices in B which are in Range′′ = Range′ \B. Then the forward
closure of Seeds′ in Range′′ is Range′′.
Proof. Since Reached ⊆B, the forward closure of B in Range′ is Range′ by Lemma 2. Therefore,
for each vertex v∈Range′′ there is w∈B such that there is a path p= (v0,v1,...,vk), where v0 =w,
vk =v and k ≥1. Let j be the greatest index with the property that vj ∈B, then vj+1 ∈Seeds′ and the
path p′ = (vj+1,...,vk) is a path in Range′′. Thus v is reachable from vj+1 in Range′′. It follows that
the forward closure of Seeds′ in Range′′ is equal to Range′′. Together with the fact that Range′′ is
Range without some independent sub-graphs (Lemmas 1 and 3) it implies that if Range′′ �=∅, then
the strengthened invariant is satisfied in the next iteration. �

So far, we proved the strengthened invariant of line 9 by analysing one iteration of the while-loop
on lines 8–23. It follows that the whole set OriginalRange computed on line 4 is eventually processed
and divided into independent subgraphs by the while-loop. To prove the correctness of the algorithm,
we still need to show that it correctly identifies an SCC when it sees it and that it never creates a
sub-graph that is not independent, part of which was already shown.

Lemma 5
If the set OriginalRange on line 7 is an independent sub-graph of the whole input graph
then OriginalRange is an SCC of the whole input graph if and only if, for an arbitrary
vertex v∈OriginalRange, the forward closure of v in OriginalRange is equal to OriginalRange,
OWCTY({v},OriginalRange) does not eliminate any vertex, and the backward closure of v in
OriginalRange is equal to OriginalRange.

Proof. Forward implication. If OriginalRange is an SCC, then for each pair of vertices z,w∈
OriginalRange there is a path from z to w in OriginalRange. The statements for the forward and
the backward closures follow directly. There is a vertex w∈OriginalRange such that there is a path
from w to v in OriginalRange, so indegree(v)>0, and so OWCTY() started from v cannot eliminate
any vertex.

Backward implication. For each pair of vertices z,w∈OriginalRange there is a path from z to w
in OriginalRange, which follows from the assumption about the forward and the backward closures.
(There is a path from z to v and a path from v to w). Since OriginalRange is an independent sub-graph
of the whole input graph (Lemma 3), OriginalRange is an SCC of the whole input graph. �
Lemma 6
Let G= (V ,E) be an arbitrary graph. For arbitrary vertex v∈V , the forward closure of v in V , denoted
by A, is an independent sub-graph of G.

Proof. Similar to the proof of Lemma 3. (There is no edge from A to V \A.) �
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Theorem 1
The algorithm in Figure 7 correctly identifies all SCCs in the input graph.

Proof. In the while-loop on lines 2–24 the graph is correctly divided into independent sub-graphs by
repeated application of lines 3 and 4 (Lemma 6). The sub-graphs that are SCCs are correctly identified
by Lemma 5. The sub-graphs that are not SCCs are divided into smaller independent sub-graphs by
Lemmas 1–4. To these smaller sub-graphs, the procedure is applied recursively. The only case when
the recursive application is not executed is the case when B=OriginalRange, which can happen only
in the first iteration of the while-loop on lines 8–23. This is exactly the case when OriginalRange is
one SCC, again by Lemma 5. The rest follows from the fact that the relation ‘being an independent
subgraph of’ is transitive. �

Lemma 7
The overall time complexity of Recursive OBF is O((r+1)·(m+n)), where r is the maximal depth
of recursion (r =0 if no recursive calls are executed).

Proof. Two distinct OBFR procedures on the same depth of recursion operate on disjoint parts of
the graph, so at most O(m+n) work is done for each recursion depth. Thus the overall complexity
is O((r+1)·(m+n)). �

Theorem 2
The depth of recursion of Recursive OBF is at most L (the length of the longest path in the quotient
graph of the whole graph).

Proof. The proof proceeds by induction on L.
Induction basis. If L=0, then the whole graph is one SCC. This is detected on the recursion level
zero, so the maximal depth of recursion is 0.
Induction step. It is sufficient to show that application of the procedure in Figure 7 (not counting
recursive calls) to a graph with L=k >0 divides it into sub-graphs with L at most k−1. There are
two possible cases.

Case 1
The SCC of the vertex v selected on line 3 is not the first vertex of any of the longest paths in the
quotient graph. Then, obviously, the forward closure of v is an independent sub-graph the quotient
graph of which does not contain paths longer than k−1. The same goes for all independent sub-graphs
into which it might be further divided in the while-loop on lines 8–23.

Case 2
The SCC of the vertex v selected on line 3 is the first vertex of one of the longest paths in the quotient
graph. Then at least one of the longest paths is in the quotient graph of the forward closure of v.
The important point is that all longest paths in the quotient graph of the forward closure must have
the SCC of v as their first vertex. (The path not containing the SCC of v can be extended, because the
SCC of v is a leading SCC). If the SCC of v is trivial, it is eliminated by OWCTY. If it is non-trivial,
it is equal to the first OBF slice. In both cases, the SCC of v is removed in the first iteration of the
while-loop on lines 8–23. Which leaves us with a graph with L less than k. The rest follows easily.

�

Corollary 1
The overall time complexity of Recursive OBF is O((L+1)·(m+n)).
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0 3124 5

Figure 8. Example for lower bound of OBFR

The upper bound cannot be tightened as shown by the following example. Define Gk = (Vk,Ek) as
follows. Let

V ′
0 ={0}

V ′
i+1 =V ′

i ∪{2i+1,2i+2}
E′

0 ={(0,0)}
E′

i+1 =E′
i ∪{ (2i+1,2i+1),(2i+2,2i+2),

(max(2i−1,0),2i+1),(2i+2,2i),(2i+2,2i+1)}
for i∈{0,...,k}. Now

Vk =V ′
k ∪{2k+1}

Ek =E′
k ∪{(2k+1,2k+1),(max(2k−1,0),2k+1)}

Figure 8 shows G2. Note that Gk has 2k+2 vertices and 5k+3 edges. One possible behaviour of
OBFR on Gk is as follows. Suppose OBFR picks the vertex 2k first. All vertices of Gk are reachable
from 2k so the first rooted chunk is the whole graph. OBF is then run on this rooted chunk. No
vertex is eliminated by OWCTY(), for 2k has a predecessor (itself). The first OBF slice is then {2k}
which is identified as an SCC by subsequent recursive call to OBFR. The first OBF then continues
on successors of {2k}, these are 2k−2 and 2k−1. Again, OWCTY() does not eliminate anything.
Then a backward reachability is started from {2k−2,2k−1} and explores the whole remaining graph
except for the vertex 2k+1. So, the second OBF slice is equal to the graph Gk−1 and OBFR is called
recursively to process it.

We have shown that maximal recursion depth of OBFR on Gk is k+1. At recursion depth i, a
graph with at least 2(k−i)+2 vertices and at least 5(k−i)+3 edges is explored at least once. So by
Corollary 1, the overall time complexity of OBFR on Gk is �(n ·(n+m)).

4.1 Increasing the degree of parallelism

In [4], it was noticed that OBF has a better worst-case running time than CH, mainly due to possible
re-colouring. Still, our initial experiments (cf. Figure 11) showed that CH performs better on graphs
with many small SCCs. We attribute this to the higher degree of parallelism in CH, which outweighs
the extra costs due to re-colouring in this case.

There is room to increase parallelism in OBFR-P() too. The pseudocode of this ‘more parallel’
version is in Figure 9. It exploits the fact that, after we pick a vertex in V and identify its forward
closure Range in V , we can run OBF on Range in parallel and without waiting for its completion we
can pick another vertex from V and start computing its closure.

So we essentially have three versions of OBFR varying in the ‘degree of parallelism’. This is
illustrated in Figure 10. Each diagram starts with a bold vertical axis, where the downward direction
represents the progression of time. The numbered columns represent independent parallel procedures.
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Figure 9. OBFR with increased parallelism

An arrow from column i to column j indicates that procedure i starts procedure j. For simplicity, the
figure does not show recursive calls of OBF.

Assume we have a graph whose vertices are partitioned into the following disjoint sets according
to how OBFR works on the graph: V =B11 ∪B12 ∪B13 ∪B21 ∪B31 ∪B32. B1(1−3) =B11 ∪B12 ∪B13 is
the closure (Range) of the first picked vertex (first rooted chunk) and the individual sets are the slices
identified by OBF in the closure. Similarly B2(1) =B21 is the closure of the second picked vertex
(second rooted chunk) and B3(1−2) =B31 ∪B32 is the closure of the third picked vertex (third rooted
chunk). For simplicity, we assume there are no trivial components eliminated by OWCTY.

The leftmost diagram in Figure 10 illustrates the operation of the basic OBFR when no parallel
procedures are executed. SCCs are processed one by one (delete lines 17 and 19 from Figure 7).

The middle diagram in Figure 10 illustrates the operation of OBFR in Figure 7. Each time a new
slice is identified by OBF, a new parallel procedure is started to process the slice. The algorithm
first picks a vertex, identifies the set B1(1−3), then the slices B11, B12 and B13. Only then it can pick
another vertex from the unexplored part of the graph, identify B2(1), ...

The rightmost diagram in Figure 10 illustrates the operation of the ‘more parallel’OBFR in Figure 9.
It does slicing of B1(1−3), B2(1) and B3(1−2) in separate parallel procedures. This allows it to get to
B2(1) and B3(1−2) much faster.
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Figure 10. Three versions of OBFR different in degree of parallelism

5 Experimental evaluation

The experiments were carried out on a cluster of eight workstations interconnected with 1 Gbps
Ethernet. Each workstation was equipped with AMD AthlonTM 64 3500+ Processor and 1 GB RAM.
We used the LAM/MPI library for message passing. Our implementation is a distributed memory one.
The graph is partitioned into a number (in our case 8) of disjoint parts. Each workstation owns one
part. Each workstation runs the same code and communicates with other workstations via the message
passing library only. The computation at each workstation proceeds sequentially (the execution of
independent parallel procedures is serialized) meaning that no additional threads are executed. This
is achieved by maintaining an appropriate piece of information about each procedure in an ‘array
of procedures’ and iterating over its elements repeatedly to let each procedure perform some work.
Note that a single procedure runs in parallel over different partitions of the graph.

We observed that OBFR suffers from the amount of synchronization points among individual
procedures. However, the amount of synchronization points may be significantly reduced if
independent procedures are started as soon as all data they depend on are ready. Starting independent
procedures can be viewed as an implementation detail, however, it has proven to have significant
impact on the performance. The three different versions presented in the previous section are
recapitulated in the following.

OBFR-S No procedures are executed in parallel. When OBF identifies a slice
it waits for the complete computation on the slice to finish before
continuing.

OBFR-P OBF identifies the slices, and starts a parallel procedure on each slice as
soon as the slice is identified.

OBFR-MP Does the same as the previous one, but additionally, within a slice, it
starts a parallel procedure as soon as a new forward chunk (forward
closure of a picked vertex in a possibly not-rooted slice) within a slice
is found.

Our experiments show that indeed the total running time of the algorithm decreases by adding
more parallelism, despite the extra overhead (e.g. running various termination detection procedures
in parallel), and despite the fact that a single reachability computation is already parallel.
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We compare OBFR with three other algorithms. Namely FB [17], OBF + FB [4] and CH
(colouring [22]). Like OBFR, FB and OBF + FB can be implemented with different degrees of
parallelism. For the comparisons we implemented only the most parallel versions of these algorithms,
which give the best results. These implementations are denoted by FB-Pand OBF-FB-P. CH processes
SCCs inherently in parallel; we reused the code from [22] and all experiments are carried out in the
same software/hardware environment.

5.1 Measurements

For the evaluation, we used synthetic graphs with a regular structure and fixed size SCCs. The aim
was to find out how the algorithms work as the SCC size changes. We used two types of graphs. The
first type of graph, called LmLmTn was of the form Loop(m) || Loop(m) || Tree(n), where Loop(m)
is a cycle with m states, Tree(n) is the binary tree of depth n and || denotes the Cartesian product of
graphs. This graph has 2n+1 −1 components of size (m+1)2. Its quotient graph is a binary tree.

The second type of graph, called LimLon, uses Line(m), being a sequence of m states. It is of the
form Line(m) || Line(m) || Loop(n) || Loop(n) and consequently has m2 components of size n2. The
quotient graph of the second type is a square mesh with edges oriented right and down. In the second
type, there are many paths of the same length to the same vertex.

We also experimented with graphs that arise as state spaces in real model checking applications.
The names of these graphs are prefixed with ‘cwi’, ‘vasy’ and ‘swp’. The former two are taken
from the VLTS Benchmark Suite [7]1 The swp-graph, called swp_dmwnqp, models the behaviour
of a sliding window protocol with m distinct data elements, window size 2n, and queue size p. The
complete list is in Tables 1 and 2.

The size of the graphs is relatively small and in principle they could be decomposed on a single
machine, but they are large enough for experiments with distributed algorithms to provide insight.

The results for synthetic graphs are in Table 3. The results for real graphs are in Table 4. All run-
times are in seconds, ‘n/a’ means that the run-time exceeded 36 000 s (10 h). Graphs of dependency
of run-time on SCC size are in Figure 11 and 12. We measured this dependency for synthetic graphs
only. Figure 11 does not contain results for all graphs of type 1 since numbers of vertices of some
of these graphs differ too much. Only graphs with ∼ 3000000 vertices were chosen. The graphs of
type 2 have all approximately ∼ 4000000 vertices, so Figure 12 contains results for all of them.

5.2 Evaluation

There is one important issue concerning space complexity. To implement a reachability analysis in
linear time, we need a way to determine whether a vertex has been already visited or not in constant
time. This is usually accomplished by allocating an array of booleans with n elements, one for each
vertex. Algorithms that perform many reachabilities in parallel must have such an array for each of
them. Our implementations that fall into this category are FB-P, OBF-FB-P, OBFR-P, OBFR-MP.
There is no problem with reachabilities in the same depth of recursion. Since they operate on disjoint
parts of the graph, one array of size n is enough. But for procedures in different depths we need
separate arrays. And so the space complexity is O(m+n ·(maximum depth of recursion)).

Although the maximum depth of recursion can be as high as n, in our experiments the algorithm
we are mainly interested in, OBFR, reached maximum depth of 15. This makes us believe that

1Note that we consider the graph of all transitions, while [22] considered only (invisible) τ -transitions.
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Table 1. Synthetic graphs used in experiments

State space Number of SCCs Size of one SCC States Transitions

L10L10T10 2047 121 247 687 742 940
L100L100T4 31 10 201 316 231 938 492
L15L15T10 2047 256 524 032 1 571 840
L4L4T16 131 071 25 3 276 775 9 830 300
L20L20T12 8191 441 3 612 231 10 836 252
L80L80T8 511 6561 3 352 671 10 051 452
L350L350T4 31 123 201 3 819 231 11 334 492
L1750L1750T0 1 3066 001 3 066 001 6 132 002
L1750L1750T1 3 3066 001 9 198 003 24 528 008

Li200Lo10 40 000 100 4 000 000 15 960 000
Li125Lo16 15 625 256 4 000 000 15 936 000
Li100Lo20 10 000 400 4 000 000 15 920 000
Li80Lo25 6400 625 4 000 000 15 900 000
Li67Lo30 4489 900 4 040 100 16 039 800
Li50Lo40 2500 1600 4 000 000 15 840 000
Li40Lo50 1600 2500 4 000 000 15 800 000
Li30Lo67 900 4489 4 040 100 15 891 060
Li25Lo80 625 6400 4 000 000 15 680 000
Li20Lo100 400 10 000 4 000 000 15 600 000
Li16Lo125 256 15 625 4 000 000 15 500 000
Li10Lo200 100 40 000 4 000 000 15 200 000

Table 2. Real graphs used in experiments

State space Number of SCCs Maximum SCC size States Transitions

cwi_2165_8723 47 926 423 505 2 165 446 8 723 465
cwi_2416_17605 2 150 392 6 2 416 632 17 605 592
cwi_7838_59101 1 7 838 608 7 838 608 59 101 007
vasy_11026_24660 10 074 720 910 11 026 932 24 660 513
vasy_1112_5290 160 061 71 968 1 112 490 5 290 860
vasy_12323_27667 11 214 774 910 12 323 703 27 667 803
vasy_2581_11442 274 690 26 796 2 581 374 11 442 382
vasy_4220_13944 2398 982 49 151 4 220 790 13 944 372
vasy_4338_15666 828 412 26 796 4 338 672 15 666 588
vasy_6020_19353 2 041 6 013 920 6 020 550 19 353 474
vasy_6120_11031 4 638 059 1902 6 120 718 11 031 292
vasy_8082_42933 323 629 7 054 752 8 082 905 42 933 110
swp_d2w2q2.s 1 1 429 676 1 429 676 6 704 544
swp_d2w2q3.s 1 5 323 836 5 323 836 25 236 056
swp_d3w2q2.s 1 5 168 596 5 168 596 24 615 576

space complexity is not a problem of OBFR. However, the FB algorithm exceeded depth 200 in
our experiments. It did not prevent the algorithm from successful computation of SCCs, because
our graphs are relatively small. Nevertheless, this high-recursion depth kills the benefit of having
accumulated memory of a cluster of workstations. If we add that FB is much slower if independent
sub-graphs are not processed in parallel, we can conclude that FB is not a very good distributed
algorithm. On the other hand, OBF + FB reached maximum recursion depth of 17. It seems that the
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Table 3. Run-times for synthetic graphs (in seconds)

State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

L10L10T10 10 128 25 8 8 75
L100L100T4 13 19 13 11 5 145
L15L15T10 16 118 56 16 17 142
L4L4T16 2743 6603 671 309 297 325
L20L20T12 224 575 287 74 71 456
L80L80T8 94 107 110 34 45 795
L350L350T4 83 91 88 38 45 1583
L1750L1750T0 34 31 43 17 16 1021
L1750L1750T1 148 138 166 87 82 6533
Li200Lo10 1982 1964 1131 76 58 9317
Li125Lo16 1105 975 740 61 52 5827
Li100Lo20 754 588 520 65 51 4513
Li80Lo25 548 465 454 57 77 3560
Li67Lo30 510 356 484 58 44 3080
Li50Lo40 357 236 163 48 48 3350
Li40Lo50 286 175 126 50 43 2628
Li30Lo67 174 127 110 43 44 2364
Li25Lo80 140 102 103 46 46 2972
Li20Lo100 176 88 80 43 40 2782
Li16Lo125 106 77 115 71 38 2148
Li10Lo200 81 58 90 62 45 1895

Table 4. Runtimes for real graphs (in seconds)

State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

cwi_2165_8723 21 43 30 29 22 49
cwi_2416_17605 76 8791 942 51 56 126
cwi_7838_59101 65 58 107 102 72 227
vasy_11026_24660 3387 n/a 3391 416 827 471
vasy_1112_5290 168 5611 399 73 73 365
vasy_12323_27667 4483 n/a 3942 500 1016 509
vasy_2581_11442 169 6182 2084 64 109 276
vasy_4220_13944 531 8348 976 347 1987 151
vasy_4338_15666 209 14352 4445 107 110 310
vasy_6020_19353 60 147 93 51 34 130
vasy_6120_11031 888 26611 1483 282 299 592
vasy_8082_42933 162 440 640 455 407 280
swp_d2w2q2.s 12 9 12 16 6 44
swp_d2w2q3.s 55 13 28 55 18 102
swp_d3w2q2.s 38 16 42 35 15 70
Total run-time 10324 >142621 18572 2583 5051 3702

uppermost OBF is so successful in slicing the whole graph, that the amount of work left for FB that
processes the slices is relatively small.

And now for some comments on the measured run-times. First, for the synthetic graphs. As one
can see from Table 3, OBFR-MP and OBF-FB-P together are clear winners. Their run-times are
practically the same because most of the decomposition was done by the first OBF which is the same
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Figure 11. Dependency of run-time on SCC size, type 1 synthetic graphs (log. scale)

Figure 12. Dependency of run-time on SCC size, type 2 synthetic graphs (log. scale)

for both algorithms. The slices identified by the OBF were then processed in parallel. It did not matter
if OBF or FB was used for them because of the structure of the slices.

FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, but they require a long
time to decompose a graph with many small components. OBFR-P was the best of them, but its
performance on graphs with many small components is still poor. The reason for the big difference
between OBFR-P and OBFR-MP is that some slices identified by the first OBF contained many parts
with no edges between them and waiting for OBF to finish on one part before moving to next part
affects the performance considerably.
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Figure 13. Dependency of run-time on SCC size, comparison of OBFR-S and CH, type 1 synthetic
graphs (log. scale)

Interestingly enough, for the synthetic graphs of type 1, unlike most of the other algorithms,
especially OBFR-S, the CH algorithm worked better on graphs with many small components
(Figure 13). We attribute this to the high degree parallelism in CH which outweighs the extra costs
due to re-colouring in this case. However, it was not confirmed on type 2 graphs (Figure 12), on
which CH has extremely poor performance. This is explained by many paths of the same length
leading to the same vertex, which causes frequent re-colouring.

The experiments on real graphs (Table 4) have only one winner, OBFR-MP. Yet, its victory was
not as clear as the victory for synthetic graphs. In particular, CH turned out to be successful. We
included total run-times for all real graphs to allow for better comparison.

The structure of the graphs was not regular, so OBFR had to go deeper to decompose the graph.
Since the decomposition was not done by the first OBF, the FB algorithm had much more work in
OBF + FB than for synthetic graphs, which resulted in poor behaviour for some graphs, especially
vasy_12323_27667 and vasy_4220_13944.

6 Conclusion

In this article, we listed and compared known distributed algorithms for the decomposition of
directed graphs into their SCCs. We also proposed a new algorithm, called OBFR, based on recursive
application of the OBF technique introduced in [4]. The correctness of the new algorithm was proven
formally. We also report on an extensive experimental study we did to evaluate the new algorithm.
OBFR outperformed all the other algorithms in most cases.

Our experiments show that the way the algorithm is implemented influences its performance a
great deal. In particular, the best implementation turned out to be the one with the highest degree of
parallelism, that is the one which starts another parallel procedure every time a part of the graph that
can be processed independently has been identified.

There is one type of graphs where the CH algorithm [22] may be the best choice. These are
graphs consisting of many unconnected islands. Such graphs arise for instance when considering
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only (invisible) τ -transitions as a pre-processing step to branching bisimulation reduction. CH starts
working on all islands simultaneously, but all the other algorithms process them one by one unless
they contain indegree 0 vertices. If these islands are small enough, re-colouring is not a problem and
CH is very fast. This suggests an aim for future work: to improve OBFR to work better on graphs
with many unconnected islands.

OBFR is also suitable for multi-core shared-memory architectures that are going to be the standard
in the near future. Implementing and evaluating OBFR on such architectures is another aim for
future work.
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Abstract. We show how to adapt an existing non-DFS-based accepting
cycle detection algorithm OWCTY [10,15,29] to the I/O efficient setting
and compare its I/O efficiency and practical performance to the existing
I/O efficient LTL model checking approach of Edelkamp and Jabbar [14].
The new algorithm exhibits similar I/O complexity with respect to the
size of the graph while it avoids quadratic increase in the size of the graph.
Therefore, the number of I/O operations performed is significantly lower
and the algorithm exhibits better practical performance.

1 Introduction

Model checking became one of the standard technique for verification of hard-
ware and software systems even though the class of systems that can be fully
verified is fairly limited due to the well known state explosion problem [12]. The
automata-theoretic approach [33] to model checking finite-state systems against
linear-time temporal logic (LTL) reduces to the detection of reachable accepting
cycles in a directed graph. Due to the state explosion problem, the graph tends to
be extremely large and its size poses real limitations to the verification process.
Many more-or-less successful techniques have been introduced [12] to reduce the
size of the graph advancing thus the frontier of still tractable systems. Never-
theless, for real-life industrial systems these techniques are not efficient enough
to fit the data into the main memory. An alternative solution is to increase the
computational resources available to the verification process. The two major ap-
proaches include the usage of clusters of workstations and the usage of external
memory devices (disks).

Regarding external memory devices, the goal is to develop algorithms that
minimize the number of I/O operations an algorithm has to perform to complete
its task. This is because the access to information stored on an external device
is orders of magnitude slower than the access to information stored in the main
memory. Thus the complexity of I/O efficient algorithms is measured in the
number of I/O operations [1].

A lot of effort has been put into research on I/O efficient algorithms working
on explicitly stored graphs [11,20,24,25]. For an explicitly stored graph, an I/O
efficient algorithm typically has to perform a random access operation every
� This work has been partially supported by the Grant Agency of Czech Republic
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time it needs to enumerate edges incident with a given vertex. However, in
model checking, the graphs are often given implicitly which means that the
edges incident with a given vertex are computed on demand from the vertex
itself. Thus, an algorithm working on an implicitly given graph may save up
to |V | random access operations, which may have significant impact on the
performance of the algorithm in practice.

A distinguished technique that allows for an I/O efficient implementa-
tion of a graph traversal procedures is the so called delayed duplicate detec-
tion [21,22,26,32]. A traversal procedure has to maintain a set of visited vertices
to prevent their re-exploration. Since the graphs are large, the set cannot be
completely kept in the main memory and must be stored on the external mem-
ory device. When a new vertex is generated it is checked against the set to avoid
its re-exploration. The idea of the delayed duplicate detection technique is to
postpone the individual checks and perform them together in a group for the
price of a single scan operation.

Unfortunately, the delayed duplicate detection technique is incompatible with
the depth-first search (DFS) of a graph [14]. Therefore, most approaches to I/O
efficient (LTL) model checking suggested so far, have focused on the state space
generation and verification of safety properties only. The first I/O efficient al-
gorithm for state space generation has been implemented in Murϕ [32]. Later
on, several heuristics for the state space generation were suggested and imple-
mented in various verification tools [16,18,23]. The first attempt to verify more
than safety properties was described in [19], however, the suggested approach
uses the random search to find a counterexample to a given property. Therefore,
it is incomplete in the sense that it is not able to prove validity of the property.

To the best of our knowledge, the only complete I/O efficient LTL model
checker was suggested by Edelkamp and Jabbar in [14] where the problematic
DFS-based algorithm was avoided by the reduction of the accepting cycle
detection problem to the reachability problem [7,31] whose I/O efficient solution
was further improved by using the directed (A∗) search and parallelism. The
algorithm works in the on-the-fly manner meaning that only a part of the
state space is constructed, which is needed in order to check the desired
property. The reduction transforms the graph so that the size of the graph
after the transformation is asymptotically quadratic with respect to the original
one. More precisely, the size of the resulting graph is |F | × |G|, where |G|
is the size of the original graph and |F | is the number of accepting vertices.
As the external memory algorithms are meant to be applied to large scale
graphs, the quadratic increase in the size of the graph is significant and,
according to our experience, it often aborts due to the lack of space. This
is especially the case when the model is valid and the entire graph has
to be traversed to prove the absence of an accepting cycle. The approach
is thus mainly useful for finding counterexamples in the case a standard
verification tool fails due to the lack of memory. However, completeness is a
very important aspect of LTL model checking as well. A typical scenario is that if
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the system is invalid and the counterexample found, the system is corrected and
the property verified again. In the end, the graph must be traversed completely
anyway.

Since DFS-based algorithms cannot be used for I/O efficient solution to the
accepting cycle detection, a non-DFS algorithm is required. The situation very
much resembles a similar one encountered in cluster-based approach to LTL
model checking [2]. The main problem of the approach is that the optimal se-
quential algorithm (e.g. Nested DFS [17]) is inherently sequential and hence dif-
ficult to be parallelized [30]. Consequently, several new parallel algorithms that
do not build on top of the depth-first search have been introduced [3,4,8,9,10].

In this paper we show how to adapt a parallel enumerative version of the One
Way Catch them Young Algorithm (OWCTY) [10,15,29] to the I/O efficient
setting and compare its I/O efficiency and practical performance with the I/O
efficient LTL model checking algorithm by Edelkamp and Jabbar [14].

2 I/O Efficient OWCTY Algorithm

As discussed above, an I/O efficient solution to LTL model checking has to build
upon a non-DFS algorithm. A particularly suitable algorithm for enumerative
LTL model checking was described in [10]. The goal of the algorithm is to com-
pute the set of vertices that are reachable from a vertex on an accepting cycle. If
the set is empty, there is no accepting cycle in the graph, otherwise the presence
of an accepting cycle is ensured [15,29].

The algorithm repeatedly computes approximations of the target set until
a fixpoint is reached. All reachable vertices are inserted into the approxima-
tion set (ApproxSet) within the procedure Initialize-ApproxSet. After that,
vertices violating the condition are gradually removed from the approximation
set using procedures Elim-No-Accepting and Elim-No-Predecessors. Pro-
cedure Elim-No-Accepting removes those vertices from the approximation
set that have no accepting ancestors in the set, i.e. vertices that lie on lead-
ing non-accepting cycles. Procedure Elim-No-Predecessors removes vertices
that have no ancestors at all, i.e. leading vertices lying outside a cycle. The
pseudo-code is given as Algorithm 1.

Algorithm 1. DetectAcceptingCycle

Require: Implicit definition of G=(V,E,ACC)
1: Initialize-ApproxSet()
2: oldSize ← ∞
3: while (ApproxSet.size �= oldSize) ∧ (ApproxSet.size > 0) do
4: oldSize ← ApproxSet.size
5: Elim-No-Accepting()
6: Elim-No-Predecessors()
7: return ApproxSet .size > 0
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The approximation set induces an approximation graph. The in-degree of a
vertex in the approximation graph corresponds to the number of its immediate
predecessors in the approximation set. To identify vertices without ancestors in
the approximation set, the in-degree is maintained for every vertex of the ap-
proximation graph. Procedure Elim-No-Predecessors then works as follows.
All vertices from the set with a zero in-degree are moved to a queue from where
they are dequeued one by one. Dequeued vertices are eliminated from the set,
and the in-degrees of its descendants are updated. If an in-degree drops to zero,
the corresponding vertex is inserted into the queue to be eliminated as well.
The procedure eliminates vertices in a topological order and hence the queue
becomes empty as soon as all vertices preceding a cycle are eliminated.

Procedure Elim-No-Accepting works as follows. If a vertex has an accepting
ancestor in the approximation set, it has to be reachable from some accepting
vertex in the set. Therefore, the procedure first removes all non-accepting vertices
from the set and sets the numbers of predecessors of all vertices remaining in
the set to zero. Then a forward search is performed starting from the vertices
remaining in the set. During the search all visited vertices are re-inserted to the
approximation set and the numbers of immediate predecessors of vertices in the
set are re-counted.

There are three major data structures used by the algorithm. These are
Candidates , ApproxSet , and Open. Candidates is the set of vertices strictly kept
in memory that is used for the delayed duplicate detection technique. It keeps
vertices that have been processed and are waiting to be checked against the set of
vertices stored on the external device. ApproxSet is the set of vertices belonging
to the current approximation set. It is implemented as a linear list and stored ex-
ternally. Together with Candidates , it is used as the set of vertices already visited
during the forward exploration of the graph in procedure Elim-No-Accepting.
For that purpose, both Candidates and ApproxSet data structures are modified
to keep not only vertices, but also the corresponding numbers of relevant imme-
diate predecessors. The number associated with a particular vertex s is referred
to as the appendix of the vertex and is set and read with methods setAppendix(s)
and getAppendix(s), respectively. Finally, the data structure Open is a queue
of vertices. It is used to keep open vertices during the breadth-first exploration
of the graph within procedure Elim-No-Accepting, and vertices to be elim-
inated (vertices without any predecessors) during the execution of procedure
Elim-No-Predecessors. The data structure Open is stored in the external
memory, the vertices are, however, inserted into and taken from it in a strict
FIFO manner. Thus, a possible I/O overhead could be minimized using an ap-
propriate buffering mechanism.

In some of its phases, the algorithm performs a scan through the externally
stored set of vertices (ApproxSet) and decides about every vertex if it should be
removed from the set or not. To preserve the I/O efficiency of such an operation,
a temporary external data structure ApproxSet’ is introduced. In particular,
vertices that should remain in the set are copied to the temporary structure.
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Algorithm 2. Merge

1: if mode = Elim-No-Accepting then
2: for all s ∈ ApproxSet do
3: if s ∈ Candidates then
4: app ← Candidates .getAppendix(s)
5: app’ ← ApproxSet .getAppendix(s)
6: Candidates ← Candidates \ {s}
7: ApproxSet .setAppendix(s, app + app’ )
8: for all s ∈ Candidates do
9: Open.pushBack(s)

10: ApproxSet ← ApproxSet ∪ {s}
11: else
12: ApproxSet’ ← ∅
13: for all s ∈ ApproxSet do
14: app’ ← ApproxSet .getAppendix(s)
15: if s ∈ Candidates then
16: app ← Candidates .getAppendix(s)
17: if (app + app’ ) = 0 then
18: Open.pushBack(s)
19: else
20: ApproxSet’ ← ApproxSet’ ∪ {s}
21: ApproxSet’ .setAppendix(s, app + app’ )
22: else
23: ApproxSet’ ← ApproxSet’ ∪ {s}
24: ApproxSet’ .setAppendix(s, app’ )
25: ApproxSet ← ApproxSet’
26: Candidates ← ∅

Once the scan is complete, the content of the original ApproxSet is discarded
and replaced with the content of the temporary structure ApproxSet’ .

Having described the data structures we are ready to introduce several aux-
iliary subroutines. The most important one is procedure Merge that is re-
sponsible for merging information about vertices stored in the internal memory
(Candidates) and vertices stored externally (ApproxSet). The procedure can op-
erate in two different modes according to the value of the variable mode. The
two modes correspond to the top most procedures Elim-No-Accepting and
Elim-No-Predecessors. In the mode Elim-No-Accepting, vertices from set
Candidates are merged with vertices from ApproxSet and the result is stored ex-
ternally to ApproxSet . For already visited vertices the corresponding appendices
are just combined and stored externally. Moreover, newly discovered vertices
are inserted into the queue of vertices to be further processed (Queue). In the
mode Elim-No-Predecessors, no new vertices are discovered, hence only the
appendices are combined. Vertices with zero in-degree are removed from the ex-
ternal memory and in-degree of their immediate descendants is appropriately
decreased. For the details see Algorithm 2.
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Algorithm 3. StoreOrCombine

Require: s, app
1: if s ∈ Candidates then
2: app’ ← Candidates .getAppendix(s)
3: Candidates .setAppendix(s , app+app’ )
4: else
5: Candidates ← Candidates ∪ {s}
6: Candidates .setAppendix(s, app)
7: if MemoryIsFull() then
8: Merge()

Another auxiliary procedure is procedure StoreOrCombine whose purpose
is to insert a vertex into the candidate set if the vertex is not yet present in the
set, or update the corresponding appendix of the vertex, otherwise. Once the
main memory becomes full, vertices from the candidate set are processed and
the candidate set is emptied by procedure Merge.

Algorithm 4. OpenIsNotEmpty

1: if Open.isEmpty() then
2: Merge()
3: return ¬Open.isEmpty()

The last auxiliary function is a function for checking the emptiness of the
queue of vertices to be processed (Open). If the queue is empty, procedure
OpenIsNotEmpty calls procedure Merge to perform the delayed duplicate
detection. The procedure returns False, if Open is empty and merging has not
brought any new vertices to be processed.

Algorithm 5 and Algorithm 6 give pseudo-codes of the two main
procedures. Note that algorithm DetectAcceptingCycle uses functions
GetInitialVertex, GetSuccessors, and IsAccepting to traverse the graph
and to check whether a vertex is accepting or not. These functions are part of
the implicit definition of the graph. Procedure Elim-No-Accepting has actu-
ally two goals. First, to eliminate those vertices from the approximation set that
are unreachable from accepting vertices in the set, and second, to properly count
the in-degrees in the approximation graph. Procedure Elim-No-Predecessors
employs the in-degrees to recursively remove vertices without predecessors from
the approximation set.

An important observation is that it is not necessary to initialize the approxi-
mation set with the set of all vertices. Since the first procedure in the very first
iteration of the while loop performs forward exploration of the graph starting
from accepting vertices in the set, it is enough to initialize the set with ”leading”
accepting vertices only, i.e. those accepting vertices that have no accepting
ancestors. Such vertices can be identified with a simple forward traversal that is
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Algorithm 5. Elim-No-Accepting

1: mode ← Elim-No-Accepting
2: ApproxSet’ ← ∅
3: for all s ∈ ApproxSet do
4: if IsAccepting(s) then
5: Open.pushBack(s)
6: ApproxSet’ ← ApproxSet’ ∪ {s}
7: ApproxSet’ .setAppendix(s, 0)
8: ApproxSet ← ApproxSet’
9: while OpenIsNotEmpty() do

10: s ← Open .popFront()
11: for all t ∈ GetSuccessors(s) do
12: StoreOrCombine(t , 1)

Algorithm 6. Elim-No-Predecessors

1: mode ← Elim-No-Predecessors
2: ApproxSet’ ← ∅
3: for all s ∈ ApproxSet do
4: if ApproxSet .getAppendix(s) = 0 then
5: Open.pushBack(s)
6: else
7: ApproxSet’ ← ApproxSet’ ∪ {s}
8: ApproxSet ← ApproxSet’
9: while OpenIsNotEmpty() do

10: s ← Open .popFront()
11: for all t ∈ GetSuccessors(s) do
12: StoreOrCombine(t , −1)

Algorithm 7. Initialize-ApproxSet

1: mode ← Elim-No-Accepting
2: Candidates ← ∅
3: s ← GetInitialVertex()
4: ApproxSet ← {s}
5: if ¬ IsAccepting(s) then
6: Open .pushBack(s)
7: while OpenIsNotEmpty() do
8: s ← Open .popFront()
9: for all t ∈ GetSuccessors(s) do

10: if IsAccepting(t) then
11: ApproxSet ← ApproxSet ∪ {t}
12: else
13: StoreOrCombine(t , 0)
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allowed to explore descendants of non-accepting vertices only. See the pseudo-
code given as Algorithm 7.

3 Complexity Analysis

A widely accepted model for the analysis of the complexity of I/O algorithms is
the model of Aggarwal and Vitter [1], where the complexity of an I/O algorithm
is measured in terms of the numbers of external I/O operations only. This is mo-
tivated by the fact that a single I/O operation is by approximately six orders of
magnitude slower than a computation step performed in the main memory [34].
Therefore, an algorithm that does not perform the optimal amount of work but
has a lower I/O complexity, may be faster in practice compared to an algorithm
that performs the optimal amount of work, but has a higher I/O complexity.
The complexity of an I/O algorithm in the model of Aggarwal and Vitter is
further parametrized by M , B, and D, where M denotes the number of items
that fits into the internal memory, B denotes the number of items that can be
transferred in a single I/O operation, and D denotes the number of blocks that
can be transferred in parallel, i.e. the number of independent parallel disks avail-
able. The abbreviations sort(n) and scan(n) stand for θ(N/(DB)logM/B(N/B))
and θ(N/(DB)), respectively. In this section we give the I/O complexity of our
algorithm and compare it with the complexity of the algorithm from [14].

We use the following notation. BFS tree is a tree given by the graph traversal
from the initial set of vertices in the breadth-first order. Its height hBFS is called
BFS height, its levels are called BFS levels. SCC graph is a directed acyclic graph,
whose vertices are maximal strongly connected components of the graph and the
edges are given according to the reachability relation between the components.
Let lSCC denote the length of the longest path in the SCC graph. The I/O
complexity of the algorithm is given in Theorem 1. The proof of the complexity
can be found in the full version of the paper [6].

Theorem 1. The I/O complexity of algorithm DetectAcceptingCycle is

O(lSCC · (hBFS + |pmax| + |E|/M) · scan(|V |)),
where pmax is the longest path in the graph going through trivial strongly con-
nected components (without self-loops).

For the purpose of comparison we denote our new algorithm as DAC and the
algorithm of Edelkamp and Jabbar [14] as EJ. Theorem 1 of [14] claims that
EJ is able to detect accepting cycles with I/O complexity O(sort(|F ||E|) + l ·
scan(|F ||V |)), where |F | is the number of accepting states and l is the length of
the shortest counterexample.

The complexity of EJ is not easy to compare with our results, because the two
algorithms use different ways to maintain the set of candidates. The candidate
set can be either stored externally (EJ ) or internally (DAC ). In the case that the
candidate set is stored externally, it is possible to perform the merge operation
on a BFS level independently of the size of the main memory. Therefore, this
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approach is suitable for those cases where memory is small or the graph is by
orders of magnitude larger. The disadvantage of the approach is that it needs sort
operations and it cannot be combined with heuristics, such as bit-state hashing
and a lossy hash table [16]. Fortunately, both EJ and DAC are modular enough
to be able to work in both modes. Table 1 gives I/O complexities of all four
variants, where EJ’ denotes algorithm EJ modified so that the candidate set
is kept in the internal memory, and DAC’ denotes algorithm DAC modified so
that the candidate set is stored externally.

Table 1. I/O complexity of algorithms for both modes of storage of the candidate set

Candidate set in the main memory:

EJ’ O((l + |F ||E|/M) · scan(|F ||V |))
DAC O(lSCC · (hBF S + |pmax| + |E|/M) · scan(|V |))

Candidate set in the external memory:

EJ O(l · scan(|F ||V |) + sort(|F ||E|))
DAC’ O(lSCC · ((hBF S + |pmax|) · scan(|V |) + sort(|E|)))

In the worst case the values of lSCC , |pmax|, and hBFS are equal to |V |. Thus
the worst case I/O complexity of DAC is better than that of EJ’ and the worst
case I/O complexity of DAC’ is equal to that of EJ, provided that l = |V | and
|F | = |V |.

Note that for graphs of verified systems the numbers lSCC , |pmax|, and hBFS

are typically smaller by several orders of magnitude than the number of ver-
tices. lSCC (giving the upper bound to the number of iterations of the loop of
Algorithm 1) usually ranges from 1 to 20 [15]. hBFS is not proportional to the
size of the state space and oscillates around several hundreds [27], so the |pmax|
according to our own measurements. However, the number of accepting vertices
(F ) is quite often in the same order of magnitude as the number of vertices.
Therefore, EJ’ and EJ suffer from the graph blow-up and perform much more
I/O operations compared to DAC and DAC’, respectively. On the other hand,
EJ’ and EJ work on-the-fly and can thus outperform DAC and DAC’ on the
graphs with small number of accepting vertices and short counterexamples. Nev-
ertheless, short counterexamples are also easy to find using on-the-fly internal
memory model checkers which outperform both external memory approaches.

Regarding space complexity, DAC is more space efficient than EJ. Since EJ’
needs to remember all visited pairs of vertices, where a pair consists of one
accepting and one arbitrary vertex, the space complexity of the algorithm is
O(|F ||V |), i.e. asymptotically quadratic in the size of the graph. On the other
hand, the space complexity of DAC is O(|V |), as it only maintains the approxi-
mation set, queue and the candidate set whose sizes are always bounded by the
number of vertices. The same holds for the pair EJ and DAC’.
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4 Experimental Evaluation

In order to obtain experimental evidence about how our algorithm behaves in
practice, we implemented both algorithms and compared them mutually as well
as with the model checker SPIN with all the default reduction techniques (in-
cluding partial order) turned on.

Algorithm DetectAcceptingCycle (DAC ) has been implemented upon DiVinE
Library [5], providing the state space generator, and STXXL Library [13], provid-
ing the necessary I/O primitives. Algorithm EJ was implemented as a procedure
that performs the graph transformation as suggested in [14] and then employs
I/O efficient breadth-first search to check for the counterexample. Note that our
implementation of [14] does not have the A∗ heuristics and so it can be less
efficient in the search for the counterexample. The procedure is referred to as
Liveness as Safety with BFS (LaS-BFS ).

We have measured run times and a memory consumption of SPIN, LaS-BFS
and DAC on a collection of systems and their LTL properties taken from the
BEEM project [28]. The models were selected so that the state spaces generated
by SPIN and DiVinE were exactly of the same size. The experimental results
are listed in Table 2. Note that just before the unsuccessful termination of LaS-
BFS due to exhausting the disk space the size of BFS levels exhibited growing

Table 2. Run times and memory consumption on a single workstation with 2 GB of
RAM and 60 GB of available hard disk space. The time is given in hh:mm:ss format.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Phils(16,1),P3 61,230,206 Out of memory Out of disk space 02:01:11 5.5 GB
MCS(5),P4 119,663,657 Out of memory Out of disk space 03:32:41 8 GB
Szymanski(5),P4 419,183,762 Out of memory Out of disk space 44:49:36 32 GB
Elevator2(16),P4 76,824,540 Out of memory Out of disk space 11:37:57 9.2 GB
Leader Fil.(7),P2 431,401,020 00:01:35 1369 MB Out of disk space 32:03:52 42 GB

Valid properties on large models.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Lamport(3),P4 56,377 00:00:01 18 MB 00:55:34 799 MB 00:00:19 6,1 MB
Anderson(4),P2 58,205 00:00:01 20 MB 00:11:11 153 MB 00:00:18 6,1 MB
Peterson(4),P4 2,239,039 00:00:08 85 MB Out of disk space 00:04:44 159 MB

Valid properties on small models.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Bakery(5,5),P3 506,246,410 00:00:01 16 MB 01:34:13 5,4 GB 69:27:58 38 GB
Szymanski(4),P2 4,555,287 00:00:01 18 MB 00:59:00 203 MB 00:19:55 205 MB
Elevator2(7),P5 43,776 00:00:01 17 MB 00:01:15 121 MB 00:00:18 6,1 MB

Invalid properties.
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tendency. This suggests that the computation would last substantially longer if
sufficient disk space was available. For the same input graphs, algorithm DAC
manage to perform the verification using a few GBs of space only.

Measurements on large systems with valid formulas demonstrate that DAC is
able to successfully prove the correctness of systems, on which SPIN and LaS-
BFS fail. However, there are systems and valid formulas, which take a long time
to verify by our algorithm, but can be verified quickly using SPIN (e.g. model
Leader Filters). This is due to the partial order reduction technique, which is
extraordinarily efficient in this case. Results on small systems show the state
space blow-up in case of LaS-BFS. E.g. on the model Lamport, 6,1 MB of disk
space is enough for DAC to store the entire state space while LaS-BFS needs
799 MB. As for systems with invalid formulas, the new algorithm is slow, since it
does not work on-the-fly. Nevertheless, it is able to finish if the state space fits in
the external memory. Moreover, it is faster than LaS-BFS on systems with long
counterexamples as the space space blow-up takes effect when LaS-BFS has to
traverse a substantial part of the state space (e.g. model Elevator2 ).

In summary, the new algorithm is especially useful for verification of large
systems with valid formulas where SPIN fails due to the limited size of the main
memory and LaS-BFS runs out of the available external memory because of a
large amount of accepting states. On systems with invalid formulas, algorithm
DAC finishes if the state space fits in the external memory, but it may take quite
a long time as it does not work on-the-fly.

5 Conclusions and Future Work

In this paper we presented a new I/O efficient algorithm for accepting cy-
cle detection on implicitly given graphs. The algorithm exhibits linear space
complexity while preserving practically reasonable I/O complexity. Another in-
direct contribution of the paper is that it introduces an I/O efficient proce-
dure to compute the topological sort on implicitly given graphs (procedure
Elim-No-Predecessors).

Our experimental evaluation confirmed that the new algorithm is able to fully
solve instances of the LTL model checking problem that cannot be solved either
with the standard LTL model checker SPIN or using so far the best I/O efficient
approach of Edelkamp and Jabbar [14]. The approach of [14] fails especially if
the verified formula is valid, which is because after the transformation, the graph
becomes too large to be kept even in the external memory.

On the other hand, unlike SPIN and the approach of [14] our algorithm does
not work on-the-fly. The on-the-fly algorithms are particularly successful if the
property is violated and the counterexample can be found early during the state
space exploration.

As our algorithm is based on the algorithm which can be easily paral-
lelized [10], it is straightforward to develop a parallel version of the algorithm that
can further speed up verification of large systems. It also seems promising to de-
sign I/O efficient variants of other BFS-based verification algorithms [3,4,8,9,10].
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Some of them work on-the-fly and hence could outperform both the new algo-
rithm and the algorithm of Edelkamp and Jabbar.

An open problem for which we still do not know a practically good solution,
is the inefficiency of the delayed duplicate detection technique as used in proce-
dure Elim-No-Predecessors. Since procedure Merge is called every time a
BFS level is explored, merging a small level into a large set can slow down the
exploration speed of a few vertices per minute. The question is, if this can be
avoided.
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8. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better
than Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)
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Abstract. As flash media become common and their capacities and
speed grow, they are becoming a practical alternative for standard me-
chanical drives. So far, external memory model checking algorithms have
been optimized for mechanical hard disks corresponding to the model of
Aggarwal and Vitter [1]. Since flash memories are essentially different,
the model of Aggarwal and Vitter no longer describes their typical behav-
ior. On such a different device, algorithms can have different complexity,
which may lead to the design of completely new flash-memory-efficient
algorithms. We provide a model for computation of I/O complexity on
the model of Aggarwal and Vitter modified for flash memories. We dis-
cuss verification algorithms optimized for this model and compare the
performance of these algorithms with approaches known from I/O effi-
cient model checking on mechanical hard disks. We also give an answer,
when the usage of flash devices pays off and whether their further evolu-
tion in speed and capacity could broaden a range, where new algorithms
outperform the old ones.

1 Introduction

There are numerous computational tasks that require to generate and process
that huge amount of data that cannot be simply kept in internal memory. Un-
fortunately, it is not acceptable in terms of performance to rely on the standard
memory virtualization techniques provided by the operating system, and special-
ized algorithms must be devised to efficiently manipulate data stored externally.
These are the so called I/O efficient or external-memory algorithms [2].

I/O efficient algorithms reflect physical properties of external memory devices,
i.e. they are designed to minimize expensive random accesses to data in favor
of their block processing. However, likewise all the PC components, also the
external memory devices are being continuously developed and their properties
are improving in time. Recently, flash memory based external memory devices
became widely used as the so called solid state disks (SSDs). Unlike its mag-
netic counterpart, SSD does not rely on physical movements of the head(s) to
access the data. Therefore, the access time is much smaller for a solid state disk
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compared to the magnetic one. For example, the speed of random reads for a
solid state disk build with NAND flash memory lies roughly at the geometric
mean of the speeds of random access memory (RAM) and magnetic hard drive
(HDD) [3]. The only factor limiting solid state disks from being massively spread
is the cost of the device if expressed per stored bit. The cost per stored bit is
still significantly higher for SSDs than for magnetic disks. However, the cost per
bit is definitely subject to change in the future.

I/O efficient algorithms have been studied also in the context of formal verifi-
cation, model checking [4] in particular, as one of the techniques to fight the well
known state explosion problem. In this paper we focus on enumerative on-the-fly
LTL model checking, which is the standard option for analyzing software sys-
tems. Our goal is to consider a simple question that comes up with the advent of
solid state disks. Namely, if it is meaningful to design new I/O algorithms for LTL
model checking that would take advantage of the fast random reads of a solid
state disk, or if it is satisfactory to apply the existing I/O efficient LTL model
checking algorithms even for SSDs whose characteristics differ significantly from
the characteristics of the traditional magnetic disks.

To answer the question we design several techniques to implement an SSD
efficient graph traversal procedure, namely we discuss several variants of hash-
ing mechanism that is used by the Nested DFS algorithm to efficiently identify
already generated states during the graph traversal. We also report on a prelimi-
nary experimental comparison of newly suggested SSD efficient and the standard
I/O efficient techniques, and discuss the impact of possible technology improve-
ments that may come in the future.

The paper is organized as follows. In Section 2 we briefly recall the standard I/O
efficient techniques used for enumerative external memory LTL model-checking.
In Section 3 we state the differences between the standard magnetic and new solid
state disks. In Section 4 we describe several SSD efficient hashing techniques, and
we show in Section 5 how these can be used to design SSD efficient Nested DFS
algorithm. Section 6 report on our experimental evaluation of both the SSD and
I/O efficient techniques. Finally, in Section 7 we conclude the paper and plot what
impact may have possible future technological improvements.

2 I/O Efficient Model Checking with Mechanical Disks

LTL model checking problem can be reduced to the problem of accepting cycle
detection in the graph [4]. In the context of enumerative LTL model checking,
the graph to be searched for the presence of an accepting cycle is generated
on-the-fly meaning that if a graph traversal algorithm needs to proceed to an
immediate successors t of a state s, it computes state t from the state vector
of s. To prevent re-visiting of already explored states, all states that have been
processed are stored in memory, hence, if a state is generated it is first checked
against the set of stored states to learn whether it is a new state or has been
visited before. In the context of I/O efficient algorithms, this check is referred
to as the duplicate detection.
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Due to the huge number of states, their large size, and the speed of generat-
ing them, the memory demands while analyzing systems rise rapidly. In order to
release memory, states stored in the set of visited states have to be fully or par-
tially flushed to the external memory. Under this circumstances a check whether
a state has been visited may involve I/O operation as not only the states stored
in memory, but also the states stored on external memory device must be con-
sidered. This however renders a standard graph traversal algorithm inefficient as
the I/O operation is in orders of magnitude slower than a single or several reads
from the internal memory.

2.1 Graph Traversal

The core technique that gave birth to I/O efficient algorithms is the so called
delayed duplicate detection [5,6,7,8] whose idea is to postpone the individual
checks against the set of visited states and perform them together in a group
amortizing thus the cost of I/O operations per a single check.

There are other techniques that have significant impact on the performance
of an I/O efficient graph traversal algorithm. For example, it is possible to per-
form hash compaction or compression of states to be stored which results in
less amount of data to be transferred between external and internal memory.
Another quite successful improvement builds upon using a Bloom filter main-
tained in main memory in order to reduce unnecessary I/O operations. Also
simple partitioning of states stored on external memory may have impact on the
performance of an I/O efficient graph traversal procedure. For more details on
these techniques we kindly refer the reader to [9].

As mentioned above, an important aspect of an I/O efficient algorithm is that
the data stored on external memory is accessed in blocks. While the clever imple-
mentation techniques aim at reducing the number of I/O operations, or reducing
the amount of data being transferred, there is also possibility to improve the per-
formance of an I/O efficient algorithm by simple improving the performance of
an I/O operation. For example, by connecting two identical external memory
devices into a mirror RAID array we can achieve almost double bandwidth that
the block of data may be read with from the external memory device. Note that
this approach basically improves bandwidth only while does not influence the
latency, i.e. the time needed to read the first bit.

Similarly, it is possible to reduce time needed for solving the problem if in-
stead of the serial I/O efficient algorithm working over a single external device
a parallel I/O efficient algorithm is used utilizing multiple external memory de-
vices. This is, however, possible only if the algorithm involved allows parallel
processing, which is, for example, the case of breadth-first search, but is not the
case of depth-first search [10].

2.2 LTL Model Checking

For accepting cycle detection there is a space efficient optimal algorithm called
Nested Depth-First Search [11]. Unfortunately, the algorithm becomes rather
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Table 1. Characteristics of solid state and hard disk drives

HDD SSD

Read Bandwidth 65 MB/s 72 MB/s

Write Bandwidth 60 MB/s 70 MB/s

Random Read Access Time 11 ms 0.1 ms

Random Write Access Time 11 ms 5 ms

inefficient, as soon as states to be stored cannot be maintained in the main
memory [10,12].

Recently, three different I/O efficient algorithms for solving the LTL model
checking problem have been published [12,13,14]. In [12] the authors suggested to
avoid the DFS-based accepting cycle detection by the reduction of the problem to
the problem of testing reachability relation [15,16] whose I/O efficient solution
was further improved by using the directed A* search and parallelism. Since
the reduction to the reachability relation testing may result in up to quadratic
increase in the space complexity, this algorithm should be rather viewed as a
tool for bug hunting.

A new I/O efficient algorithm for LTL model checking was given in [13]. The
algorithm avoids the expensive increase in the space complexity, but does not
work on-the-fly, which means that the full state space must be generated and
stored on external memory device before it is checked for the presence of an
accepting cycle. This disadvantage makes the algorithm quite inefficient in the
cases an error can be discovered quickly using some on-the-fly algorithm. Finally,
the algorithm given in [14] is both on-the-fly and linear in the space requirements
with the respect to the size of the state space.

3 From Mechanical to Solid State Disks

Mechanical hard disks have been around for quite a long time, and they have
provided us with reliable service over these years. This is about to change with
the advent of Solid State Disks (SSD). A solid state disk is electrically, mechan-
ically and software compatible with a conventional (magnetic) hard disk drive.
The difference is that the storage medium is not magnetic (like a hard disk) or
optical (like a CD) but solid state semiconductor (NAND flash) such as bat-
tery backed RAM, EEPROM or other electrically erasable RAM-like chip. In
last years, NAND flash memories outpaced DRAM in terms of bit-density [17]
and the market with SSDs continues to grow. This provides faster access time
than a disk, because the data can be randomly accessed and does not rely on a
read/write interface head synchronising with a rotating disk. We list a typical
data transfer bandwidth and access time for both magnetic and solid state disk
in Table 1.

It became the standard to measure the analytical complexity of an I/O effi-
cient algorithm using the complexity model by Aggarwal and Vitter [1]. However,
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for solid state disk, the model is no more valid, since it does not cover the dif-
ferent access times for random read and write operations. For solid state disks,
we propose to extend the model of Aggarwal and Vitter with a penalty factor p
for random write operations.

4 I/O Efficient Graph Traversal with Solid State Disks

We observe that random read operations on SSDs are substantially faster than
on mechanical disks, while other parameters are similar. Therefore, it appears
natural to ask, whether it is necessary to employ delayed duplicate detection
(DDD) known from the current I/O efficient graph algorithms, or it is possi-
ble to build an efficient SSD algorithm using the standard immediate duplicate
detection (IDD), hashing in particular.

First, we study direct access to the solid state disk without exploiting RAM
usage. This implies both random read and random write operations. The imple-
mentation serves as a reference, and can be scaled to any implicit search with a
visited state space that fits on the solid state disk.

Next, we compress the state in internal memory to include the address on
secondary memory only. For this case states are written sequentially to the back-
ground memory in the order of generation. For resolving hash synonyms, states
lookup random reads are needed. Even though linear probing shows performance
deficiencies for internal hashing, for block-wise strategies, it is the apparent can-
didates. Alternative hashing strategies can reduce the number of random reads.

The third option fosters flushing the internal hash table to the external device,
once it becomes full. In this case, full state vectors are stored internally. For
large amounts of background memory and small vector sizes, large state spaces
can be looked at. Usually the exploration process is suspended while flushing the
internal hash table. We observe different trade-offs for the amount of randomness
for background readings and writing, which mainly depend on increasing the
locality of the access.

4.1 Hashing

The general setting (see Fig. 1) is a background hash table Hb kept on the
SSD, which can hold m = 2b entries. As said, SSDs prefer sequential writes and
sequential read, but can cope with an acceptable number of random reads. We
additionally assume a foreground hash table Hf with m′ = 2f entries. The ratio
between fore- and background is, therefore, r = 2k = 2b−f . Collisions especially
on the background hash table can yield additional burden. As chaining requires
overhead for storing and following links, we are left with open addressing and
adequate probing strategies.

As linear probing finds elements through sequential scanning, it is I/O effi-
cient. The efficiency analysis goes back to Knuth [18]. For a load factor of α
a successful search requires about 1/2 (1 + 1/(1 − α)) accesses on the average,
while an unsuccessful search requires about LPα = 1/2

(
1 + 1/(1− α)2

)
accesses
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Fig. 1. Fore- and Background Memory, such as RAM and SSD

on the average. For a hash table that is filled up to α = 50% we have less than
three states to look at on the average, which easily fit into the I/O buffer. Given
that random access is slower than sequential access, this implies that unless the
hash table becomes filled, linear probing with one I/O per lookup per node is
an appropriate option for SSD-based hashing.

4.2 Mapping

The simplest method to apply SSDs in graph search is to store each node at its
background hash address in a file, and – if occupied – to apply conflict resolution
strategy on disk. By their large seek times, this option is clearly infeasible for
HDDs, but it does apply to some extent to SSDs. Nonetheless, besides extensive
use of random writes that operate block-wise and are, thus, expected to be slow,
one problem of the approach is the initialization time, incurred by erasing all
existing data stored in background memory.

Hence, we apply a refinement to speed-up search. With one additional bit-
vector array kept in RAM, we denote, whether or not a position is already
occupied. This limits initialization time to reset all bits in main memory, which is
much faster. Moreover, this saves lookup time in case of hashing a new state with
an unused table entry. Viewed differently, one can think of a Bloom filter [19],
with conflict resolution on disk. Figure 2 (left) illustrates the approach. The
bit-vector occupied memorizes, whether the address on the SSD is in use or not.

The extra amount of RAM additionally limits the size of the search spaces to
be processed. In search practice with a full state vector of several bytes to be
stored in the background memory, however, investing one bit per state in RAM
does not harm much, given that the ratio between main and external memory
remains moderate. The only limit for the exploration is imposed by the number
of states that can be stored on the solid state disk, which we assume to be
sufficiently large.
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Fig. 2. External hashing without and with merging

For analyzing the approach, let n be the number of nodes and e be the number
of edges in the state space graph that are looked at. Without occupied vector
requires e lookup and n insert operations. Let B is the size of a block (amount
of data retrieved, or written with one I/O operation) and |s| be the length of a
state. As long as LPα · |s| ≤ B, at most two1 blocks are read for each lookup2.
For LPα · |s| > B no additional random read access is necessary. After the
lookup, an insert operation results in one random write. This results in a flash
I/O complexity of O(e + pn). Using the occupied vector, the number of read
operations reduces from e to n, assuming that no collisions take place.

As the main bottleneck of the approach is random writing to the background
memory, as another refinement we can additionally employ a foreground hash
table as a write buffer. Due to numerous insert operations, the foreground hash
table will once become filled, and then has to be flushed to the background, which
incurs writes and subsequent reads. One option that we call merging is to sort
the internal hash table wrt. to the external hash function before flushing. If the
hash functions are correlated, the sequence is already presorted, by means that
the number of inversions inv(Hf ) = |{(i, j) | hf (si) < hf (sj)∧ hb(si) > hb(sj)}|
is small. If inv(Hf ) = O(m′) and given that we use an algorithm that exploits
presorting3, we obtain a linear time sorting algorithm. While flushing we now
have a sequential write (due to the linear probing strategy), such that the total
worst-case I/O time for flushing is bounded by the number of flushes times the
efforts for sequential writes. Figure 2 (right) illustrates the approach. As we are
able to exploit sequential data processing, updating the background hash table

1 when linear probing arrives at the end of the table, an additional seek to the start
of the file is needed.

2 at our system B = 4, 096 bytes, and |s| ≈ 40 bytes.

3 e.g. adaptive sort that runs in time m′ + m′ log
(

1 +
inv(Hf )

m′

)
.
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Fig. 3. Updating Tables in Hashing with Linear Probing while Merging

corresponds to a scan (Figure 3). Blocks are read into the RAM and merged
with the internal information and then flushed back to SSD.

4.3 Compressing

State compression is a common option in LTL model checking. There are lossless
compression strategies like FSM compaction [20], as well as lossy compression
strategies like bit-state hashing [21] or hash compaction [22]. For the sake of
completeness, in this paper we avoid lossy hash methods as they imply partial
state space coverage.

Probably the best lossless compression ratio is obtained using practical perfect
hash function [23,24]. Perfect hashing corresponds to an one-to-one mapping of
some set S to {1, . . . , |S|}. Different off-line algorithms [25] have been developed
that include perfect hash functions for what has been coined to the term semi-
external LTL model checking. We do not apply perfect hashing at all, as for the
construction of perfect hash functions, set S has to be known, which contradicts
the purpose of on-the-fly model checking.

Instead we store all state vectors in a file on the external storage device, and
substitute the state vector by its relative file pointer position. For an external
hash table of size m this requires �log m� bits per entry, that is m�logm� bits
in total. Figure 4 illustrates the approach with arrows denoting the position on
external memory. An additional bit-vector occupied is no longer needed.

This strategy also results in e lookups and n insert operations. Since the or-
dering of states on the SSD does not necessarily correlate with the order in main
memory, the lookup of states due to linear probing induces multiple random
reads. Hence, the amount of individual blocks which have to be read is bounded
by LPα · e. In contrast, all insert operations are performed sequentially, utilizing
a cache of B bytes in memory. Subsequently this approach performs O(LPα · e)
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random reads to the SSD. As long as LPα < 2 this approach performs less ran-
dom read operations then mapping. By using another internal hashing strategy,
e.g. cuckoo hashing [26] one reduces the number of lookups to at most 2. As
sequential writing of n states of s bytes requires n|s|/B I/Os, the total flash-
memory I/O complexity is O(LPα · e + n|s|/B).

4.4 Flushing

The above approaches either require significant time to write data according to
hb, or request significant sizes of foreground memory. There are further trade-offs
that we will consider next.

One first solution that we call padding is to append the entire foreground
hash table as it is to the existing data on the background table. Hence, the
background hash function can be roughly characterized as hb(s) = i ·m′+hf(s),
where i denotes the current number of flushes, and s the state to be hashed.

Writing is sequential, and conflict resolution strategy is inherited from the
internal memory. For several flushing reading a state for answering membership
queries becomes involved, as the search for one state incurs up to r many table
lookups. Conflict resolution may lead to an even worse performance. For a mod-
erate number of states that exceed RAM resources only by a very small factor,
however, the average performance is expected to be good. As far as all states
can reside in main memory no access to the background memory is needed.

We can safely assume that load factor α is small enough, so that the extra
amount of work due to linear probing is transparent by using block accesses.
Again e lookups and n insert operations are performed. Let ei be the number
of successors generated in stage i, i ∈ {0, . . . , r − 1}. For stage 0 no access to
the background table is needed. For stage i, i > 0, at most O(i · ei) blocks have
to be read. Together with the sequential write of n elements (in r rounds) this
results in a flash memory complexity of O(n|s|/B + rp +

∑
0≤i<r i · ei) I/Os.
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Fig. 5. Padding and slicing

An illustration is provided in Figure 5 (left). The entire foreground hash table
has been flushed once, while the maximum number of flushes is set to 3.

The obvious alternative is to slice the background hash table such that hb(s)
becomes hf (s) · r + i. An illustration is provided in Figure 5 (right); situation
after one flush, and, again, at most 3 flushes are assumed.

The disadvantage of processing the entire external hash table during flushing
is compensated by the fact that the probing sequences in the hash tables can
now be searched concurrently. For the lookup we use a Boolean vector of size i
that monitors if an individual probing sequence has terminated with an empty
bucket. If all probing sequences fail, the query itself has failed.

5 I/O Efficient Model Checking with Solid State Disks

In Section 4 various implementations of graph traversal with SSD are shown. It is
apparent that some of them are less I/O efficient, but have lower demands on the
internal memory (mapping and flushing strategies), while others allocate more
of RAM, but perform much less I/O operations in the ordinary case (compress
strategy).

On the basis of these graph traversals, it is relatively easy to construct LTL
model checking algorithms. Nested DFS, as introduced above, can be imple-
mented with two independent hash tables. To save space it is, however, recom-
mended to use one hash table for storing the states and one internal bit-vector
array flagged to memorize if a state has been visited in the second depth-first
search.

With the above hashing schemes, we arrive at full flexibility in applying imme-
diate duplicate detection in Nested DFS. Table 2 summarizes the hash functions
applied and the amount of memory required for the different hashing strategies in
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Table 2. Trademarks for different hash strategies for on-the-fly LTL model checking
algorithm. Upper two lines give an overview of hash functions, lower three lines show
a space complexity in bits for different levels in memory hierarchy.

Mapping Compressing Padding Slicing

hf – hdmod m hdmod m hdmod m
hb hdmod m hdmod m i · m′ + hdmod m′ (hdmod m) · r + i

RAM 2m m + m�log m� 2m + m′ × |s| 2m + m′ × |s|
SSD m × |s| m × |s| m × |s| m × |s|
HDD maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s|
m = 2b, m′ = 2f , hd is hash function in DiVinE [27], m is the size of background hash
table (in the number of elements), |s| is state vector size (measured in bits), Openi is
the number of states in the search frontier in iteration i.

LTL model checking. Note that there are recent refinements to Nested DFS [28]
that are faster, but need more bits.

6 Experimental Evaluation

We implemented our algorithms in DiVinE (DIstributed VerIficatioN Environ-
ment) [27], including only part of the library deployed with DiVinE, namely state
generation and internal storage. For the implementation of external-memory
container and for algorithms for efficient sorting and scanning we use STXXL
(Standard Template Library for Extra Large Data Sets) [29]. Models are taken
from the BEEM library [30].

For the first set of experiments we used a Desktop PC with AMD Athlon
CPU (32 bit) a SATA HDD of 280 GB with 13.8 ms seek time and about 61.5
MB/s for sequential reading and a 32 GB 3.5” SATA high-speed flash memory
solid state disk (HAMA), which has 0.14 ms seek time and scales to about 93
MB/s for sequential reading.

To confirm the theoretical results we check the Rether-4 protocol from the
BEEM library (Fig. 6). The plot shows Nested DFS runs with different imme-
diate duplicate detection strategies. All experiments, aside from the mapping
strategy, were stopped after 40,000s (this strategy was stopped after 1,800s due
to its obvious lack of performance). The mapping strategy is the worst one be-
cause of numerous random writes. We use padding as a flushing strategy. As
linear probing is used to store the positions of the saved states, we observe an
increased number of read operations as the internal hash table becomes filled.
Compress strategy appears to perform the best, which corresponds to its I/O
complexity without any penalties for random write operations. The difference
between compress and compress (stack on hdd) is the location of the stack file.
In the first case, it was located on the SSD, in the second it was on a separate
HDD. We observe that having the stacks stored on a second hard disk gives
another speed-up of about 30% for the state space traversal.

The motivation for use of SSDs was to exploit fast random access to them.
Now, we compare new algorithms designed for SSDs to traditional I/O efficient
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Fig. 6. Comparing the three strategies on the Rether-4 model

algorithms, which we run on SSDs too. To get a fair picture about both ap-
proaches, we perform a reachability analysis in breadth first order. As a novel
approach we run BFS with immediate duplicate detection and compression strat-
egy (Compress BFS). As a traditional approach we run a standard external BFS
with delayed duplicate detection after each level (External BFS).

First, the state space of the Szymanski (5 prop4) model was generated using
both approaches. The plot in Fig. 7 demonstrates the dependency in expanding
speed between the Compress BFS and the BFS layer size, while the expanding
time per layer remains almost the same for External BFS. This is due to the
fact, that in delayed duplicate detection the time of level generation is mostly
determined by the size of the visited states set, which is completely passed for
each BFS layer. Thus, in large search depth, immediate duplicate detection saves
much time, compared to delayed duplicate detection.

Therefore, it is apparent that results strongly depend on a structure of
a state space. Provided that I/O complexity of External BFS is O((e/m +
#layers)(n|s|/B) [13], it is clear that its I/O complexity is highly dependent
on the number of BFS layers, while the I/O complexity of Compress BFS is
not. This can be demonstrated on the model Rether-2, with 552 BFS layers (see
Fig. 8). While External BFS performs poor on this model, Compress BFS fin-
ishes in several minutes. The new approach can also benefit from a small number
of back edges and various heuristics helping to recognize duplicates with no read-
ing from disk. This is a case of model Train-Gate, where the amount of random
reads was only 30 million, even though the state space has 50 million states, due
to the fact that duplicates were typically found in internal buffers (only 8 MB
large) before flushing to disk. Model MCS is an example, where External BFS
performs better – the state space has relatively low number of BFS levels (90).
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From the I/O complexities of both algorithms and from our measurements it
follows that External BFS has to slow down the exploration faster than Com-
press BFS with increasing portion of the state space explored. Thus, Compress
BFS can often outperform it from some BFS level due to its linearity in I/O
complexity. The moment, when Compress BFS outperforms External BFS de-
pends to high extent on numerous platform and input specific factors: state space
structure (number of BFS layers, portion of back edges), bandwidth, access time,
file system, implementation (we did not implemented heuristics from [14] or [9]).
Even though it is not easy to predict, whether or from which point of explo-
ration Compress BFS outperforms External BFS, the main impact of behaviour
of both algorithms is that there can be a threshold, from which Compress BFS
outperforms External BFS on a given input and so algorithms for SSDs like
Compress BFS are practical.

7 Conclusions

We have contributed several new approaches to hashing applied to SSDs. The
most important observation is with the advent of SSD technology, immediate
duplicate detection becomes tractable, offering much more flexibility for the
choice of the exploration strategy. Monitoring CPU performance, we observed
hashing strategies preserve ratios of 50% or more, suggesting that I/O waits are
present, but not thrashing. With SSDs random access time decreasing, SSDs will
likely become fast enough to rise the CPU usage to 100% making the SSD fully
transparent to the user4.

Compression, the best performing strategy, requires substantial main memory,
which according to current ratios of space between RAM and SSDs is still no
bottleneck. Although we have tested DFS and BFS, non heuristic algorithms,
our SSD hashing strategies can also be applied to heuristic approaches, e.g. A*
to rise the amount of states that can be visited. Using SSDs as a shared external
storage device for cluster computers will result in an even higher throughput,
even for random reads, giving a better possibility for parallel processing.

Directly compared to standard I/O algorithms, for a given model there can be
a threshold in state space exploration, from which these new approaches pay off
due to their linearity in size of state space – at least for the compress approach.
Traditional I/O efficient algorithms are not linear, but they have good constant
factors which allow them to outperform new approaches on many inputs. If the
bandwidth of SSDs will grow faster, traditional I/O algorithms pay off. If the
access time of SSDs will decrease faster than their bandwidth, the importance
of new approaches will increase.

Due to easiness of parallel disk connection, large capacities of SSD are possi-
ble5 . Nevertheless, prices for SDDs are still high. Fortunately, in last years they
decrease reasonably as the market with flash memories grows.
4 According to Dell, current prices for 32GB RAM are 6 times higher than for 32GB

SSDs.
5 E.g. StorgeSpire – 1 TB SDD array by Solid Data

(http://www.soliddata.com/products/storagespire).
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Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

28. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

29. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for
XXL data sets. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 640–651. Springer, Heidelberg (2005)
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Abstract. Revisiting resistant graph algorithms are those, whose correctness is
not vulnerable to repeated edge exploration. Revisiting resistant I/O efficient
graph algorithms exhibit considerable speed-up in practice in comparison to non-
revisiting resistant algorithms. In the paper we present a new revisiting resistant
I/O efficient LTL model checking algorithm. We analyze its theoretical I/O com-
plexity and we experimentally compare its performance to already existing I/O
efficient LTL model checking algorithms.

1 Introduction

Model checking real-life industrial systems is a memory demanding and computation
intensive task. Utilizing the increase of computational resources available for the ver-
ification process is indispensable to handle these complex systems. The three major
approaches to gain more computational power include the usage of parallel computers,
clusters of workstations and the usage of external memory devices (hard disks), as well
as their combination.

In this paper, we focus on external memory devices, where the goal is to develop
algorithms that reduce the number of I/O operations an algorithm has to perform to
complete its task. This is because the access to information stored on an external device
is orders of magnitude slower than the access to information stored in main memory.
Thus, the complexity of I/O efficient algorithms is measured in the number of I/O op-
erations [1].

The automata-theoretic approach [2] to model checking finite-state systems against
linear-time temporal logic (LTL) reduces to the detection of reachable accepting cycles
in a directed graph. Recently, two I/O efficient LTL model-checking algorithms that
allow verification of both safety and liveness properties have been proposed in [3] and
in [4]. Both algorithms build on breadth-first traversal through the graph and employ the
delayed duplicate detection technique [5,6,7,8]. The traversal procedure has to maintain
a set of visited vertices (closed set) to prevent their re-exploration. Since the graphs are
large, the closed set cannot be kept completely in main memory. Most of it is stored
on an external memory device. When a new vertex is generated (into the open set) it
is checked against the closed set to avoid its re-exploration. The idea of the delayed
duplicate detection technique is to postpone the individual checks and perform them
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together in a group, for the price of a single scan operation. We assume that the de-
layed vertices are stored in the main memory as candidate set. In order to minimize the
number of scan operations which merge the closed set on disk with the candidate set, it
is important that the candidate set is as large as possible. In the case of BFS traversal,
candidate sets are formed typically from a single BFS level. However, if the level is
small, the utility of delaying the duplicate check drops down. A possible solution is to
maximize the size of the candidate set by exploring more BFS levels at once. This, in
general, leads to revisiting of vertices due to cycles and might violate the correctness of
the algorithm. Whether correctness is preserved depends on the algorithm itself. E.g.,
if an algorithm uses BFS to traverse the reachable part of a graph, revisiting of vertices
does not disturb its correctness, while the algorithm for computing a topological sort is
not resistant to such revisits.

It is important to note that even though vertex revisits result in performing more
(cheap) RAM operations, it might significantly reduce the number of expensive I/O
operations. Thus, revisiting resistant algorithms are expected to be more I/O efficient
than non-resistant ones in practice. In the first part of the paper we explore the notion
of a revisiting resistant graph algorithm in more detail.

We are interested in LTL model-checking algorithms for very large implicit graphs,
i.e., graphs defined by an initial vertex and a successor function. In previous work,
we provided an I/O efficient LTL model checking algorithm that builds on topological
sort [4]. The algorithm does not work on-the-fly, however, which limits its applicability.
In addition, the algorithm is not revisiting resistant. The main contribution of this paper
is to overcome these obstacles by providing a new algorithm. The algorithm adapts the
idea of the on-the-fly MAP algorithm [9], which is revisiting resistant. In particular,
we exploit the algorithm’s property of decomposing a graph into several independently
processable, smaller sub-graphs. This, in combination with revisiting resistance, sig-
nificantly improves its practical behavior. We consider several heuristics that guide the
decomposition.

Related work. Regarding I/O efficient LTL model-checking, we explicitly compare our
work to all existing approaches in Sections 5 and 6. Works on improving the effi-
ciency of delayed duplicate detection (DDD) include hash-based DDD [10], structured
DDD [11], graph compression, lossy hash tables and bit-state hashing [12]. All these
techniques are orthogonal to our approach and can be combined with the revisiting
resistance principle. We have not implemented these other techniques to provide an
empirical evaluation.

Main Results. The contribution of this paper can be summarized as follows:

– We explore the notion of a revisiting resistant algorithm and show that the I/O
efficient algorithm from [4] is not revisiting resistant (Section 2).

– We present a revisiting resistant I/O efficient reachability algorithm (Section 3).
– We describe the I/O efficient MAP algorithm for LTL model-checking that works

on-the-fly (Section 4), analyze its theoretical complexity (Section 5), and compare
it to other algorithms, both in terms of asymptotic complexity (Section 5) and ex-
perimental behavior (Section 6).
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2 Revisiting Resistance

In this section, we explain that some algorithms exhibit a quite distinct property that
can be of use when adapting the algorithm to an I/O efficient setting. We will refer to
this property as revisiting resistance and will brand algorithms satisfying the property
as revisiting resistant algorithms.

We start with a brief description of a general graph search algorithm. Basically, a
search algorithm maintains two data structures: a set of vertices that await processing
(open set) and a set of vertices that have been processed already (closed set). The way in
which vertices are manipulated by a general algorithm is depicted in Fig. 1(a). A vertex
from the open set is selected and its immediate successors are generated (by traversing
edges originating from the vertex). The newly generated vertices are checked against
the closed set, to ensure that information stored in the closed set is properly updated.
Also, if there is need for further processing of some vertices, they are inserted into the
open set along with all necessary information for the processing.

DISK

RAM

(a) (b)

Candidates

(c)

Candidates

Op
en

Op
en

Op
en

Closed Closed Closed

Fig. 1. Vertex work flow: (a) Standard search algorithm, (b) I/O search algorithm with delayed
duplicate detection, (c) I/O search algorithm with delayed duplicate detection and revisiting

An I/O efficient search algorithm utilizing the delayed duplicate detection technique
has a different vertex work flow. A vertex is picked from the open set and its successors
are generated. Then they are inserted into the set of candidates, i. e., vertices for which
the corresponding check against the closed set has been postponed. In our approach, the
set of candidates is kept completely in memory. Candidates are flushed to disk using a
merge operation under two different circumstances: Either the open set runs empty and
the algorithm has to perform a merge to get new vertices into it, or the candidate set is
too large and cannot be kept in memory anymore. The merge operation performs the
duplicate check of candidate vertices against closed vertices, and inserts those vertices
that require further processing into the open set. A schema of the vertex work flow is
depicted in Fig. 1(b).

As explained, the merge operation is performed every time the algorithm empties the
set of open vertices. Under the standard I/O efficient approach to BFS graph exploration
this happens at least after every BFS level. We have observed that for many particular
runs of the I/O efficient BFS algorithm, the fact that the merge operation appears after
every BFS level is actually a weak point in the practical performance of the algorithm.
This is because often a single BFS level contains a relatively small number of vertices,
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Fig. 2. Example computation of the topological-sort based cycle detection algorithm. Values as-
sociated with a vertex correspond to the number of immediate predecessors that have not been
processed yet. After the computation, vertices that are associated with a zero value lie outside
cycles. The algorithm is not revisiting resistant, as vertex D is labeled with a zero value after the
merge operation, although it does lie on a cycle.

in comparison to the full graph. Processing them means that the merge operation has to
traverse a large disk file, which is costly.

To fight this inefficiency, we suggest a modification in the vertex work flow of an I/O
efficient algorithm, as depicted in Fig. 1(c). A vertex, when generated, is inserted not
only into the set of candidates, but also into the open set. This causes some of the vertices
stored in the candidate set to be revisited. I.e., the “visit” procedure is performed repeat-
edly for a vertex without properly updating its associated information in the closed set
residing in external memory. Consequently, some graph algorithms may exhibit incor-
rect behavior. Revisiting resistant external memory graph algorithms are those, whose
correctness is not vulnerable to repeated edge exploration from vertices in the open set.
Below, we demonstrate that some algorithms are vulnerable to the revisiting of candi-
dates and become incorrect, while others cope with the revisiting without problems.

We exemplify the concept of revisiting resistance on the single source shortest path
(SSSP) and the topological-search based cycle detection (OWCTY) [13,14,15] algo-
rithms. As for the SSSP algorithm, the procedure that is bound to edge exploration
computes a new value for the target vertex, or updates it if the newly computed value is
better (lower in this case) than the value stored before. For example: suppose, an edge
(u,v) is labeled with the value t, and vertex u is stored in the open set with an associated
value d(u), representing the length of the currently shortest known path to vertex u from
the source vertex. The procedure computes a new value for vertex v using the formula
d(v) = d(u)+ t. The new pair (v,d(v)) is stored in the candidate set and awaits merging
with the value stored in the closed set. After the merge, the value stored in the closed
set corresponds to the minimum of the originally stored value and the newly computed
value. Note, that the resulting value in the closed set is independent from the number of
re-explorations of edge (u,v), and, in other words, the number of merges. Even if per-
formed several times, the computation of the minimum among several possible values
remains correct. Therefore, we consider the SSSP algorithm as revisiting resistant.

The situation is quite different in the case of the I/O-efficient OWCTY algorithm.
The algorithm performs a cycle detection that is based on the recursive elimination of
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vertices with zero predecessors. At first, the algorithm computes the number of im-
mediate predecessors for every reachable vertex, and then eliminates vertices whose
predecessor count drops to zero. During vertex elimination, the predecessor count is
decreased for all immediate successors of the eliminated vertex. Thus, when visiting
a vertex v from vertex u, the predecessor count stored at vertex v has to be decreased
by one. Unfortunately, the value stored for vertex v can be maintained correctly only
by costly access to external memory. One way around this dilemma is to only store a
delta alongside v in the candidate set. E. g., a pair (v,−1) indicates that there is a new
eliminated predecessor of v, and so the value associated with v should be decreased by
one. If we now allow the algorithm to further explore vertices below v, it may happen
that the edge (u,v) is re-explored again and another pair (v,−1) is inserted into the set
of candidates. However, when the set of candidates is merged with the closed set on
disk, the predecessor count of vertex v gets decreased twice. This violates the correct-
ness of the algorithm. The problem is exemplified in Fig. 2. Therefore, the algorithm is
not revisiting resistant.

3 Revisiting Resistant Reachability

This section explains a simple revisiting resistant algorithm, an I/O efficient breadth-
first search (Alg. REACHABILITY). The algorithm’s sole task is to traverse all vertices,
thus we only have to remember for each vertex whether it has been visited or not.
Clearly, once a vertex is marked as visited, additional visits do not change this property.

We introduce revisiting resistance to the standard I/O efficient breadth-first search
(BFS) procedure as follows. After a single BFS level is fully generated, a decision is
made whether the set of candidates will be merged with the closed set, or whether an-
other BFS level will be processed without prior merging. The pseudo-code of function
OPENISNOTEMPTY makes this more precise.

According to our observations, omitting the merge operation as long as there is still
some unused memory left is not the optimal strategy. Merging with a small closed set
might be cheaper than repeatedly re-exploring vertices of the candidate set. We avoid
postponing merge operations on small closed sets by introducing a decision formula
that builds upon the estimated time needed to fully generate the next BFS level (n+1),
and the estimated time needed to perform the merge operation. These estimations are
denoted as estim(tgen

n+1) and estim(tmerge
n+1 ), respectively, and they are computed from the

sizes of open and closed sets as follows:

estim(tgen
n+1) = tgen

n · |Openn+1|
|Openn|

and estim(tmerge
n+1 ) = tmerge

n · |Closedn|+ |Openn|
|Closedn| ,

where |Openn+1| refers to the number of newly discovered vertices w.r.t. Candidates.
The decision formula is then a simple comparison of the estimated values:

estim(tgen
n+1) < estim(tmerge

n+1 )

Finally, note that in our approach the entire set of candidates is kept in memory.
However, there is a different approach to I/O efficient reachability, in which both, the
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Algorithm 1. REACHABILITY

1: OmittedMergeCount ← 0
2: Candidates ← /0
3: s ← GETINITIALVERTEX()
4: Closed ← {s}
5: Open.push(s)
6: while OPENISNOTEMPTY() do
7: s ← Open.pop()
8: for all t ∈ GETSUCCESSORS(s) do
9: if t �∈ Candidates then

10: Candidates ← Candidates ∪{t}
11: LastLevel ← LastLevel∪ t
12: if MEMORYISFULL() then
13: MERGE()

Algorithm 2. OPENISNOTEMPTY

1: if Open.isEmpty() then
2: if ESTIMGEN() < ESTIMMERGE() then
3: Open.swap(LastLevel)
4: OmittedMergeCount ← OmittedMergeCount +1
5: else
6: MERGE()
7: return ¬Open.isEmpty()

Algorithm 3. MERGE

1: for all s ∈ Closed do
2: if s ∈ Candidates then
3: Candidates ← Candidates \{s}
4: if OmittedMergeCount > 0 then
5: Open ← (Open∪LastLevel)\Closed
6: OmittedMergeCount ← 0
7: for all s ∈ Candidates do
8: if OmittedMergeCount = 0 then
9: Open.push(s)

10: Closed ← Closed ∪{s}
11: LastLevel.clear()
12: Candidates ← /0

candidate and the closed set are stored in external memory [3]. It is possible to com-
bine revisiting resistant algorithms with that approach by employing a similar decision
formula to trigger the merge operation.

4 I/O Efficient MAP Algorithm

In this section we design a new revisiting resistant, I/O efficient algorithm for detect-
ing reachable accepting cycles in an implicitly given, directed graph. The algorithm is

178 CHAPTER 5. JOURNAL AND CONFERENCE PAPERS



54 J. Barnat et al.

derived from the Maximal Accepting Predecessors (MAP) algorithm [9,16]. We discuss
advantages and disadvantages of the algorithm in comparison to other I/O efficient LTL
model checking algorithms.

The main idea behind the MAP algorithm is based on the fact that each accepting
vertex lying on an accepting cycle is its own accepting predecessor. Instead of expensive
computing and storing of all accepting predecessors for each (accepting) vertex, the
algorithm computes and stores a single representative accepting predecessor for each
vertex, namely the maximal one in a suitable ordering of vertices.

Let G = (V,E,s0,F) be a directed graph, where V is a set of vertices, E is a set of
edges, s0 is an initial vertex, and F a set of accepting vertices. For technical reasons we
assume s0 is not accepting. Let ≺ be a linear order on vertices with minimal element ⊥.
Let u �+ v denote that there is a directed path from u to v. Then the maximal accepting
predecessor function mapG is defined as:

mapG(v) = max
({u ∈ F |u �+ v}∪{⊥})

Accepting cycle detection is based on the fact that if v = mapG(v), then v lies on an
accepting cycle. While the condition is sufficient, it is not necessary—it is possible that
v �= mapG(v) but v lies on an accepting cycle. Moreover, if v is accepting and mapG(v) ≺
v then v does not lie on an accepting cycle. Therefore, the MAP algorithm repeatedly
removes vertices for which mapG(v) ≺ v and recomputes mapG for all vertices.

There is another feature of the MAP algorithm that can be exploited in designing
its I/O efficient version. If mapG(u) �= mapG(v), then u and v cannot lie on the same
accepting cycle. This property allows to decompose the graph G into disjoint subgraphs
each time mapG values are computed. Let P(u) = {v | mapG(v) = u}. The vertex u is
called a seed of a partition P(u). For any two vertices u,v we have that either P(u) =
P(v) or P(u)∩P(v) = /0. The subgraphs are given by disjoint partitions and it is enough
to search for accepting cycles in each partition separately. The algorithm thus maintains
a queue of pairs (seed,partition), which is initialized with the partition containing all
vertices of G and the initial vertex s0 as its seed. On each partition P the algorithm
computes mapG values. If there is a vertex u such that mapG(u) ∈ P, an accepting
cycle is detected, otherwise P is split into smaller partitions which are stored for further
processing. Note that sub-partitions with mapG = ⊥ are dropped immediately.

The algorithm obtains the necessary linear ordering on vertices by assigning a unique
number to every vertex. This also allows us to store for each vertex the order value of
its maximal accepting predecessor rather than the maximal accepting predecessor itself.

The basic structure of our new algorithm follows the original MAP algorithm. We
maintain a queue Partitions of unprocessed partitions as produced by computing mapG.
For each partition the algorithm also records its size. If a partition fits into the main
memory, we call a standard in-memory algorithm searching accepting cycles, for ex-
ample, nested depth-first search [17].

Procedure MAP propagates the highest order values across the graph in order to
compute mapG values for all vertices in a given partition. In essence, the procedure
is very similar to external BFS, but it allows to enqueue already explored vertices if
it increases their mapG value. We return to this point in the explanation of procedure
UPDATEMAP.
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Algorithm 4. DETECTACCEPTINGCYCLE(G)
Require: G = (V ,E,s0,F)
1: Partitions.push(s0,V)
2: while Partitions �= /0 do
3: (s,Partition) ← Partitions.pop()
4: if ‖Partition‖ > MEMORY CAPACITY then
5: MAP(s,Partition)
6: else
7: NESTED-DFS(s,Partition)
8: FINDPARTITIONS(Partition)
9: return No accepting cycle!

Algorithm 5. MAP(seed,Partition)
1: Open.push(〈seed,⊥〉)
2: Closed ← {seed}
3: Closed.setMap(seed,⊥)
4: while OPENISNOTEMPTY() do
5: (s,propagate) ← Open.pop()
6: for all t ∈ GETSUCCESSORS(s) do
7: STOREORCOMBINE(t,propagate)

Algorithm 6. STOREORCOMBINE(s,map)
1: if s ∈ Candidates then
2: map′ ← Candidates.getMap(s)
3: Candidates.setMap(s, MAX(map,map′))
4: else
5: if MEMORYISFULL() then
6: MERGE()
7: Candidates ← Candidates ∪{s}
8: Candidates.setMap(s,map)

In procedure STOREORCOMBINE, we ensure that the currently highest known ac-
cepting predecessor for vertex s is stored: if some accepting predecessor for s has been
encountered already, we compare it to map and store the higher one. Otherwise, we
store s and map, possibly first making enough memory available through the MERGE

operation.
The MERGE procedure joins data stored in internal memory with an external reposi-

tory. To identify which vertices are new or having their maximal accepting predecessor
updated, the procedure traverses all vertices stored on disk and checks whether they are
present in the candidate set. For each vertex found in internal memory, MERGE also
compares whether the newly found accepting predecessor is higher than the one stored
on disk.

Finally, new vertices and vertices with updated accepting predecessor are appended
to the open set. New vertices are added to the Closed repository, too.
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Algorithm 7. MERGE

1: Candidates ← Candidates ∩ Partition {Intersection is made trivially by a single traversal
across Partition}

2: Updated = /0
3: for all s ∈ Closed do
4: if s ∈ Candidates then
5: UPDATEMAP(s)
6: for all s ∈ Candidates do
7: Open.push(〈s,Candidates.getMap(s)〉)
8: New ← Candidates\Updated
9: Closed ← Closed ∪New

10: Candidates ← /0

Procedure UPDATEMAP is called from MERGE to compare accepting predecessors
of a given vertex s, this time taking all known information into account. We compare the
(so far) highest accepting predecessor for s stored with the candidate set (in memory),
the closed set (on disk), and s itself if it is an accepting vertex. Out of those, the maximal
vertex (w.r.1t. ≺) is stored as new accepting predecessor for s.

We discard s from memory if its accepting predecessor stored with the candidate set
is not higher than the one stored with the closed set, as it does not yield any useful
information.

After the loop between lines 3–5 in MERGE finishes, the candidate set contains only
new vertices and vertices whose accepting predecessor in memory has been greater
than the one stored on disk. In addition, we return the set of vertices whose accepting
predecessor has been changed.

Algorithm 8. UPDATEMAP(s)
1: map ← Candidates.getMap(s)
2: map′ ← Closed.getMap(s)
3: if ISACCEPTING(s) then
4: map′ ← MAX(map′,s)
5: Closed.setMap(s, MAX(map,map′))
6: Candidates.setMap(s, MAX(map,map′))
7: if map � map′ then
8: if s = map then
9: exit Accepting cycle found!

10: Updated ← Updated ∪{s}
11: else
12: Candidates ← Candidates \{s}
13: return Updated

Procedure FINDPARTITIONS is called from DETECTACCEPTINGCYCLE to identify
new sub-partitions in a given partition. Therefore, the procedure sorts vertices in the
partition by their mapG values. After that, it only traverses the sorted list of vertices
sequentially (loop 4–13) to find the beginning and end of partitions, and also to find
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the maximal accepting predecessor in the given partition, which is from this moment
on regarded to be non-accepting (see line 3 of MAP). Note that the condition on line 6
leaves out a partition with mapG value set to ⊥, since it does not contain any accepting
vertex and thus cannot contain an accepting cycle.

Algorithm 9. FINDPARTITIONS(Partition)
1: Partition.sortByMap()
2: newPartition ← /0
3: lastMap ← ⊥ {⊥ is the lowest possible value }
4: for all (s,map,order) ∈ Partition do
5: if lastMap �= map then
6: if lastMap �= ⊥ then
7: Partitions.push(seed, newPartition)
8: newPartition ← /0
9: else

10: newPartition ← newPartition∪{s}
11: if map = order then
12: seed ← s
13: lastMap ← map
14: Partitions.push(seed, newPartition) {Adding last partition}

MAP is a revisiting resistant algorithm because it simply traverses the state space
and updates mapG values, which are computed as maximum of the values propagated
to it. The order and repetition of vertices does not matter, as the maximum stays the
same. Henceforward we will refer to the revisiting resistant version of the I/O efficient
MAP algorithm as MAP-rr.

Changes in the algorithm are analogous to the modification of the reachability algo-
rithm presented in Sec. 3, but we have to take care of accepting vertices in a special
way: between lines 11 and 12 of function UPDATEMAP we put another line:

if map′ = ORDERNUMBER(s) then Updated ← Updated ∪{s}

5 Complexity Analysis and Comparison

A widely accepted model for the complexity analysis of I/O algorithms is the model
of Aggarwal and Vitter [1], in which the complexity of an I/O algorithm is measured
solely in terms of the numbers of external I/O operations. This is motivated by the
fact that a single I/O operation is approximately six orders of magnitude slower than a
computation step performed in main memory [18]. Therefore, an algorithm that does
not perform the optimal amount of work but has lower I/O complexity may be faster
in practice, when compared to an algorithm that performs the optimal amount of work,
but has higher I/O complexity. The complexity of an I/O algorithm in the model of
Aggarwal and Vitter is further parametrized by M, B, and D, where M denotes the
number of items that fits into the internal memory, B denotes the number of items that
can be transferred in a single I/O operation, and D denotes the number of blocks that can

182 CHAPTER 5. JOURNAL AND CONFERENCE PAPERS



58 J. Barnat et al.

Table 1. I/O complexity of algorithms for both modes of candidate set storage. Parameter pmax

denotes the longest path in the graph going through trivial strongly connected components (with-
out self-loops), lSCC denotes the length of the longest path in the SCC graph, hBFS denotes the
height of its BFS tree, and d denotes the diameter of the graph.

Algorithm Worst-case I/O Complexity

Candidate set in main memory

EJ’ O((l + |F | · |E|/M) · scan(|F | · |V |))
OWCTY O(lSCC · (hBFS + |pmax|+ |E|/M) · scan(|V |))
MAP O(|F | · ((d + |E|/M + |F |) · scan(|V |)+ sort(|V |)))
Candidate set in external memory

EJ O(l · scan(|F | · |V |)+ sort(|F | · |E|))
OWCTY’ O(lSCC · ((hBFS + |pmax|) · scan(|V |)+ sort(|E|)))
MAP’ O(|F | · ((d + |F |) · scan(|V |)+ sort(|F | · |E|)))

be transferred in parallel, i.e., the number of independent parallel disks available. The
abbreviations sort(n) and scan(n) stand for Θ(N/(DB) logM/B(N/B)) and Θ(N/(DB)),
respectively. In this section we give the I/O complexity of our algorithm and compare
it with the complexity of the algorithm by Edelkamp and Jabbar [3].

Theorem 1. The I/O complexity of algorithm DETECTACCEPTINGCYCLE is

O(|F| · ((d + |E|/M + |F|) · scan(|V |)+ sort(|V |)))
where d is the diameter of a given graph.

Proof. Since each partition is identified by its maximal accepting vertex, at most |F |
partitions can be found during traversal. Thus, lines 2–8 in DETECTACCEPTINGCYCLE

are repeated at most |F | times, and consequently, procedures MAP and
FINDPARTITIONS are called at most |F| times as well. Each call of FINDPARTITIONS

costs at most O(scan(|V |)+sort(|V |)), because of the dominating sort operation on line
1 and the linear scan in loop 4–13. The I/O complexity of MERGE is O(scan(|V |)), be-
cause it is dominated by the scan operation across the closed set (loop 3–5) and writing
of new and updated vertices to the open set.

There are two main sources of I/O operations in procedure MAP: merge operations
and open set manipulation. MERGE is indirectly called on lines 4 and 7. It is called
whenever the memory becomes full (at most |E|/M times) or the open set becomes
empty (at most d times). Reading of Open on line 5 costs at most O(scan(|F| · |V |)) =
O(|F|scan(|V |)), because each vertex can appear in the open set as many times as its
associated accepting predecessor changes. ��
For the purpose of comparison, we denote our new algorithm as MAP, the algorithm
proposed in [4] as OWCTY and the algorithm of Edelkamp and Jabbar [3] as EJ. MAP
and OWCTY store the candidate set internally, while EJ stores it externally by default.
In the case the candidate set is sorted externally, it is possible to perform the merge
operation on a BFS level independently of the size of the main memory. This approach
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Table 2. Partitions after the first iteration of MAP algorithm. Maximums are taken over partitions
with some accepting vertex in them.

Graph Size Number of Max. Partition Vertices with
Experiment Partitions Size mapG = ⊥
Lamport(5),P4 74,413,141 838,452 454,073 < 1% 38,717,846 52%
MCS(5),P4 119,663,657 3,373,145 108,092 < 1% 60,556,519 51%
Peterson(5),P4 284,942,015 11,451 12,029,114 4% 142,471,098 50%
Phils(16,1),P3 61,230,206 336,339 129,023 < 1% 43,046,721 70%
Rether(16,8,4),P2 31,087,573 33,353 5 < 1% 30,920,813 99%
Szymanski(5),P4 419,183,762 20,064 131,441,308 31% 209,596,444 50%

is suitable for those cases where memory is small, or the graph is orders of magnitude
larger. A disadvantage of the approach is the need to sort during each merge opera-
tion. Furthermore, it cannot be combined with heuristics, such as Bloom filters and a
lossy hash table [12]. Fortunately, all three algorithms are modular enough to be able to
work in both modes. Tab. 1 shows the I/O complexities for all three algorithms in both
variants.

It can be seen that the upper bound for the complexity of MAP is worse than the
one of EJ and OWCTY (in both modes of the candidate set). Nevertheless, we claim
that the complexity is reasonable in most cases, for a number of reasons. First, the
algorithm usually performs at most two iterations of the loop between lines 2–8 in pro-
cedure DETECTACCEPTINGCYCLE: if an accepting cycle was not found during the
first iteration, the state space is partitioned into many partitions (as shown in Tab. 2).
Furthermore, if the state space was partitioned evenly, then 1000 partitions would be
enough to divide a 1 Terabyte state space into blocks sufficiently small to fit into very
modestly sized internal memory, by today’s standards. Even if some partitions would
not fit into main memory yet, another partitioning round usually decreases the maximal
partition size enough such that all remaining partitions fit into internal memory. There-
fore, it is reasonable to expect that the algorithm becomes fully internal after a very
small number of iterations.

Second, d is commonly not proportional to the size of the state space and is usually
not much higher than hBFS.

Third, the upper bound |F | · |V | on the number of vertices revisited due to updates of
a mapG value is quite coarse. We have measured the amount of mapG updates for the
MAP algorithm with a reverse-BFS ordering of vertices. We found that map updates
take commonly not more than 20% of the graph exploration (see Tab. 4).

Taking this into account, the complexity of MAP could be very close to

O((hBFS + |E|/M) · scan(|V |)+ sort(|V |))
in most practical cases. We note that this equals the complexity of I/O efficient reach-
ability plus sorting the set of vertices. Our measurements confirm this claim, as shown
in Tab. 4.
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Table 3. Comparison of revisiting techniques and simple I/O efficient reachability

Experiment Normal (hours) Revisiting Resistant (hours)

Lamport(5),P4 02:51:09 01:19:32 46%
MCS(5),P4 03:56:26 02:41:45 68%
Peterson(5),P4 19:38:32 09:02:37 46%
Phils(16,1),P3 02:09:45 01:41:24 77%
Rether(16,8,4),P2 13:54:29 00:29:19 3%
Szymanski(5),P4 51:20:32 17:54:14 34%

On average 100% 46%

Table 4. Run times of reachability and MAP algorithm

Model Reachability (hours) MAP (hours)

Lamport 2:51:09 3:12:09 112%
MCS 3:56:26 4:28:06 113%
Phils 2:09:45 2:29:26 115%

6 Experiments

In order to obtain experimental evidence about the behavior of our algorithm in practice,
we implemented an I/O efficient reachability procedure and three I/O efficient LTL
model checking algorithms.

All algorithms have been implemented on top of the DIVINE library [19], providing
the state space generator, and the STXXL library [20], providing the needed I/O prim-
itives. Experiments were run on 2 GHz Intel Xeon PC, the main memory was limited
to 2 GB, the disk space to 60 GB and wall clock time limit was set to 120 hours. Al-
gorithm MAP-rr is a variant of MAP exploiting its revisiting resistance. Algorithm EJ
was implemented as a procedure that performs the graph transformation as suggested
in [3] and then employs I/O efficient breadth-first search to check for a counter exam-
ple. Note, that our implementation of [3] does not include the A∗ heuristics and hence
can be less efficient when searching for an existing counter example. The procedure is
referred to as Liveness as Safety with BFS (LaS-BFS) [21].

First of all, we have measured the impact of revisiting resistance on procedure
REACHABILITY. We have obtained results that demonstrate significant speed-up, as
shown in Tab. 3. We have also measured run times and memory consumption of LaS-
BFS, OWCTY, MAP and MAP-rr. The experimental results are listed in Tab. 5. We
note that just before the unsuccessful termination of LaS-BFS due to exhausting the
disk space, the BFS level size still tended to grow. This suggests that the computation
would last substantially longer if sufficient disk space would have been available. For
the same input graphs, algorithms OWCTY, MAP and MAP-rr manage to perform the
verification using a few Gigabytes of disk space only. All the models and their LTL
properties are taken from the BEEM project [22].

Measurements on models with valid properties demonstrate that MAP is able
to successfully prove their correctness, while LaS-BFS fails. Additionally, MAP’s
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Table 5. Run times in hh:mm:ss format and memory consumption on a single workstation.
“OOS” means “out of space”.

LaS-BFS OWCTY MAP MAP-rr

Experiment Time Disk Time Disk Time Disk Time Disk

Valid Properties

Lamport(5),P4 (OOS) 02:37:17 5.5 GB 03:16:36 5.7 GB 02:37:56 8.5 GB
MCS(5),P4 (OOS) 03:27:05 9.8 GB 04:59:17 10 GB 04:13:21 11 GB
Peterson(5),P4 (OOS) 18:20:03 26 GB 25:09:35 26 GB 15:24:29 27 GB
Phils(16,1),P3 (OOS) 01:49:41 6.2 GB 02:31:33 7.8 GB 02:19:20 8.1 GB
Rether(16,8,4),P2 53:06:44 12 GB 07:22:05 3.2 GB 12:31:18 6.3 GB 00:39:07 6.3 GB
Szymanski(5),P4 (OOS) 45:52:25 38 GB 59:35:25 38 GB 29:09:12 39 GB

Invalid Properties

Anderson(5),P2 00:00:17 50 MB 07:14:23 3.3 GB 00:00:07 2 MB 00:00:01 4 MB
Bakery(5,5),P3 00:25:59 5.4 GB 68:23:34 38 GB 00:00:09 16 MB 00:00:23 54 MB
Szymanski(4),P2 00:00:50 203 MB 00:20:07 253 MB 00:00:04 2 MB 00:00:02 4 MB
Elevator2(7),P5 00:01:02 130 MB 00:00:25 6 MB 00:00:05 2 MB 00:00:01 3 MB

performance does not differ much from the performance of OWCTY. Moreover,
with the use of revisiting resistant techniques, MAP-rr is able to outperform
OWCTY in many cases. We observe that specifically in cases with high hBFS—e. g.,
Rether(16,8,4),P2—time savings are substantial.

A notable weakness of OWCTY is its slowness on models with invalid properties. It
does not work on-the-fly, and is consequently outperformed by LaS-BFS in the afore-
mentioned class of inputs. Algorithms MAP and MAP-rr do not share OWCTY’s draw-
backs, and in fact they outperform both, OWCTY and LaS-BFS on those inputs. This
can be attributed to their on-the-fly nature: On all our inputs, a counter example, if
existing, is found during the first iteration.

7 Conclusions

We described revisiting resistance, a distinct property of graph algorithms, and showed
how it can be of practical use to the I/O efficient approach of processing very large
graphs. In particular, we described how a simple I/O efficient reachability procedure
with delayed duplicate detection can be extended to exploit its revisiting resistance and
showed that the extension is valuable in practice. Furthermore, we analyzed existing I/O
efficient algorithms for LTL model checking and showed that the OWCTY algorithm is
not revisiting resistant. We introduced a new I/O efficient revisiting resistant algorithm
for LTL model checking that employs the Maximal Accepting Predecessor function
to detect accepting cycles. We analyzed the I/O complexity of the new algorithm, and
showed that due to the revisiting resistance, the algorithm exhibits competitive runtimes
for verification of valid LTL properties while preserving its on-the-fly nature. According
to our experimental results, the algorithm outperforms other I/O efficient algorithms on
invalid LTL properties even if it is being slowed down with the vertex revisiting.

186 CHAPTER 5. JOURNAL AND CONFERENCE PAPERS



62 J. Barnat et al.

References
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.

Commun. ACM 31(9), 1116–1127 (1988)
2. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-

tion. In: Proc. of LICS 1986, pp. 332–344. Computer Society Press (1986)
3. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari, A. (ed.)

SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)
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Abstract—I/O-efficient algorithms take the advantage of
large capacities of external memories to verify huge state
spaces even on a single machine with low-capacity RAM. On
the other hand, parallel algorithms are used to accelerate the
computation and their usage may significantly increase the
amount of available RAM memory if clusters of computers
are involved. Since both the large amount of memory and
high speed computation are desired in verification of large-
scale industrial systems, extending I/O-efficient model checking
to work over a network of computers can bring substantial
benefits. In this paper we propose an explicit state cluster-based
I/O efficient LTL model checking algorithm that is capable to
verify systems with approximately 1010 states within hours.

Keywords-I/O efficient algorithms; LTL; model checking;
parallel algorithms

I. INTRODUCTION

An importance of automated formal verification grows
as modern hardware and software systems are becoming
more complex and demands on their reliability increases.
Several kinds of verification techniques, model checking
in particular, have already been successfully employed to
help to handle this difficult task. However, techniques for
automated formal verification are computationally demand-
ing and memory-intensive in general and their applicability
to extremely large and complex systems routinely seen in
practice these days is limited. To efficiently handle large
industrial systems scalable methods with moderate run-time
and memory requirements are required.

As a matter of fact, verification and analysis methods
that focus on efficient employment of increased amount
of available computational power are subject of extensive
research. These are, for example, techniques to fight memory
limits with efficient utilization of external I/O devices [12],
[7], [6], [3], techniques that introduce cluster-based algo-
rithms to employ aggregate power of network-interconnected
computers [1], [4], or techniques to speed-up the verification
on multi-core processors or graphics processing units.

In this paper we focus on explicit state LTL model check-
ing. Recent achievements in parallel LTL model checking
have allowed to verify quite large systems within times that
are comparable to sequential verification of much smaller
systems. On the other hand, I/O efficient approach to LTL
model checking is ready to handle even larger state spaces.
However, the time needed to complete the verification is typ-
ically hours. Speeding up I/O efficient LTL model checking

by using parallel architectures is therefore a natural way,
how to make I/O efficient approach more acceptable from
the practical point of view. The research on parallel I/O
efficient verification started just recently. In [10], the authors
designed an algorithm for parallel breadth-first search on
general graphs stored explicitly on a disk. However, in
model checking, duplicate detection is performed differently
due to implicit definition of the graph. Nevertheless, the
ideas behind parallelization have been successfully used
in [9], where the authors present an algorithm for a parallel
I/O-efficient implementation of the search over a system
state space represented as undirected graph. Experiments
provided in [9] are on relatively small state spaces and
also the implementation has poor performance considering
the size of state spaces. Another approach is [8]. The
main advantages gained from streaming the state space is
easy load balancing and good scalability achieved by better
memory locality. On the other hand, the approach suffers
from potential existence of thin parts (substantially slower
computers) and the fact that in the end all nodes store the
entire state space.

We propose a new approach for explicit state LTL model
checking that combines I/O efficient techniques with parallel
distributed-memory paradigm (like clusters of workstations).
Compared to existing algorithms, our algorithm is able to
work on directed graphs representing state spaces and uses
a classical hash-based partitioning mechanism (the owner of
each system state is determined using a hash function).

II. REACHABILITY ANALYSIS

Reachability analysis searches for system states other than
allowed ones in order to disprove system correctness. From
the algorithmic point of view, the reachability analysis is
based on a simple graph traversal procedure, such as breadth-
first search. Since a graph representing a state space is given
implicitly – by an initial state and a successor function –
the algorithm stores all visited states in so called Closed set.
Another data structure used in graph traversal is the Open set
– the set of visited, but not yet traversed system states. The
algorithm repeatedly removes states from the Open set and
traverses them, i.e. let them evolve into possible succeeding
states. When a state is generated, it is checked against visited
states whether it is new or not. If it has been visited before,
i.e. it is found either in Open or Closed set, it is discarded
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Algorithm 1 ReachabilityAnalysis

1: Candidates ← ∅,Closed ← 〈s〉
2: Open ← 〈s〉,Open′ ← 〈〉
3: s ← GetInitialVertex()
4: while Open �= 〈〉 do
5: s ← Open.pop()
6: for all t ∈ GetSuccessors(s) do
7: owner ← Hash(t) mod CPU COUNT
8: if owner = NETWORK ID then
9: if t �∈ Candidates then

10: Candidates ← Candidates ∪ {t}
11: if CandidatesTooLarge() then
12: Merge()
13: else sendState(t , owner)
14: if Open = 〈〉 then
15: Merge()
16: Open ← Open′
17: Open′ ← 〈〉

immediately. New states are inserted into the Open set. The
traversal algorithm is initiated by inserting initial states into
the Open set, and terminates as soon as there are no states
in the Open set waiting for traversal.

A simplified pseudo-code of the algorithm for parallel
reachability analysis with external memory is given in Algo-
rithm 1. It utilizes the fact that the correctness of reachability
analysis is not influenced by the order in which states
are visited, hence the states may be processed in parallel.
Moreover, checking whether a given state has already been
visited may be postponed and performed in a big batch.
Candidates is the set of generated states whose check against
the Closed set is postponed until the next MERGE operation
happens. The work-flow now is as follows. A visited, but
not yet traversed state is extracted form the Open set and
the succeeding states are generated using GETSUCCESSORS
function. When a system state is generated, it is first
checked for the ownership. If the state is owned by other
computation node than the local one, i.e. the node that
generated the state, the state is sent over the network to
its owner using SENDSTATE function. Otherwise, the state
is checked against the set of Candidates, and inserted into
this set if not yet there. Configurations that are received
from other computation nodes are processed as if they were
generated locally, i.e., they are inserted into the Candidates
set upon their reception. Once the Candidates set gets too
large to fit into the internal memory, the MERGE operation
is performed. Note that in our approach, the Candidates set
is stored internally [1], [3]. However, there is an alternative
approach to the delayed duplicate detection where also the
Candidates set is stored externally [9].

The MERGE operation should be also performed each
time the Open set becomes empty (line 15 of Algorithm 1) to
identify new states in Candidates and copy them to the Open
set. Since MERGE operations are quite expensive when the
Closed set becomes large, we also apply a heuristic called
merge omission, which estimates, whether it would be faster
to perform MERGE or continue a traversal without check

Algorithm 2 Merge

1: Synchronize()
2: for all s ∈ Closed do
3: if s ∈ Candidates then
4: Candidates ← Candidates \ {s}
5: for all s ∈ Candidates do
6: Open′.push(s)
7: Closed ← Closed ∪ {s}
8: Candidates ← ∅
9: Synchronize()

for duplicates – in such a case all states from Candidates
are simply moved to the Open set, including duplicates. The
heuristic is for simplicity reasons not involved in the pseudo-
code and details can be found in [3]. Within the MERGE
operation, whose pseudo-code is given in Algorithm 2,
all the states found in the Closed set are removed from
Candidates set at first. Note that this operation requires
traversing the Closed set stored in the external memory.

III. MODEL CHECKING LTL PROPERTIES

Reachability analysis covers only very limited class of
system properties. For more sophisticated analysis, proper-
ties have to be written down in a richer logical framework,
such as Linear Temporal Logic (LTL).

We have built our parallel I/O efficient approach upon
an existing parallel LTL model checking algorithm called
OWCTY (One Way Catch Them Young) [5]. The reason
was that the algorithm that in our earlier work we have
proposed and I/O efficient algorithm that builds on the
same principle [2]. The main idea behind the OWCTY
algorithm stems from the fact that a directed graph can be
topologically sorted if and only if it is acyclic. The core
of the cycle detection algorithm is thus an application of
the standard linear topological sort algorithm to the input
graph. Failure in topologically sorting the graph means that
the graph contains a cycle. Accepting cycles are detected
with multiple iterations, each topologically sorting a subset
of vertices. Every iteration consists of reachability and
elimination procedures. The reachability procedure removes
vertices unreachable from accepting vertices (as these cannot
belong to an accepting cycle) and computes indegrees of
all remaining vertices. The succeeding elimination proce-
dure recursively removes vertices whose predecessor count
drops to zero (following the topological sort procedure). An
accepting cycle is detected if there is a set of states that
cannot be further reduced by more iterations. If all vertices
are successively removed, no accepting cycle is present in
the graph.

The I/O efficient implementation consists of I/O efficient
parallel implementations of both reachability and elimination
procedures. The reachability procedure is very similar to the
one described in Section II, while the elimination procedure
can be obtained from the reachability algorithm by enqueu-
ing only states with zero indegrees. Both procedures are
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restricted only to vertices that have not been removed yet.
Merge omission heuristic is not allowed because of the need
to record indegrees of vertices precisely.

IV. EXPERIMENTAL RESULTS

To demonstrate that our approach results in significant
improvements we have performed a set of experiments
that are described in this Section. Our experimental setting
includes different workstation configurations:

Configuration 1 (8 machines)
Intel Pentium 4 2.80 GHz (1 core), 2 GB RAM, 3× HDD Seagate
Barracuda 7200.10 160 GB, ext3 fs

Configuration 2 (18 machines)
2×Intel Xeon 4 2 GHz (2 cores), 16 GB RAM, HDD Fujitsu
MAY2073RC 73 GB, ext3 fs

Configuration 3 (1 machine)
AMD Phenom II 3 GHz (4 cores), 8 GB RAM, 4× HDD Seagate
Barracuda 7200.10 160 GB, ext3 fs

For this experimental study we use models from the
BEEM database [11] – Table I. The size of Candidates set is
limited to 1 GB per process in order to demonstrate usability
even for systems with a small amount of RAM.

First, we show that aggregate external memory of work-
stations in a small cluster may render a meaningful com-
puting platform with hundreds or thousands of Gigabytes of
memory. Table II shows run times of state space generation
algorithm on 12, 15 and 18 machines in config. 2. It is
apparent that the algorithm benefits from parallel processing
and on 18 processors it runs significantly faster than on
smaller number of workstations. On 18 workstations it is
possible to enumerate 2 · 1010 states (model Peterson(6))
within approximately one day. Using this number of work-
stations, such a large state space would not fit in the main
memory even if each workstation utilized all 16 GB RAM
available.

To provide a better idea of algorithm scalability over a
lower number of workstations we also provide scalability
measurements on smaller number of machines and smaller
state spaces – Figure 1. From the achieved results it is

Table I
MODELS USED IN EXPERIMENTS

# of states |state space| BFS levels

Peterson(6) 22,800,638,886 728 GB 121
Cambridge(64,1,1) 2,243,706,411 316 GB 867
MCS(6) 9,045,324,641 267 GB 50
Public Subscribe(3,1) 1,153,014,089 52 GB 166
Elevator(7,5,1) 550,895,416 35 GB 131
Lann(5,0,1,0) 160,025,986 5 GB 359

Elevator(7,5,1)-Prop3 614,962,062 39 GB 174
Lann(5,0,1,0)-Prop3 320,045,746 11 GB 367
MCS(6)-Prop4 17,908,781,904 550 GB 52

(Lower three models are automata products of systems and Büchi automata
representing verified properties)

Figure 2. Scalability measurements independent of a RAM size on
Elevator(7,5,1)
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apparent that the algorithm scales sub-linearly. The sub-
linearity has two main reasons:

• merge omission heuristic (with less memory less states
can be revisited and so less merge operation are saved),

• some BFS levels are too large to fit in RAM, which
also increases a total number of merge operations.

The fact that the amount of available RAM memory
influences a count of I/O operations, blurs how efficient is
a workload distribution itself. Therefore, we provide also
scalability results for a very artificial scenario where the sum
of memory allocated for a candidate set is kept constant and
revisiting heuristic is not applied. For simplicity, we provide
results for input Elevator(7,5,1) only – Figure 2. We have
observed very good scalability with very small overhead,
since I/O operations dominate over a communication time.

Another level of parallelization is a usage of multiple
disks in each machine. In our experiment, we compare the
performance of 8 workstations with 1 disk to 4 workstations
with 2 disks. We have chosen models with three smallest
state spaces from a test set, because of a smaller number of
workstations in config. 2. For every input, Figure 3 shows
run times on both platforms. In case of the state space for
Lann(5,0,1,0) that was generated on 8 workstations, there
were no I/O operations performed at all, since the state

Table II
RUN TIMES IN HH:MM FORMAT AND RATIOS OF WORKLOAD.

Cambridge(64,1,1) MCS(6)

Nodes Time Disk # Merge Time Disk # Merge
12 22:16 81 % 224 14:13 77 % 112
15 16:54 78 % 194 10:09 72 % 88
18 12:55 70 % 156 07:43 69 % 76

Peterson(6)

Nodes Time Disk # Merge
12 60:40 90 % 254
15 39:34 84 % 196
18 27:22 80 % 159
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Figure 1. Scalability measurements on Elevator(7,5,1), Lann(5,0,1,1,0) and Public Subscribe(3,1)
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Figure 3. Run times of distributed state space generation on three models
in two different settings
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Numbers of merge operations:
8x1 4x2

Public Subscribe(3,1) 58 69
Elevator(7,5,1) 35 44
Lann(5,0,1,0) 0 74

8x1 = 8 workstations with 1 disk, 4x2 = 4 workstations with 2 disks
Solid black boxes stand for a time spent on disk operations.

space fit in the aggregate internal memory. For the other two
models, slightly higher I/O times were achieved. Although
the measured overall disk transfer rate on one workstation
has been almost double the rate of a single disk, more
merge operations were performed on 4 workstations due
to the smaller aggregate RAM. Hence, the merge omission
heuristic was not applied as often as on 8 workstations. Some
additional merge operations in 4-workstation setting have
been caused by exhausting the main memory. Moreover,
lower number of processors involved in the state space
generation lead to almost doubling the time spent on other
than disk operations. Nevertheless, the setting with two disks
has still significantly better performance/price ratio, since a
price of one hard disk is much lower than a price of a single
workstation.

Since I/O-efficient model checking mostly brings low-cost

Figure 4. Distributed I/O-efficient state space generation – comparison of
multi-core (M) and distributed (D) computation on 1, 2 and 4 cores and a
corresponding number of workstations
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solutions to enormously large problems, there is only a little
experience with running it on multi-processor systems. Fig-
ure 4 demonstrates that our distributed state space generator
works well even on a multi-core system without any system-
specific modifications. We compared distributed and multi-
core run of the same tasks resulting in similar scaling on
both architectures. We used different system configuration
for multi-core (config. 3) and distributed (config. 2) setting
– this is where the difference in speed on 1 node (i.e.
without communication) comes from. We have also observed
that while there is not much difference in time spent on
operations other than I/O between system config. 2 and 3
on a single node, on more nodes multi-core computations
profit from faster communication.

To test how LTL model checking works in a distributed
I/O efficient setting, we measured run times on two relatively
small and one huge input (see Table I for sizes). For the
experiments we used 18 workstations config. 2:
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Figure 5. Scalability of distributed I/O efficient OWCTY on two inputs
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Init- Elim- Elim-
Time ASet No-Acc. No-Pred.

Elevator(7,5,1)-Prop3 00:49 90 % 6 % 4%
Public Subscribe(3,1)-Prop3 03:59 74 % 22 % 4%
MCS(6)-Prop4 59:24 64 % 22 % 14%

Percentage numbers express a portion of time spent in a
given sub procedure. We deduce that initial state space
generation is a major time consumer, due to a low num-
ber of elimination steps and cheaper operations over the
approximation set substantially reduced with elimination.
Successful verification of MCS(6) demonstrates the power of
distributed I/O efficient model checking. Nevertheless, there
is still space for optimization. We hope that together with
disk parallelization and storage of the candidate set to disk
we could reach fractions of currently measured times.

Since most of verification time is spent in the initial state
space generation, it is not very surprising, that OWCTY
scales similarly well as reachability analysis – see Figure 5.

V. CONCLUSIONS

This paper presents a novel approach for explicit-state
LTL model checking of very large systems. We employed
a combination of a distributed-memory approach with I/O
efficient usage of external memory. First, we designed par-
allel state space generator and analyzed its performance in
various settings. Then we built LTL model checker upon it.
Our algorithm scales well over both a cluster of workstation
and a multi-core machine. We are able to generate state

spaces and verify systems with more than 1010 states on
a small compute cluster. A unique feature of the algorithm
is, that due to merge omission heuristic, it is able to take
the advantage of aggregate internal memory in distributed
environment and thus obtains sub-linear speed up in some
cases.
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[8] V. Holub and P. Tůma. Streaming state space: A method of
distributed model verification. In TASE’07, pages 356–368.
IEEE Computer Society, 2007.

[9] S. Jabbar and S. Edelkamp. Parallel External Directed Model
Checking with Linear I/O. In VMCAI’06, volume 3855 of
LNCS, pages 237–251. Springer, 2006.

[10] R. Korf and P. Schultze. Large-Scale Parallel Breadth-First
Search. In AAAI’05, pages 1380–1385. AAAI Press/The MIT
Press, 2005.
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Abstract. Quantitative analysis of probabilistic systems has been stu-
died mainly from the global model checking point of view. In the global
model-checking, the goal of verification is to decide the probability of
satisfaction of a given property for all reachable states in the state space
of the system under investigation. On the other hand, in local model
checking approach the probability of satisfaction is computed only for
the set of initial states. In theory, it is possible to solve the local model
checking problem using the global model checking approach. However,
the global model checking procedure can be significantly outperformed
by a dedicated local model checking one. In this paper we present several
particular local model checking techniques that if applied to global model
checking procedure reduce the runtime needed from days to minutes.

1 Introduction

System design techniques employing probability are becoming widely used. They
provide designers with reasonably efficient means to break symmetry in the sys-
tem or to implement randomized algorithms. Probabilistic actions are also used
for modeling various nondeterministic aspects such as human unpredictable de-
cisions, occurrence of external stimuli, or simply the presence of hardware errors.
As the interest in the probabilistic systems is growing, supported mainly by their
potential practical use, there is also increased interest in formal techniques for
their analysis and verification, model checking in particular.

There are two different tasks related to model checking over probabilistic sys-
tems. Given a formula and probabilistic system, the so called qualitative analysis
refers to the problem of deciding whether the probabilistic system satisfies the
formula with the probability one. On the other hand, the so called quantita-
tive model checking refers to the problem of deciding the maximal and minimal
probability the given formula is satisfied for the probabilistic system. For model
checking linear time properties, the qualitative problem can be solved similarly
to the nondeterministic case, i.e. using automata-based approach. The problem
reduces to the problem of the detection of an Accepting End Component (AEC)
in the graph of the underlying product of the probabilistic system and the ω-
regular automaton expressing the (negation of) the verified property [22,11].
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 53–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

5.12. LOCAL QUANTITATIVE LTL MODEL CHECKING 195



54 J. Barnat et al.

For the quantitative case the model checking procedure is a little bit more com-
plex [3,12]. Similarly to the qualitative case, the probabilistic system is multiplied
with the semi-deterministic ω-regular property automaton and all the AECs are
identified in its underlying graph. After that, the graph is transformed into a
linear programming problem (set of inequalities over states of the probabilistic
system and an objective function to be maximized). Every variable in the linear
programming instance corresponds to a state in the system in the sense that the
value computed for the variable is exactly the maximal probability of satisfac-
tion of the examined property, if the property is evaluated from the particular
state. States in an AEC satisfy the examined property with the probability one.

Both qualitative and quantitative analysis of probabilistic systems has been
studied mainly from the global model checking point of view. In the global model-
checking, the goal of verification is to decide the probability of satisfaction of
a given property for all reachable states in the state space of the system under
investigation. On the other hand, in local model checking approach the proba-
bility of satisfaction is computed only for the set of initial states. In theory, it is
possible to solve the local model checking problem using the global model check-
ing approach. However, the global model checking procedure can be significantly
outperformed by a dedicated local model checking one. It is a well-known fact
that from practical point of view, the system designers are often interested in the
probability of satisfaction of the property for some particular states only (initial
state most typically). This is not taken into account in the general global model
checking scheme as suggested in [3,12].

There are several software tools performing qualitative and/or quantitative
probabilistic model checking. Probably the most established probabilistic model
checker is the symbolic model checker PRISM [16]. It provides support for auto-
mated analysis of a wide range of quantitative properties for three types of prob-
abilistic models: discrete-time Markov chains, continuous-time Markov chains
and Markov decision processes (MDPs). The property specification language of
PRISM incorporates the temporal logics PCTL [15] and CSL [1] as well as ex-
tensions for quantitative specifications and costs/rewards. As for enumerative
approach to model checking, the model checker to be mentioned is LiQuor [10].
LiQuor is capable of verifying probabilistic systems modeled as ProbMeLa pro-
grams. ProbMeLa is a probabilistic guarded command language with an op-
erational semantics based on finite MDPs. LiQuor allows qualitative and/or
quantitative analysis for ω-regular linear time properties. The tool follows the
standard automata-based model checking approach and involves partial order
reduction technique for MDPs [4] to fight the state explosion problem. Recently,
a parallel enumerative probabilistic model checker – ProbDiVinE, has been
released [5]. Likewise LiQuor, ProbDiVinE provides means for verification of
quantitative and qualitative linear time properties of MDPs. The unique feature
of ProbDiVinE is its capability of employing combined power of multiple CPU
cores available on latest hardware systems to solve large verification problems.
All the techniques presented in this paper have been implemented and experi-
mentally evaluated using the ProbDiVinE model checker. Yet another tool for
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verification of MDPs is the model-checker RAPTURE [8]. It employs an auto-
matic abstraction refinement and essential state reduction techniques to fight
the state explosion problem [8].

As the main contribution of this paper we introduce several techniques that
allow to improve the general quantitative verification procedure using the local-
ity of the model checking goal. These local model checking techniques can be
applied to the global model checking procedure resulting in a significant speed-
up as indicated by our experimental evaluation. In addition, the locality of the
techniques supports their natural integration into a parallel tool, giving thus
further advantages in terms of speed and scalability.

The rest of the paper is organized as follows. Section 2 states the necessary
definitions and recalls the general scheme of quantitative model checking proce-
dure. Section 3 introduces our new techniques to improve the general verification
scheme, Section 4 reports on experimental evaluation of these techniques, and
Section 5 concludes the paper.

2 Preliminaries

In this subsection, we briefly review fundamentals of LTL model checking over
finite state probabilistic systems and fix some notation.

2.1 Probabilistic Model Checking

Markov decision processes (MDPs) are used as the standard modeling formalism
for asynchronous probabilistic systems, supporting both nondeterminism and
probability. A Markov decision process [13,21,22], is a tuple M = (S,Act, P, init,
AP, L), where S is a finite set of states, Act is a finite set of actions, P : (S ×
Act × S) → [0, 1] is a probability matrix, init ∈ S is the initial state, AP is a
finite set of atomic propositions, and L : S → 2AP is a labeling function. Act(s)
denotes the set of actions that are enabled in the state s, i.e. the set of actions
α ∈ Act such that P (s, α, t) > 0 for some state t ∈ S. For any state s ∈ S, we
require that Act(s) �= ∅ and ∀α ∈ Act(s).∑s′∈S P (s, α, s′) = 1.

An infinite run of an MDP is a sequence τ = s0, α1, s1, α2, . . . ∈ (S × Act)ω

such that αi ∈ Act(si−1). A trajectory of τ is the word L(s0), L(s1), L(s2), . . .
over the alphabet 2AP obtained by the projection of τ to the state labels.

The intuitive operational semantics of an MDP is as follows. If s is the current
state then an action α ∈ Act(s) is chosen nondeterministically and is executed
leading to a state t with probability P (s, α, t). We refer to t as an α-successor of
s if P (s, α, t) > 0. State s is called deterministic if exactly one action is enabled
in s. If all states of an MDP are deterministic, the MDP is called Markov chain.
To resolve the nondeterminism of an MDP a scheduler function is used. We
consider deterministic history dependent schedulers which are given by a function
D assigning an action D(σ) ∈ Act(sn) to every finite run σ = s0, α1, . . . , αn, sn.
Given a scheduler D, the behavior of M under D can be formalized as a Markov
chain.
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Let M be a Markov Chain, s ∈ S be a state of M , and X be a set of runs of
M originating at s. We define the probability of the set X as a measure of the
set X in the set of all runs of M originating at s. A set X of runs of a Markov
Chain M is called basic cylinder set if there is a prefix s0, α1, . . . αn, sn such that
X contains exactly all runs of M with that prefix. The probability meassure of
a basic cylinder set with prefix s0, α1, . . . αn, sn is then

n−1∏
i=0

P (si, αi+1, si+1).

If the setX of runs ofM is not a basic cylinder set, its measure is determined as a
sum of measures of maximal (w.r.t. inclusion) basic cylinder sets fully contained
in X [11].

In this paper we focus on the quantitative model checking of MDPs against
properties specified in Linear temporal logic (LTL). Formulas of LTL are built
over a set AP of atomic propositions and are closed under the application of
Boolean connectives, the unary temporal connective X (next), and the binary
temporal connective U (until). LTL is interpreted over computations. A com-
putation is a function π : ω → 2AP , which assigns truth values to the elements
of AP at each time instant and as such it can be viewed as an infinite word
over the alphabet 2AP . For an LTL formula ϕ, we denote by L(ϕ) the set of all
computations satisfying ϕ.

A run of a Markov chain satisfies the formula ϕ, if the trajectory of the run
is in L(ϕ). A Markov Chain M satisfies the formula ϕ with probability p, if
the set of runs of M satisfying the formula has the probability p. An MDP M
satisfies the formula ϕ with the probability at least p (at most p) if for every
scheduler D, M under D satisfies the formula with the probability at least p
(at most p). The problem of quantitative model checking is to determine the
minimal and/or maximal probability that an MDP satisfies a given property.
Note that for the computation of the minimal and/or maximal probability that
an MDP satisfies an ω-regular property, it is sufficient to consider only history
independent schedulers [12].

The goal of the global quantitative model checking is to calculate the minimal
and/or maximal probability of the satisfaction of the property for every state s
of an MDP. The goal of the local quantitative model checking is, however, to de-
termine the minimal and/or maximal probability of satisfaction of the property
for the initial state only.

A Büchi automaton is a tuple A = (Σ,Q, qinit, δ, F ), where Σ is a finite
alphabet, Q is a finite set of states, qinit ∈ Q is an initial state, δ ⊆ Q×Σ ×Q
is a transition relation, and F ⊆ Q is a set of accepting states. A run of A over
an infinite word w = a1a2 . . . ∈ Σω is a sequence q0, q1, . . . , where q0 = qinit and
(qi−1, ai, qi) ∈ δ for all i ≥ 1. Let inf(ρ) denote the set of states that appear in
the run ρ infinitely often. A run ρ is accepting iff inf(ρ)∩F �= ∅. A state s ∈ Q of
a Büchi automaton A is called deterministic if and only if for all a ∈ Σ there is
at most one s′ ∈ A such that (s, a, s′) ∈ δ. A Büchi automaton is deterministic
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in the limit if and only if all the accepting states and their descendants are
deterministic [11].

We use the automata based approach to probabilistic LTL model checking.
Given an LTL formula ϕ, it is possible to build a Büchi automaton A with
2O(|ϕ|) states such that L(A) = L(ϕ) [23]. Moreover, for any Büchi automaton
A with n states a Büchi automaton B with 2O(n) state such that B is deter-
ministic in the limit and L(A) = L(B) can be built [11]. Similarly to model
checking non-probabilistic systems, the model is synchronized with the automa-
ton corresponding to the negation of the formula in the case we are interested
in the minimal probability or with the automaton corresponding to the formula
in the case we are interested in the maximal probability. However, unlike the
non-probabilistic case, automata which are deterministic in the limit have to be
used instead of non-deterministic Büchi automata.

Let M = (S,Act, P, s0, AP, L) be an MDP and let A = (Q, 2AP , q0, Δ, F ) be
a Büchi automaton. The synchronized product of M and A is an extended MDP
M×A = (S×Q,ActM×A, PM×A, init, AP, LM×A, Acc), where ActM×A((s, p)) =
Act(s), PM×A((s, p), α, (t, q)) = P (s, α, t) if (p, L(s), q) ∈ δ or 0 otherwise, init =
(s0, q0), LM×A((s, t)) = L(s), and Acc = S × F is the set of accepting states.
Note that the synchronized product is not a regular MDP as it distinguishes
between accepting and non-accepting states and may contain states without
enabled actions.

In order to describe the algorithmic solution to the quantitative LTL model
checking we often view an MDP or MDP synchronized with a Büchi automaton
as a graph. Therefore, we recall some basic notions from the graph theory. A
state s′ is reachable from a state s in a set of states R ⊆ S, denoted as s �+

R s′

iff there is a sequence of states s0, s1, . . . , sk ∈ R such that s = s0, s
′ = sk and

for all 0 ≤ i < k there is an action α ∈ Act(si) such that P (si, α, si+1) > 0. A
set of states R is strongly connected if for all r, r′ ∈ R : r �+

R r′ or |R| = 1.
A strongly connected component (SCC) is a maximal strongly connected set of
states. The graph of strongly connected components of G is called the quotient
graph of G. An SCC C is trivial if |C| = 1. An SCC is terminal if it has no
successors in the quotient graph. For every component C let Input(C) = {c ∈
C | there is an SCC C′ : ∃c′ ∈ C′ : ∃α ∈ Act(c′) : P (c′, α, c) > 0} if init �∈ C
otherwise Input(C) = {init}. Furthermore, for each nonterminal component C
we define Output(C) = {s ∈ S � C | ∃c ∈ C : ∃α ∈ Act(c) : P (c, α, s) > 0}.

Given an MDP graph G, an accepting end component (AEC) is a maximal
set C of states of G that forms (not necessary maximal) strongly connected
component in G such that C ∩ Acc �= ∅ and if there is an enabled action α in
a state of the component, the component contains either all the α-successors or
none of them [12]. From [13,14] it follows that for any state s of an MDP graph
of M × A that belongs to an AEC, there exists a scheduler D such that the
probability measure of runs originating in s and remaining in the AEC is 1 in
M under D.

Let s be a state in the MDP product graph. We define the maximal probability
xs of reaching an AEC from s as follows. If s belongs to an AEC, xs = 1, if no
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xinit ≥ 0.5 · xs1 + 0.5 · xs2

xinit ≥ 0.4 · xs3 + 0.6 · xs5

xs1 ≥ 1
xs2 ≥ 0.3 · xs4 + 0.7 · xs5

xs3 ≥ 1
xs4 ≥ 1 · xs4

xs5 ≥ 1 · xs4

xs6 ≥ 1

Fig. 1. MDP and its corresponding local linear programming problem

AEC is reachable from s, xs = 0. For remaining cases the value of xs can be
calculated by solving the linear programming problem with inequalities

xs ≥
∑

v∈S×Q

PM×A(s, α, v) · xv ∀α ∈ ActM×A(s)

minimizing the objective function f =
∑

u∈S×Q

xu. For more details see [3,12].

Note that in the context of local model checking the objective function can be
simplified to f = xinit. An example is given in Figure 1.

After the solution of the linear programming problem is found, xinit contains
the value of maximal probability an AEC is reached from the state init. If the
MDP was synchronized with the automaton corresponding to the negation of a
formula ϕ, the minimal probability the MDP satisfies the formula ϕ is 1− xinit.
If the MDP was synchronized with the automaton corresponding to a formula
ψ (without negation), the maximal probability the MDP satisfies ψ is xinit.

2.2 Algorithm

The algorithm for finding all AECs was introduced in [11,12] and it was based
on recursive decomposition of MDP graph into SCCs. Our approach employs
a parallel adaptation of the algorithm of Bianco and de Alfaro (BdA) [7] that
computes a set of states for which there exists a scheduler such that the maximal
probability of reaching an AEC from the set is equal to 1. Clearly, this set can
be used instead of the set of all AECs. Henceforward, the set is refered to as AS.

The algorithm maintains an approximation set of states that may belong to
an AEC. The algorithm repeatedly refines the approximation set by locating and
removing states that cannot belong to an AEC, we call this a pruning step. The
algorithm for quantitative verification is obtained by a modification of BdA. As
the final approximation set is AS , the linear programming problem is extended
with inequalities xu ≥ 1 for all xu ∈ AS . The overall scheme of how the algorithm
proceeds is given as Algorithm 1.
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Algorithm 1. Scheme of algorithm for local quantitative analysis
1: compute the set AS using BdA algorithm
2: create the linear programming problem LP
3: compute the solution of LP
4: return xinit

3 Local Model Checking Techniques

In this section we introduce three optimization techniques that can significantly
speed-up the verification process. We also propose a way how these techniques
can be employed in a parallel environment, shared-memory multi-core architec-
tures in our case. This is in particular very important in handling very large
real-life systems in practice.

3.1 Minimal Subgraph Identification

The first of the proposed algorithmic modifications helps to reduce the size of
the linear programming problem by pruning the MDP product M ×A into the
so called minimal subgraph.

The probability of a state depends on the probabilities of its successors. How-
ever, once we know that the probability of a state is 1, we do not need to know
the exact probabilities of its successors. Also, the probability of a state is 0 if
no state with probability 1 can be reached from it. Henceforward, we say that a
state is relevant if it is on a path from an initial state to a state with probability
1 such that the path does not contain any other state with probability 1. The
last state on the path is referred to as a seed. Relevant states define in a natural
way a slice in the original MDP (see the example in Figure 2). We call this slice
a minimal subgraph. The probability of the initial state is fully determined by
the states in the minimal subgraph only.

With the minimal subgraph we associate the linear programming problem
mLP to be minimized in the following way. Let init, s0, s1, . . . , sr−1, sr be a
path in the minimal subgraph from the initial state init to a seed sr. We add to
mLP the inequalities of form:

xinit ≥ . . .+ ps0xs0 + . . .

xs0 ≥ . . .+ ps1xs1 + . . .

...
xsr−1 ≥ . . .+ psrxsr + . . .

It is not difficult to prove that pruning the original MDP graph into the min-
imal one does not have any influence on the solution of the linear programming
problem.
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Fig. 2. Minimal subgraph identification

Lemma 1. Let M be a synchronous product of MDP and Büchi automaton, and
MG its minimal subgraph. The solution of linear programming problem LP is
equal to the solution of linear programming problem mLP.

Having computed AS we can identify relevant states, i.e. the minimal subgraph,
as follows. First, we run a forward reachability from the initial state that does not
explore states beyond a state from AS. States from AS visited in this reachability
are the seeds. Second, we run backward reachability from seeds to identify the
minimal subgraph. All states visited by the backward reachability are relevant
states. In this manner we omit states whose probability of reaching an AEC
equals to zero. The result of applying both forward and backward reachability
to obtain the minimal subgraph is illustrated in Figure 2.

3.2 Iterative Computation

Another practical technique is to decompose the given problem into simpler
subtasks. In this way we have a good chance to end-up with a set of smaller
linear programming problems that can be solved much faster.

The core idea is to decompose the minimal subgraph into SCCs, create the
appropriate quotient graph, and then iteratively solve the linear programming
problem by solving the subproblems given by the individual components in a
bottom-up manner.
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Some subtasks can be solved independently, which provides a basis for an
effective parallel procedure as described in Subsection 3.4. Furthermore, we
show in Subsection 3.3 that some subtasks can be solved without employing an
external LP solver. Iterative computation can lead to a significant speed-up as
compared to the computation of the entire LP problem (see Section 4).

Let us consider a minimal subgraph MG, its strongly connected components
component C is formed by all inequalities xs ≥ . . . from mLP such that s ∈ C.
The objective function of LPC minimizes the sum of variables xs, s ∈ Input(C),
i.e. states with a predecessor outside the component, or the value xinit in case
init ∈ C.

The solution of LPC for each component C depends only on C itself and
on the states in Input(Ct) for each immediate successor component Ct of C,
as only variables corresponding to these states appear in the inequalities. This
means, that for a terminal SCC T we can find the solution of LPT directly.
Once we have solutions for all successor components Ct of C, we can substitute
all the variables xs, such that s �∈ C, with already computed values. LPC does
not depend on components Ct any more and the solution of LPC can thus be
computed. We call the SCC C solved if LPC has been solved, i.e. the values xs

for all s ∈ Input(C) have been computed. An unsolved SCC C is called prepared
if for all t ∈ Output(C) the state t is in a solved SCC.

Lemma 2. For each s ∈ Input(C), the solution of LPC assigns to xs the value
equal to the maximal probability that the set AS is reachable from s.

Corollary 1. For the component C containing the initial state init, the solu-
tion of LPC assigns to xinit the value equal to the maximal probability AEC is
reachable from init.

The pseudo-code of the iterative computation is described in Algorithm 2.

Algorithm 2. Iterative computation
Require: minimal subgraph MG
1: decompose MG into SCCs
2: build the quotient graph of MG
3: while there is an unsolved SCC do
4: compute the set P of prepared SCCs
5: for all C ∈ P do
6: create the linear programming problem LPC

7: substitute for xs such that s ∈ Output(C) in LPC

8: compute the solution of LPC

9: mark C as solved
10: end for
11: end while
12: return xinit
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Fig. 3. SCC decomposition

Figure 3 shows the decomposition into strongly connected components. Com-
ponents C1, C2 and C3 are terminal and thus prepared. After they are solved,
components C4 and C5 become prepared. In the next iteration of the algorithm,
components C6 and C7 are prepared and finally, after their solution, the com-
ponent C8 containing the initial state is ready to be solved.

3.3 Trivial SCC

Let us suppose we perform the iterative computation on the minimal subgraph
MG as introduced in the previous Subsection, and let the next prepared SCC
to be solved is a trivial strongly connected component T = {t} with the corre-
sponding linear programming subtask LPT . In the following we show, that the
linear programming subtask LPT can be solved without employing an external
LP solver.

Let us firstly recall that due to deAlfaro [12] there is a history independent
scheduler that yields the maximum value for the state t. We denote by xα

t the
probability of the state t under the history independent scheduler choosing the
action α ∈ Act(t) whenever the state t is visited. Since it is sufficient to consider
only history independent schedulers for the computation of the probability xt of
the state t, it follows directly that

xt = max
α∈Act(t)

xα
t .
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Lemma 3 says how to compute the value of xα
t . Before we state the lemma,

we introduce the necessary notation. Suppose an action α to be executed. Let
u0, u1, . . . , un be the α-successors of t that are outside the component T . Each
ui is reached with the probability P (t, α, ui) for 0 ≤ i ≤ n. Let us denote
these probabilities pα

u0
, pα

u1
, . . . , pα

un
, respectively. Since the states are outside the

component T , the probability values for these states are already known and are
refered to as vu0 , vu1 , . . . , vun . Futhermore, we denote the probability P (t, α, t)
by pα

t .

Lemma 3. Let pvα
u = pα

u0
vu0 + pα

u1
vu1 + . . .+ pα

un
vun . Then,

xα
t =

{
pvα

u

1−pα
t

if pα
t �= 1

0 otherwise.

Proof. For a Markov chain the following holds:

n∑
i=0

pα
ui

+ pα
t ≤ 1

Therefore, if pα
t = 1 then pα

ui
= 0 for all 0 ≤ i ≤ n and thus xα

t = 0. Otherwise

xα
t =pvα

u + pα
t (pvα

u ) + (pα
t )2(pvα

u ) + (pα
t )3(pvα

u ) + (pα
t )4(pvα

u ) + . . . =

pvα
u (1 + pα

t + (pα
t )2 + (pα

t )3 + (pα
t )4 + . . .) = pvα

u

1
1− pα

t

�

To compute the value of xt we enumerate the values xα
t according to the previous

Lemma and compute their maximum. For an example, we refer to Figures 2
and 3. The component C6 containing the state t is a trivial one. After the
components C1 and C4 are solved, we have vu = 0.9, u ∈ Input(C4) and vv = 1,
v ∈ Input(C1). The value of xt can be now computed without employing the
external LP solver. Altogether, there are three actions a, b, c enabled in t resulting
in the following three cases:

xa
t =

pva
v

1− pa
t

=
0.7 · 1

1
= 0.7 xb

t =
pvb

u

1− pb
t

=
0.3 · 0.9
1− 0.7

= 0.9 xc
t =

0
1− 0.5

= 0

Finally, xt = max(xa
t , x

b
t , x

c
t) = 0.9.

3.4 Parallelization

The improved algorithm, described as Algorithm 3, consists of several consecu-
tive phases, each of them parallelized to a certain level.

Parallel version of BdA algorithm performs qualitative model checking and
computes AS as a basis for quantitative verification. The main idea builds on
the topological sort for cycle detection – an algorithm that does not depend on
DFS postorder and can be thus parallelized reasonably well. Minimal Subgraph
Identification employs only one forward and one backward reachability and thus
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Algorithm 3. Improved algorithm for local quantitative analysis
1: compute the set AS using parallel version of BdA algorithm
2: compute the minimal subgraph MG using parallel reachability
3: decompose MG into SCCs using parallel OBF algorithm
4: build the quotient graph of MG in parallel
5: while there is an unsolved SCC do
6: compute the set P of prepared SCCs
7: for all C ∈ P do
8: in parallel do
9: if C is trivial then

10: compute the solution of C
11: else
12: create the linear programming problem LPC

13: substitute for xs such that s ∈ Output(C) in LPC

14: compute the solution of LPC

15: end if
16: mark C as solved
17: end in parallel
18: end for
19: end while
20: return xinit

this phase is parallelized effectively. In order to parallelize SCC Decomposition,
the implementation is based on recursive variant of OBF algorithm as described
in [6]. Iterative Computation allows to solve prepared SCCs independently by
parallel running threads. However, each component has to be solved by calling
the external serial LP solver lpsolve. This last limitation could be eventually
relaxed by a parallel LP solver (we were unfortunately not able to get access to
a suitable free parallel solver).

4 Experimental Evaluation

We have implemented all the described algorithms and techniques in the tool
called ProbDiVinE. The tool uses DiVinE Library [20] and a generally avail-
able LP solver lpsolve. We ran a set of experiments on machines equipped with
Intel Xeon 5130 and AMD Opteron 885 processors allowing us to measure the
performance of the tool when using 1 to 8 threads.

We have used five different experimental models of randomized protocols with
properties yielding minimal probability other than 0 or 1:

– Cons – randomized consensus protocol [2]
– Crypts – randomized dining cryptographers [9]
– Leads – asynchronous leader election protocol [18]
– Phils – randomized dining philosophers [19]
– Stabi – randomized self-stabilizing protocol [17]
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a)
time

no minimal iterative
Model reduction subgraph solution

Cons 27.9 min 11.9 min 5.9 min

Crypts >10 days 17.8 min 4.7 min

Leads >10 days >10 days 3.7 min

Phils >10 days 2.5 days 4.5 min

Stabi >10 days >10 days 4.8 min

b)

0

25

50

75

100

           no reduction minimal subgraph iterative solution

%

number of inequalities
verification run time

Fig. 4. a) Runtimes for various models when no reduction is used, when only the
minimal subgraph is considered, and when both the minimal subgraph and iterative
processing is involved. b) Correlation between the number of inequalities and runtime.

Table 1 captures the size of the linear programming problem (the number
of inequalities to be solved by an external LP solver). The column whole graph
gives the size before applying any reduction, the column reduced graph gives
the size when redundant inequalities were removed by pruning the graph into
the minimal subgraph. The column largest problem gives the maximal size of a
problem to be solved by an LP solver, when the original problem was decomposed
into subproblems that were processed independently. Three of the models contain
only trivial SCCs, thus the LP solver is not called at all and the size of the largest
problem solved by LP solver is thus 0.

The table in Figure 4 demonstrates that the size and the structure of the prob-
lem plays a crucial role in the performance of the tool. The table gives overall run
times corresponding to the used reduction techniques. The first column gives run
time when no reduction technique is used (no reduction), the second one when
redundant inequalities are removed (minimal subgraph), and the third one when
the technique of iterative computation and trivial SC solving are applied on the
minimal subgraph (iterative solution). A correlation between times in Figure 4
and sizes in Table 1 is observable. With decreasing number of inequalities the
runtimes tend to speed-up dramatically. As for the speed-up, the most inconve-
nient case is when the graph is made of one large component. In such a case, the
pruning and parallel processing cannot be done and the verification runtime is
dominated by the single call to the LP solver.

Table 1. The size of LP problem with respect to used reduction techniques

# inequalities for LP solver % of the whole graph

whole reduced largest reduced largest
Model # states graph graph problem graph problem

Cons 48 669 132 243 83 395 20 368 63.06 15.40

Crypts 2 951 903 8 954 217 108 045 0 1.21 0

Leads 2 995 379 8 800 096 5 678 656 0 64.5 0

Phils 5 967 065 14 740 726 1 623 722 246 11.0 Almost 0

Stabi 4 061 570 6 897 480 5 983 080 0 86.7 0
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Fig. 5. Overall speed-up and scalability

In the case of Cons model the reduction techniques help less than in the other
cases. However, run times decrease still significantly. Figure 4.a) gives runtimes
of verification when various degree of improvement is used. Figure 4.b) depicts
the relative decrease in the runtime and number of inequalities when various
reduction techniques are involved. In particular, the number of inequalitites de-
creases to 63% of the original number, while the runtime decreases to 21% of
the original time needed to perform the verification task.

Figure 5 reports on the overall speed-up and scalability of the verification
process we achieved using our tool on various number of CPU cores. Poor scal-
ability in case of randomized consensus protocol can be explained, because the
time consumed by the sequential LP solver takes the major part of the runtime
of the whole verification process.

Figure 6 aims on the qualitative analysis as a part of the whole verification
process. The table in Figure 6 shows the ratio between runtimes of the qualitative
analysis and the whole verification process. The graph in Figure 6 presents speed-
up of qualitative analysis (the first phase of the algorithm). In comparison to the
quantitative verification, the speed-up is much better due to the fact, that the
whole verification process contains phases where parallelization does not help

qualitative whole % qualit
Model analysis analysis of whole

Cons 30.53 358.15 8.52

Crypts 275.96 279.47 98.75

Leads 68.28 223.76 30.51

Phils 180.6 270.46 66.77

Stabi 67.36 285.34 23.61
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Fig. 6. Ratio between runtimes of the qualitative analysis and the whole verification
process (table on the left). Speed-up of qualitative analysis only (on the right).
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much as they require frequent synchronization. We can observe, that the bigger
the part the qualitative analysis forms in the whole verification process, the
better the overall scalability is. In case of dining cryptographers protocol model,
the qualitative verification forms 98.75 % of the whole verification process and
all the LPs are solved without using external LP solver. Therefore the scalability
and speed-up are the best over all the examples.

All in all, we claim that our approach is quite successful as overall runtimes
tend to decrease as more CPU cores are used.

The structure of a graph is a crucial aspect affecting the runtime of the verifi-
cation process. For instance the Crypts model contains approximately the same
number of states as Leads, but runtimes of qualitative verification differ a lot.
On the other hand, runtime of Leads is comparable to Stabi, but their number
of states and speedup differ.

5 Conclusion

As probabilistic systems gain popularity and are coming into wider use, the
need for formal verification and analysis methods, techniques and tools capable
of handling these systems become more critical. The theory and algorithms for
formal verification of probabilistic systems have been around for some time.
However, it is the existence of a good and efficient formal verification tool that
makes the theory valid from the practitioner’s point of view.

In this paper we presented several techniques that allow to build competitive
enumerative model checking tool for quantitative analysis of linear temporal
properties over finite state probabilistic systems. In particular, we showed how
to involve parallelism and employ locality to increase the performance of such a
tool. We also showed that the costly call to the linear programming solver can
be either replaced with multiple successive calls for smaller problems, or avoided
at all. Using this approach we achieved order-of-magnitude reduction in runtime
of verification in many cases.
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Abstract—In this paper we describe a rather specialized
quality of a system – the degradation. We demonstrate systems
that naturally incorporate degradation phenomenon and we
show how these systems can be verified by adapting the
standard automata-based approach to LTL model checking.
We introduce Büchi Automata with Degradation Constraints
(BADCs) to specify the desired properties of systems with
degradation and we describe how these can be used for verifi-
cation. A major obstacle in the verification process is that the
synchronous product of the system and the Büchi automaton
may be infinite, which we deal with by introducing a normal
form of the Büchi automata and normalizing procedure. We
also show that the newly introduced formalism can be used
to distinguish MDPs indistinguishable by any LTL, PCTL or
even PCTL* formula.

I. INTRODUCTION

In order to reduce project design costs or to fit the tight
time-to-market schedule, numerous software tools including
formal verification ones are used in software and hardware
development process. Quantitative properties of systems
being developed are an inseparable part of the specifica-
tions in many cases. As a result, specialized software tools
were designed and are publicly available to help system
designers analyze various quantitative aspects of systems.
For example, tools such as PRISM [1], LiQuor [2] or
ProbDiVinE-MC [3] are used to design and analyze systems
with probabilistic actions, tools such as UPPAAL [4] or
KRONOS [5] are used to verify timing constraints of real-
time systems, MRMC [6] tool analyzes Markov rewards,
etc.

In this paper we introduce a rather specialized quality of
a system – the degradation. The degradation phenomenon is
quite common for objects that are subjects to physics laws.
For example, we can measure the degradation of electric
charge in some electronic devices, degradation of power or
quality of a transmitted signal in broadcasting network, etc.
However, the phenomenon is not bound to physical objects
only and is present in many other kinds of systems including
software ones. For example, a database index degrades with
every database update, memory consistency degrades every
time an allocation or deallocation of a memory block occurs
(memory fragmentation), etc.

To model systems with degradation we use the following
approach. Let us assume that an attribute of the model is

This work has been supported in part by the Czech Science Foundation
grants No. 201/09/P497 and 201/09/1389.

subject to the degradation. The idea of the degradation is
to express the consistency level (or quality) of the attribute
using a real number. If the attribute is in perfect shape
the associated number equals to one, if the consistency is
degraded to 75%, the number equals to 0.75, etc. Since we
do not admit negative consistency or consistency better than
100%, the number associated with the attribute is always a
number between zero and one.

The level of degradation is manipulated by performing
system actions. Every action of the system may either
further degrade the attribute, or it may leave it as it is.
Henceforward, we assume that the amount of degradation
caused by an action of a system is associated with the action
and is given as a real number again between zero and one.
So, if the current level of degradation is l and the degradation
associated with an action is d, the new level of degradation
will be d · l after the action is executed.

To our best knowledge, there are no appropriate for-
malisms developed to properly deal with the degradation
aspects of a system. So far, the possibilities to handle the
degradation might have been twofold. The first approach
would involve using a standard model checker, e.g. SPIN [7].
We can introduce a floating point variable to keep the
amount of degradation and describe how the degradation
evolves by explicit manipulation with the variable. The
second approach could be to use a formalism such as Markov
Decision Processes (MDPs) to express the degradation phe-
nomenon by means of probability. Unfortunately, neither of
the approaches is suitable for modeling the real degradation
phenomenon in more complex systems. In particular, both
approaches lacks the general possibility to verify linear
properties of runs of the system under consideration. For ex-
ample, the property that system designers might be interested
in is a repeated response-with-limited-degradation, such as:
whenever A happens, B happens before the degradation of
A drops below certain level. This property cannot be verified
using the first approach as a fresh degradation variable needs
to be introduced every time A happens. This would require
a finite but unbounded number of degradation variables to
be introduced in the system description, which is rather
problematic regarding the restrictions of the standard model
checker input languages. The other approach is unsuitable
as well. MDPs require that a state of the system evolves
into its immediate descendants in such a way that the sum
of degradations distributed among the descendants equals
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Figure 1. Signal coverage map.

to one for a given action. This is quite restrictive and
also unrealistic for many systems. For the same reasons, a
system-wide fixed degradation constant, as suggested in [8],
is inappropriate.

In this paper we demonstrate systems that naturally incor-
porate degradation phenomenon. We introduce quantitative
linear properties that relate to systems with degradation and
define Büchi Automata with Degradation Constraints as the
standard formalism to express the desired degradation prop-
erties. We adapt the standard automata-based approach to
LTL model checking to perform model checking procedure
for quantitative linear properties over systems with degra-
dation. The problem with the adaption is that the product
automaton to be analyzed may be infinite. To avoid this,
we suggest to transform the property Büchi automaton into
the so called normal form which than guarantees finiteness
of the product automaton. A separate section of the paper
relates systems with degradation to MDPs. We demonstrate
that expressive power of our specification formalism differs
from that of PLTL, PCTL, or PCTL∗.

II. SYSTEMS WITH DEGRADATION

Example I: Signal Coverage Problem

Let us suppose, we want to get some signal from a start
point S to an end point E. Unfortunately, the points are too
far from each other, so the signal cannot reach the destination
without unrepairable signal degradation. A possible solution
to the problem is to build relays in between S and E
that restore the quality of the signal while the signal is
still fully re-constructible. Furthermore, let us assume we
have a map of possible places where a relay may be built
including pairwise signal degradation values as illustrated in
Figure 1. For the sake of simplicity, let us assume the signal
goes through these places. Using a system with degradation,
we can easily check, whether the signal reaches the target
point in proper shape if the relays are built at the A-points.
Another example of a degradation property might be to
check whether some of the A-points are redundant.

Example II: Magnetic Disk

A common problem that must be dealt with in a firmware
of a storage device is a periodical refreshment of data being
kept. There are numerous reasons for it, but for the sake
of simplicity, let us just suppose that the data integrity are
degraded by certain amount, let us say 5%, with every read
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Figure 2. Magnetic disk example.

operation. On the other hand every write or refresh operation
restores the integrity of data to 99%. To be on a safe side,
the producers of the storage device would like to guarantee
that any piece of data is refreshed before its integrity drops
below a certain level, let us say 85%. However, the device
cannot simply refresh data after every read operation as this
would lead to an unacceptable level of power consumption.
Therefore, the data are refreshed periodically on a time basis.
Note that the read operations may take various amount of
time depending on the position of a reading head and the
location from where the data are read, which we model using
a non-deterministic choice. To answer the question whether
the device meets the producers’ requirements, we model the
device and the controller as depicted in Figure 2. We can
verify that no read action is performed if the data degradation
is below 85% and refresh actions are performed only if the
data degradation is below 90%.

Transition Systems with Degradation

Informally, systems with degradation are systems that
involve an attribute whose quality degrades (e.g. the data
integrity in the magnetic disk example). We formalize such
systems as Transition Systems with Degradation (TSDs).
Unlike the standard transition systems, every transition is
associated with a degradation constant in a TSD. A degra-
dation constant is a rational number from interval (0, 1].
The constants may differ for individual transitions in the
system. Note that the formal definition of a TSD contains no
specification of the attribute that degrades, it only captures
how much it degrades along each transition.

A transition system with degradation is a tuple M =
(S,Act,→, Sinit ,AP ,L), where
• S is a finite, nonempty set of states,
• Act is a finite, nonempty set of actions,
• →⊆ S ×Act× (0, 1]× S is a transition relation,
• Sinit ⊆ S is a set of initial states,
• AP is a set of atomic propositions,
• L : S → 2AP is a labeling function; L(s) denotes the

set of atomic propositions that are true in state s.

Instead of (s1, a, d, s2) ∈→ we write s1
a,d−−→ s2. A transition

s1
a,d−−→ s2 represents that the model can move from state

s1 to the state s2 by a (nondeterministic) choice of action
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a. The degradation constant d associated with the transition
gives the fraction to which the quality is degraded if the
transition is executed. So if the level of degradation at state
s1 is let us say l and the action is executed, the level of
degradation at state s2 will be l · d.

A path in a TSD M = (S,Act, T, Sinit ,AP ,L) is an
infinite sequence π = s0t0s1t1 . . . where si ∈ S and ti =
(si, ai, di, si+1) ∈ T for all i ≥ 0. A trajectory correspond-
ing to the path π = s0t0s1t1 . . . is given by the projection
of π to the state labels, trajectory(π) = L(s0)L(s1) . . .. A
trace corresponding to the path π = s0t0s1t1 . . . is given by
the projection of π to the state labels and degradation rates,
trace(π) = (L(s0), d0) (L(s1), d1) . . .. Let Traces(M)
denote the set of all traces of paths in M.

For instance, let us consider the example in Fig-
ure 1 and its path St0s1t1At2 . . . with the trace
(S, 0.87), (s1, 0.7), (A, 0.72), . . .. The signal degradation be-
tween S and A is 0.87 ·0.7 = 0.609. This means the quality
of the signal in A will be 60.9% of the quality in S.

III. QUANTITATIVE LINEAR PROPERTIES AND BÜCHI
AUTOMATA WITH DEGRADATION CONSTRAINTS

One way to express a desired behavior of a system is to
give restrictions on individual runs of the system, i.e. paths
in its model. Properties specified by path restrictions are
called linear and are defined on trajectories, i.e. sequences of
atomic propositions holding true along a path. However, for
systems with degradation, we might be interested not only
in sequences of atomic propositions, but also in quantitative
aspects, the amount of quality degradation in particular.
Formally, we want to analyze traces rather than trajectories.

Consider a TSD M = (S,Act,→, Sinit ,AP ,L) and a
path π = s0t0s1t1s2t2 . . . inM. The amount of degradation
along π between states si and sj , i ≤ j, is defined as

Dj
i =

j−1∏
k=i

dk.

In case i = j the amount of degradation is equal to 1.
Quantitative linear properties are linear properties in-

volving constraints on trajectories. These are expressed by
specifying boundaries on the amount of degradation along
a path between two states. Let us recall the signal coverage
example. The question whether the signal reaches the target
point in a proper shape is an example of quantitative linear
property. In other words, we ask whether there exists a path
from the sender to the receiver along which the amount of
degradation of the signal does not drop below a given bound
provided the signal is fully reconstructed in every relay
(A-points). Another interesting quantitative linear question
might be whether there are redundant relays on the way.
A relay is redundant if the signal can reach properly its
destination without being refreshed at the relay.

Regarding the magnetic disk example the question
whether a piece of data is read when its degradation is below

85% or a piece of data is refreshed when its integrity is not
below 90% is an example of quantitative linear property as
well.

Büchi Automata with Degradation Constraints

To express the quantitative linear properties of systems
with degradation we introduce a modification of Büchi
automata, the so called Büchi Automata with Degradation
Constraints (BADC). The standard automata are enriched
with a set of bounded variables allowing us to express the
amount of degradation.

Let D be a finite set of degradation variables ranging
over the rational numbers in between (0, 1]. A degradation
constraint over D is of form

ϕ ::= x ./ d | ϕ ∧ ϕ,
where ./∈ {<,≤, >,≥}, x ∈ D, and d is a rational
number in (0, 1]. Note that degradation constraints exclude
disjunction as it can be expressed using two different tran-
sitions of a BADC. DC (D) denotes the set of degradation
constraints over D. A degradation valuation is a function
ν : D → (0, 1]. The set of all possible degradation valuations
is Eval(D).

A Büchi Automaton with Degradation Constraints
(BADC) is a tuple A = (L,Σ, D, T, linit , F ), where

• L is a finite nonempty set of states (locations),
• Σ is a finite alphabet,
• D is a finite set of degradation variables,
• T ⊆ L×Σ×DC(D)× 2D ×L is a set of transitions,
• linit ∈ L is an initial location,
• F ⊆ L is a finite set of locations (Büchi accepting

condition).

A 5-tuple t = (l, α, ϕ,R, l′) ∈ T represents the transition
from location l to l′ labeled with α that is enabled if
constraint ϕ is satisfied. R is a set of degradation variables
which are reset to 1 when executing the transition. For
the transition t = (l, α, ϕ,R, l′) we denote label(t) = α,
constraint(t) = ϕ and reset(t) = R.

A path in a BADC A = (L,Σ, D, T, linit , F ) originating
at location l0 (or simply from l0) is an infinite sequence of
locations and transitions π = l0t0l1t1 . . ., where li ∈ L and
ti = (li, α, ϕ,R, li+1) ∈ T for all i ≥ 0.

A finite path from l0 to ln is a finite prefix πlnl0 =
l0t0l1 . . . ln−1tn−1ln of a path from l0. A finite path πlnl0
is simple if ∀0 ≤ i, j ≤ n − 1, i 6= j implies ti 6= tj . A
simple path πlnl0 forms an elementary cycle if l0 = ln and
∀0 ≤ i, j ≤ n− 1, i 6= j implies li 6= lj .

The semantics of a BADC A = (L,Σ, D, T, linit , F )
is given by an infinite labeled transition system MA =
(S,Σ′,→, Sinit), where

• S = L× Eval(D)
• Σ′ = Σ× (0, 1]

23

Authorized licensed use limited to: Masaryk University Brno. Downloaded on July 13,2010 at 12:52:31 UTC from IEEE Xplore.  Restrictions apply. 

5.13. MODEL CHECKING OF SYSTEMS WITH DEGRADATION 213



• → ⊆ S × Σ′ × S
(l1, ν1)

α,d−−→ (l2, ν2) whenever there is a transition
(l1, α, ϕ,R, l2) ∈ T such that
o ν1 |= ϕ

o ν2(x) =

{
d, if x ∈ R
ν1(x) · d otherwise

• Sinit = {(linit , νinit) | νinit(x) = 1 for all x ∈ D}
A run for a word σ = (α0, d0)(α1, d1) . . . ∈ (Σ×(0, 1])ω

is an infinite sequence ρ = (l0, ν0)(l1, ν1) . . . such that
(l0, ν0) ∈ Sinit and (li, νi)

αi,di−−−→ (li+1, νi+1) for all i ≥ 0.
A run ρ = (l0, ν0)(l1, ν1) . . . is accepting if li ∈ F for
infinitely many indices i. Lω(A) = {σ ∈ (Σ × (0, 1])ω |
there exists an accepting run for σ in A}.

Figures 3a and 3.b depict the “redundant A-point” quan-
titative linear property for the signal coverage example and
the property of the magnetic disc example, respectively.

x > 0.85 w
R = {x}

R = {x}
refb.
x < 0.9

r
x ≤ 0.85

x ≥ 0.9
ref

s0

r

S ∨ A
R = {x} A

A
x ≥ d

E
x ≥ d

E

a.

Figure 3. Quantitative properties of Sender/Receiver example (a) and
Magnetic disc example (b).

IV. MODEL CHECKING ALGORITHM

Model checking is a technique that for a given finite
state model and a temporal property decides whether the
model satisfies the property. In our case we are given a
TSD model of a system with degradation and a BADC au-
tomaton specifying prohibited quantitative linear behaviors.
In this section we develop an algorithm deciding whether a
given TSD model exhibits a forbidden behavior. Our model
checking algorithm follows the automata-based approach
to LTL model checking [9]. First, we define a product
automaton and prove that this automaton accepts exactly
the intersection of the BADC language and the language
of TSD traces. Next, we demonstrate that checking non-
emptiness of the product automaton is equivalent to finding
an accepting cycle in the product automaton graph and can
be tested effectively by a number of known techniques like
the Nested Depth First Search [10] or OWCTY [11].

����������
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α
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M A

{a} ∅ l0 l1

Figure 4. Infinite product.

Product Automaton

Product automaton of a TSD M = (S,Act,→,
Sinit ,AP ,L) and a BADC A = (L, 2AP , D, T, linit , F ) is
an automaton M⊗A = (Q,Act, δ,Qinit , QF ), where
• Q = S × L× Eval(D)
• δ : Q×Act→ 2Q

(s′, l′, ν′) ∈ δ((s, l, ν), a) whenever
o ∃ m = (s, a, d, s′) ∈ →
o ∃ t = (l,L(s), ϕ,R, l′) ∈ T, such that ν |= ϕ and
∀ x ∈ D :

ν′(x) =

{
d if x ∈ R
ν(x) · d otherwise

• Qinit = {(sinit , linit , νinit) | sinit ∈ Sinit , and
νinit(x) = 1 for all x ∈ D}

• QF = {(s, l, ν) | l ∈ F}
The product automaton M ⊗ A can be viewed as an

oriented graph GM⊗A = (Q,E). Vertices of GM⊗A
are the states of the product automaton and there is an
edge from the vertex (s, l, ν) to the vertex (s′, l′, ν′) if
∃a ∈ Act : (s′, l′, ν′) ∈ δ((s, l, ν), a). Accepting cycle in
the product automaton graph GM⊗A is a cycle containing
an accepting state. Henceforward, we consider only the
subgraph of GM⊗A reachable from the set of initial vertices
Qinit , i.e. whenever we mention the product automaton
graph, we implicitly mean its reachable subgraph.

We say that a product automaton M⊗A is finite if its
graph is finite.

Lemma 4.1: If a product automatonM⊗A is finite then
there is an accepting run ofM⊗A if and only if the graph
GM⊗A contains an accepting cycle. [12]

The main obstacle in the verification process is that the
product automaton graph may be infinite. An example of
such a situation is depicted in Figure 4. Here, the infinity is
caused by decreasing value of the variable x always meeting
the constraint x ≤ 0.5. The key observation allowing
for model checking of BADC properties of systems with
degradation is that for a special type of BADC automata, the
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so called normalized BADC, it is guaranteed that the product
graph is finite. In what follows we give the definition of a
normalized BADC and prove that the product automaton of
a TSD and a normalized BADC is finite. In the next section
we provide an algorithm which transforms any BADC to an
equivalent normalized BADC.

Let us consider a BADC A = (L,Σ, D, T, linit , F ).
A degradation variable x ∈ D is in normal form (or
normalized, for short) in A if for each elementary cycle

πl0l0 = l0t0l1t1 . . . ln−1tn−1l0

from l0 to l0 in A there is a transition ti, 0 ≤ i ≤ n − 1,
such that at least one of the following two conditions holds:
• constraint(ti) = x ./ d or x ./ d∧ψ, where d ∈ (0, 1],
./ ∈ {≥, >}, and ψ ∈ DC (D)

• x ∈ reset(ti)
A is in normal form (or normalized, for short) if each
degradation variable x ∈ D is in normal form in A.

Lemma 4.2: The product automaton of a TSD M =
(S,Act,→, Sinit ,AP ,L) and a normalized BADC A =
(L, 2AP , D, T, linit , F ) is finite.

Proof: To prove the finiteness of the graph GM⊗A we
have to demonstrate the finiteness of its set of states Q ⊆
S × L × Eval(D). As S and L are both finite (from the
definition of TSD and BADC) it is enough to prove that
every constraint variable x ∈ D attains only finitely many
different values in GM⊗A.

Let ρ = (s0, l0, ν0), (s1, l1, ν1) . . . (sk, lk, νk) be a finite
path such that the degradation variable x is reset only
in states (s0, l0, ν0) and (sk, lk, νk). Formally, every edge
(si, li, νi) → (si+1, li+1, νi+1) of ρ can be projected to
the corresponding transition mi = (si, ai, di, si+1) of M
and the transition ti = (li,L(si), ϕi, Ri, li+1) of A. The
variable is reset in a state (si, li, νi) iff x ∈ Ri. The initial
value of x on ρ is d0 and along the path is changed to∏1
i=0 di,

∏2
i=0 di, . . . ,

∏k−1
i=0 di, dk. This sequence of x-

values is non-increasing (with the possible exception of the
last value dk). We are to prove that there is a bound B
(depending only on M and A) such that the value of x is
decreased on ρ at most B times. The existence of the bound
B, together with the fact that there are only finitely many
different degradation constants d in transitions ofM, assure
that x attains only a finite number of different values along
a path in GM⊗A.

We define constants CM, CA, and LA distinguishing
extremal values in M and A. For the BADC A we define
CA as the minimal value such that there is a transition t
with constraint(t) = x ./ CA or x ./ CA ∧ ψ, where
./ ∈ {≥, >}, d ∈ (0, 1] and ψ ∈ DC(D). For the TSD M
we define CM as the minimal number such that the product
of any CM degradation constants d from transitions of M
is less than CA. LA is the length of the longest elementary
cycle in A.

{b}l0
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Figure 5. BADC, normalized BADC and TSD.

Let us suppose the value of x is decreased on ρ more
than CM+ LA times. After the first CM decreases the
value of x is less than CA. The length of the suffix ρ′ of ρ,
starting in the state where the value of x decreased below
CA for the first time, is greater than LA. The variable x is
normalized in A and thus there is a transition (si, li, νi)→
(si+1, li+1, νi+1) of ρ′ such that constraint(ti) = x ./ d or
x ./ d∧ψ, where ./ ∈ {≥, >}, d ∈ (0, 1] and ψ ∈ DC(D).
However, this constraint cannot be satisfied as the value
νi(x) < CA ≤ d. This contradicts the assumption about
path ρ.

Lemma 4.3: Lω(A) ∩ Traces(M) 6= ∅ ⇐⇒ GM⊗A
contains an accepting cycle.

Proof:⇐ Let GM⊗A contain an accepting cycle. Then
there is an infinite path ρ = (s0, l0, ν0), (s1, l1, ν1), . . .
in GM⊗A with infinitely many accepting states. The
projection of ρ to the states of the corresponding
TSD M gives the path π = s0t0s1t1s2t2 . . . with
trace(π) = (L(s0), d0)) (L(s1), d1)), . . . . The projection
(l0, ν0)(l1, ν1)(l2, ν2) . . . forms an accepting run of A for
the trace(π). Thus Lω(A) ∩ Traces(M) 6= ∅.
⇒ Let σ = (a0, p0)(a1, p1) . . . ∈ Lω(A) ∩ Traces(M).

Then there is a path π = s0a0s1a1s2a2 . . . in M
with trace(π) = σ = (L(s0), d0) (L(s1), d1) . . . where
ti = (si, ai, di, si+1) ∈ T for all i ≥ 0. Let ρ′ =
(l0, ν0)(l1, ν1)(l2, ν2) . . . be an accepting run for σ =
trace(π) in A. Then l0 = linit , ν0(c) = 1 for c ∈
C, (li, νi)

L(si),pi−−−−−→A (li+1, νi+1) for all i ≥ 0. Furthermore,
there are infinitely many indices i with li ∈ F .

Synchronizing the path π = s0a0s1a1 . . . and the
run ρ′ = (l0, ν0)(l1, ν1) . . . we obtain a run ρ =
(s0, l0, ν0)(s1, l1, ν1)(s2, l2, ν2) . . . in the product M ⊗ A
with infinitely many indices i, such that (si, li, νi) ∈ QF ,
i.e. GM⊗A contains an accepting cycle.

The number of states of the product is O(|S| · |L| ·
Πd∈DN

logstep min(d)), where |S| is the number of states
of a TSD, |L| is the number of locations in an BADC before
normalization, DN is the set of degradation variables after
normalization, step is the maximal degradation constant
different from 1 occurring in the TSD, and min(d) is the
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minimal threshold connected with degradation variable d
occurring in the BADC.

An optional way to construct the product automaton with-
out normalization is to modify the procedure of construction
of the product automaton as follows. As soon as the value
of a degradation variable drops below the minimal threshold
occurring in the BADC, the value is tagged with a special
flag denoting below minimal threshold and it is not manipu-
lated in succeeding states anymore. This approach leads to a
finite product automaton with O(|S| · |L| · (logstep min)|D|)
states, where |S|, |L|, and step are as in the previous case,
|D| is the number of degradation variables, and min is the
overall minimal threshold occurring in the BADC.

The reason, why we have introduced normalization is that
it helps to rapidly reduce the size of the product automaton
in many cases. It is basically a heuristic to minimize the
number of different values each degradation variable may
get. Figure 5 illustrates an original BADC, its normalized
form and a transition system. The product of the original
BADC and the TSD has 239 states, whereas in the case of
the normalized BADC the product has only 46 states. The
normalization procedure adds resets of variables whenever
it is possible. See, e.g., the self-loop on state l1.

V. NORMALIZATION OF BADC

In this section, we describe how to transform a BADC
into an equivalent BADC in the normal form.

Let us say that a degradation variable x is bounded in
degradation constraint ϕ ∈ DC (D) if ϕ = x ./ d or ϕ =
x ./ d∧ψ, ψ ∈ DC (D). More precisely, x is n-bounded in
constraint ϕ ∈ DC (D) if ϕ = x ./1 d1 ∧ . . . ∧ x ./n dn or
ϕ = x ./1 d1 ∧ . . . ∧ x ./n dn ∧ ψ, where x is not bounded
in ψ. x is (n-)bounded in transition t if x is (n-)bounded in
constraint(t).

Algorithm 1 Normalization of BADC

Input: BADC A0 = (L0,Σ, D0, T 0, l0init , F
0)

Output: BADC A = (L,Σ, D, T, linit , F ) in normal form
1: A := A0

2: ONECONSTRAINTONVARIABLE
3: Done := ∅
4: while Done 6= D do
5: pick x ∈ D \Done
6: (LR, LP , Lx) := RESETWHEREPOSSIBLE(x)
7: SPLITINTOLAYERS(x)
8: Done := Done ∪ {x}
9: Assert: Each x ∈ Done is normalized in A

10: end while
11: Assert: A is in normal form
12: Assert: Lω(A0) = Lω(A)

The transformation algorithm (see Algorithm 1) works
in several stages (for an illustrative example see [13]). In
the initial stage (see Procedure ONECONSTRAINTONVA-
RIABLE), the given BADC is transformed into a BADC

Algorithm 2 Procedure ONECONSTRAINTONVARIABLE

1: for all x ∈ D0 do
2: A′ := A
3: Tx := {ti ∈ T | x is bounded in ti}
4: for all ti ∈ Tx do
5: mi := n such that x is n-bounded in ti
6: D := (D\{x})∪{xi1 . . . , ximi | xi1, . . . , ximi are new,

unique degradation variables}
7: replace constraint(ti) = x ./1 d1∧. . .∧x ./mi dmi∧ϕ

with xi1 ./1 d1 ∧ . . . ∧ ximi ./mi dmi ∧ ϕ
8: end for
9: for all t ∈ T do

10: if x ∈ reset(t) then
11: reset(t) := (reset(t) \ {x}) ∪ {xi1, . . . , ximi | ti ∈

Tx}
12: end if
13: end for
14: Assert: Lω(A′) = Lω(A)
15: end for
16: Assert: ∀x ∈ D : ∃!t ∈ T with bounded x
17: Assert: ∀x ∈ D : ∃!t ∈ T with 1-bounded x
18: Assert: Lω(A0) = Lω(A)

Algorithm 3 Procedure RESETWHEREPOSSIBLE(x)

1: Tx := {tx ∈ T | x is bounded in tx}
2: Lx := {lx ∈ L | ∃ transition tx ∈ Tx from location lx}
3: Π := {π | π is a simple path l0t0l1 . . . lntnlx in A, l0 = linit

or ∃ transition t ∈ T to l0 with x ∈ reset(t), ∀ 0 ≤ i ≤ n :
x 6∈ reset(ti), and lx ∈ Lx}

4: LR := {l0 | ∃ π ∈ Π originating at l0}
5: LP := {li, lx | ∃ π = l0t0 . . . lntnlx ∈ Π, 0 ≤ i ≤ n}
6: TP := {ti | ∃ π = l0t0 . . . lntnlx ∈ Π, 0 ≤ i ≤ n}
7: TN := T \ TP

8: for all t ∈ TN do
9: reset(t) := reset(t) ∪ {x}

10: end for
11: return (LR, LP , Lx)
12: Assert: Lω(A0) = Lω(A)

in which every degradation variable x is bounded by at
most one inequality x ./ dx. This is accomplished by
introducing new degradation variables into the BADC. In
the next stage, we iteratively pick a degradation variable
x ∈ DC and transform the BADC so that x becomes
normalized while preserving the normal form of the already
processed degradation variables.

Normalization of the degradation variable x involves
two procedures. The first procedure (see Procedure RE-
SETWHEREPOSSIBLE) identifies those transitions where the
variable x can be safely reset. To this end it computes the set
Π of all simple paths π satisfying three conditions: π starts
in the initial location or in a location immediately after reset
of x, no reset of x occurs along π, and π ends in a location
from which there is a transition with a bound on x. Now
we can split all the transitions into two disjoint sets: those
which occur on a path from Π (the set TP ) and those which
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Algorithm 4 Procedure SPLITINTOLAYERS(x)
1: Let x ./ d be the constraint on x
2: lb(x) := ./∈ {<,≤} ? x ./ d : ¬(x ./ d)

3: L := L ∪ {l̂, l̆ | l ∈ LP , l̂, l̆ are new, unique locations} ∪ {...l | l ∈ LR,
...
l is a new, unique location}

4: linit :=
...
l init if linit ∈ LR

5: F := (F \ LP ) ∪ {l̂, l̆ | l ∈ LP ∩ F} ∪ {
...
l | l ∈ LR ∩ F}

6: for all t = (l1, a, ϕ,R, l2) 6∈ Tx do
7: case l1 6∈ LP , x ∈ R, and l2 ∈ LR: replace t with (l1, a, ϕ,R,

...
l 2)

8: case l1 ∈ LP , x ∈ R, and l2 ∈ LR: replace t with (l̂1, a, ϕ,R,
...
l 2), and (l̆, a, ϕ,R,

...
l R)

9: case l1 ∈ LR, x ∈ R, and l2 ∈ LR: add transition (
...
l 1, a, ϕ,R,

...
l 2)

10: case l1 ∈ LP , x 6∈ R, and l2 ∈ LP : replace t with (̂l1, a, ϕ∧¬lb(x), R, l̂2), (̂l1, a, ϕ∧lb(x), R∪{x}, l̆2), and (l̆1, a, ϕ,R∪{x}, l̆2)

11: case l1 ∈ LR, x 6∈ R, and l2 ∈ LP : add transitions (
...
l 1, a, ϕ ∧ ¬lb(x), R, l̂2), and (

...
l 1, a, ϕ ∧ lb(x), R ∪ {x}, l̆2)

12: case l1 ∈ LP , and l2 6∈ LP : replace t with (̂l1, a, ϕ∧, R ∪ {x}, l2), and (l̆1, a, ϕ,R ∪ {x}, l2)
13: case l1 ∈ LR, and l2 6∈ LP : add (

...
l 1, a, ϕ,R ∪ {x}, l2)

14: end for
15: for all tx = (lx, a, ϕ,R, l2) ∈ Tx do
16: if ./∈ {<,≤} then
17: l̄2 := l2 6∈ LP ? l2 : (x ∈ R ?

...
l 2 : l̆2)

18: replace tx with (̂lx, a, ϕ ∧ lb(x), R ∪ {x}, l̄2), (l̆x, a, ϕ,R ∪ {x}, l̄2), and if lx ∈ LR add (
...
l x, a, ϕ ∧ lb(x), R ∪ {x}, l̄)

19: else
20: l̄2 := l2 6∈ LP ? l2 : (x ∈ R ?

...
l 2 : l̂2)

21: replace tx with (̂lx, a, ϕ ∧ ¬lb(x), R, l̄2), and if lx ∈ LR add (
...
l x, a, ϕ ∧ ¬lb(x), R, l̄)

22: end if
23: end for
24: Assert: Lω(A0) = Lω(A)

do not (the set TN ). We can reset the variable x on the
transitions from TN without changing the language of the
BADC. Simultaneously, three other sets of locations, namely
LR, LP , and Lx, are computed. LR is the set of locations in
which a path π ∈ Π originates. LP are locations occurring
along a path π ∈ Π, and finally Lx are locations in which
a path π ∈ Π ends. Note that LR, Lx ⊆ LP .

Procedure SPLITINTOLAYERS finishes the normalization
of the variable x. It manipulates the rest of the transitions
that may cause that x is not normalized, namely those from
the set TP . The modification of the BADC is a bit more
involved here and requires a replication of locations. Each
replica of the location bears a specific information about the
actual value of x. We replace each location l ∈ LP with two
new locations l̆ and l̂. Moreover, if l ∈ LR, we introduce a
new location

...
l . The information associated with the replicas

is intuitively characterized as follows:

•
...
l -locations: Whenever the location l ∈ LR is entered
via a transition with reset of x from location k in
the original BADC, the location

...
l is entered in the

transformed one from location k if k 6∈ LP or from
any replica of k if k ∈ LP . The value ν(x) is the same
in

...
l and in the corresponding l in the original BADC.

• l̆-locations: Let x ./ dx be the only degradation
constraint which bounds x in A. Let us define a lower
bound lb(x) as lb(x) = x ./ dx if ./∈ {<,≤}
and lb(x) = ¬(x ./ dx) otherwise. Whenever the
location l ∈ LP is entered from a location k in which
ν(x) |= lb(x) via a transition without reset of x in

the original BADC, the location l̆ is entered in the
transformed one from any replica of k (necessarily,
k ∈ LP ). Due to the monotonicity of degradation,
starting from the state k the value of x remains less
or less-or-equal than dx until a reset of x. Therefore,
we do not need to keep the value ν(x) in l̆ the same as
in l (it suffices to know that ν(x) remains below dx).
Thus we can add reset of x on each transition entering
the l̆-location.

• l̂-locations: l̂-locations are dual to l̆-locations. When-
ever the location l ∈ LP is entered from a location k
in which ν(x) 6|= lb(x) via a transition without reset
of x in the original BADC, the location l̂ is entered
in the transformed one from k̂ and in case k ∈ LR
also from

...
k . It cannot be entered from k̆ as we know

that ν(x) |= lb(x) in k̆. The value ν(x) is the same
in l̂-location and in the corresponding l-location in the
original BADC. Note that any transition leading to a
l̂-location contains a bound of form x > dx or x ≥ dx.

Transitions entering l are naturally replaced by transitions
entering

...
l , l̆ or l̂ keeping the above characteristics. Normal

form is guaranteed by the fact that for every degradation
variable S every transition in the resulting BADC either
resets the value of x or contain a constraint of the form
x > dx or x ≥ dx.

The correctness of the construction is proved and the
complexity issues are examined in [13]. The algorithm
complexity is O(22n · (|L|+ |T |)), where |L| is the number
of locations in the input BADC, |T | is the number of tran-
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Figure 6. MDPs indistinguishable by any LTL, PCTL, or PCTL∗ formula.

sitions, and n denotes the overall number of occurrences of
all degradation variables in the BADC (i.e. Σd∈D Σt∈T m,
where D is the set of degradation variables, and d is m-
bounded in t).

VI. QUANTITATIVE LINEAR PROPERTIES OF MARKOV
DECISION PROCESSES

This section raises the question about the parallel between
the systems with degradation and the Markov decision
processes (MDPs) [12], [14], [15] as well as about the re-
lationship between probabilistic logic PLTL, PCTL, PCTL∗

and the quantitative linear properties formalized via BADCs.
It is easy to see that an MDP is just a special case of a system
with degradation. However, Büchi automata with degrada-
tion constraints can distinguish otherwise indistinguishable
MDPs.

Current model checking of MDPs aims particularly on
properties expressed in LTL (Linear Temporal Logic) [16],
PCTL (Probabilistic Computation Tree Logic) [17] and
PCTL∗ [18]. The problem of quantitative LTL model check-
ing of an MDP is to determine minimal and/or maximal
probability (w.r.t. all possible schedulers) of a set of paths
in the MDP that satisfy the LTL formula. PCTL and PCTL∗

verification gives an answer to the question whether a given
MDP satisfies a PCTL (or PCTL∗) state formula.

MDPs as Transition Systems with Degradation

Let us consider a transition system with degradationM =
(S,Act,→, Sinit ,AP ,L) and extend it with the following
restrictions on the transition relation →:
• for all s1, s2 ∈ S, a ∈ Act there is at most one d such

that (s1, a, d, s2) ∈→
• for all s1 ∈ S, a ∈ Act :

∑
(s1,a,d,s2)∈→ d = 1 or 0.

We may think of the probability as a quality of the system
that degrades in time. If probabilities are interpreted as
degradations, the restricted transition systems with degra-
dation are syntactically equivalent to MDPs.

MDPs and Temporal Properties

In this subsection we show two MDPs which cannot be
distinguished by any LTL, PCTL or even PCTL∗ formulas.

First, let us consider the MDP M = (S = {s, t}, Act =
{α, β}, P, s, {a},L) as illustrated in Figure 6.a.

We show that the minimal and the maximal probability of
a set of paths originating at a particular state and satisfying
a linear temporal property is always either 0 or 1.

Observation 6.1: Let η be an arbitrary scheduler for
M. Then the Markov chain induced by η is Mη =
(S+, Pη, sinit ,AP ,Lη), where
Pη(s0 . . . sn, s0 . . . snsn+1) = P (sn, η(s0 . . . sn), sn+1)

=


1 if sn = sn+1 and η(s0 . . . sn) = α or

if sn 6= sn+1 and η(s0 . . . sn) = β

0 otherwise

and Lη(s0 . . . sn) = L(sn).
Note that for each state s0 . . . sn in Mη

there is exactly one state s0 . . . snsn+1 such that
Pη(s0 . . . sn, s0 . . . snsn+1) > 0. In other words, there
is exactly one path π = (s0)(s0s1)(s0s1s2) . . . in Mη

originating at s0. The set of all paths originating at s0
in Mη is {π} and its probability is 1. Similarly, there is
exactly one path π = (s0s1)(s0s1s2)(s0s1s2s3) . . . in Mη

originating at s0s1 and the probability of the set of all
paths {π} originating at s0s1 is equal to 1.

Let us consider the language L of words over the alpha-
bet 2{a} representing a linear temporal property. For each
symbol γ ∈ 2{a} we distinguish three possible cases:

1) there is no word in L starting with γ,
2) L contains all words starting with γ, or
3) ∃ σ1 = γ(2{a})ω ∈ L and ∃ σ2 = γ(2{a})ω 6∈ L
To simplify the following discussion we denote by symbol

u the state s of M in case of γ = {a} and the state t
otherwise (i.e. if γ = ∅).

Lemma 6.2: Suppose there is no word in L starting with
the symbol γ. Then the minimal and the maximal probability
of the set of paths of M originating at u with trajectories
in L is 0.

Proof: It follows directly from the fact that there is
no path π = uα0s1α1s2α2 . . . in M with the trajectory
L(u)L(s1)L(s2) . . . ∈ L.

Lemma 6.3: Suppose L contains all words starting with
γ. Then the minimal and the maximal probability of the set
of paths of M originating at u with trajectories in L is 1.

Proof: For each path π = uα0s1α1s2α2 . . . in M
originating at u it holds that the corresponding trajectory
L(u)L(s1)L(s2) . . . = γL(s1)L(s2) . . . is present in L.
Thus the probability of the set of paths originating at u with
trajectories in L is 1 for any possible scheduler η in M.

Lemma 6.4: Let us suppose there are σ1 = γ(2{a})ω ∈ L
and σ2 = γ(2{a})ω 6∈ L. Then the maximal probability of
the set of paths ofM originating at u with trajectories in L
is 1 and the minimal probability is 0.
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probability of the set of
paths with trajectories in L

L origin. at s origin. at t
min max min max

{a}(2{a})ω ∩ L = ∅ 0 0 – –

{a}(2{a})ω ⊆ L 1 1 – –

{a}(2{a})ω ∩ L ∩ co− L 6= ∅ 0 1 – –

∅(2{a})ω ∩ L = ∅ – – 0 0

∅(2{a})ω ⊆ L – – 1 1

∅(2{a})ω ∩ L ∩ co− L 6= ∅ – – 0 1

Table I
SUMMARY OF RESULTS, LEMMA 6.2 - 6.4

Proof: We define schedulers η1 and η2 forM such that
the trajectory of the paths originating at u in the induced
Markov chain Mη1 and Mη2 are σ1 and σ2, respectively.

Let σ1 = γA1A2 . . .. The scheduler η1 is defined by the
prescription (s0 = u)

η1(s0 . . . sn) =

{
α if L(s0 . . . sn) = An+1

β if L(s0 . . . sn) 6= An+1.

The scheduler η1 unambiguously determines the only path
in Mη1 and the trajectory of this path is σ1. This fact
together with the Observation 6.1 implies that the maximal
probability of the set of paths of M originating at u with
trajectories in L is 1.

For the minimal probability and the scheduler η2 the
arguments are similar.

We summarize results given by Lemmas 6.2 - 6.4 in Table
I. The symbol ’–’ indicates that we cannot say anything
about the probability bound. Note that any language L
satisfies exactly one of the three cases given on the first
three lines of the table and exactly one of the three cases
given on the second three lines of the table. Therefore, given
an arbitrary linear temporal property L, the minimal and the
maximal probability for the system M can be completely
determined using just the table.

Let us now consider an MDP M′ in Figure 6.b. Using
similar arguments as for the MDP M we obtain the very
same results about probability bounds for linear temporal
properties for M′, for the summary see Table I.

The minimal and the maximal probabilities of the set of
paths originating at the initial states s and s′ with trajectories
in L are the same for the MDP M and the MDP M′,
respectively. The same observation holds for the states t
and t′. Thus there is a one-to-one correspondence between
the states s and s′ and also between the states t and t′.
Therefore MDPsM andM′ cannot be distinguished neither
by qualitative verification nor by quantitative verification
with any LTL formula.

x ≤ 0.7
∅{a}

reset = {x}
∅

Figure 7. BADC distinguishing the two MDPs.

0.7

0.3s0 s1

Figure 8. MDP demonstrating interesting BADC property.

Furthermore, if ϕ is a CTL path formula then both the
minimal and the maximal probability of the set of paths
satisfying ϕ is always either 0 or 1 for all the states both in
M andM′. Hence, for any PCTL or PCTL∗ formula P./pϕ
it holds that M |= P./pϕ⇔M′ |= P./pϕ. As a result, the
difference between M and M′ cannot be captured by any
PCTL or PCTL∗ formula.

MDPs and Quantitative Linear Properties

Now we are to define a quantitative linear property which
allows us to distinguish the Markov decision processes
M and M′. The property is specified by the BADC in
Figure 7. The property captures the existence of a path with
the trajectory {a}∅ω such that the amount of degradation
(probability) between the state s (s′) and the first next
occurrence of the state t (t′, respectively) is at most 0.7.
This property is false for M (there is only one path with
the trajectory {a}∅ω and the amount of degradation is 1),
but is true for M′ (there is a path where the amount of
degradation is 0.5).

Using BADCs for expressing properties of MDPs brings
us a new possibility to check for the presence of a specific
path with a certain probability contribution. See for example
the MDP as depicted in Figure 8. The probability of reaching
s1 from s0 is 1 for all (there is only 1) schedulers. Every
finite path from s0 to s1 (there are infinitely many of them)
contribute to the resulting probability measure with some
portion. With BADC approach we can, for example, verify
that the mentioned portion exceeds 0.2 for some paths, but
is at most 0.3 for all paths.

VII. CONCLUSIONS

Degradation phenomenon as presented in this paper is
important from two different points of view. First, it al-
lows system designers to capture and analyze new kind of
qualities of their systems, which itself is quite interesting.
A second aspect is that the new degradation approach
provides a new theoretical way to describe and analyze
quantitative linear properties for probabilistic systems, such
as MDPs. A limited-degradation-response property is a nice
example of a property evaluated over a single run, hence
a property that cannot be expressed in any formalism built
upon some probability measures. Linear properties and LTL
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model checking in particular, are well established and used-
in-practice formalism. A sort of linear property verification
approach for probabilistic systems has been missing so far.

We stress that the degradation cannot be easily mod-
eled using other well known formalisms. Many of other
formalisms are either too restrictive to express and check
a limited-degradation-response properties, e.g. the standard
non-deterministic systems or MDPs. Other formalisms are so
rich that a general model checking procedure is undecidable,
which is the case of e.g. general hybrid systems, other
formalism are simply focused to other quantitative aspects
of systems like, e.g. real-time model checking, or model
checking rewards.

A straightforward extension is to define a sort of extended
linear temporal logic that would allow us to express the
desired degradation properties as formulas. For example, the
limited-degradation-response property could be stated in an
LTL like formalism as follows: G(A =⇒ F≤0.8B)). An
inseparable part of this task is also to design a transformation
procedure that would for a given formula produce the corre-
sponding normalized BADC. Finally, let us mention that we
have implemented a prototype model checker that is able to
verify MDPs against properties given as normalized BADCs
on top of our verification tool set DiVinE [19] allowing
thus to employ parallel architectures to verify large-scale
systems. The models to be verified by DiVinE model checker
are given as networks of asynchronously communicating
extended finite automata. For the purpose of verification
of systems with degradation, we only extended individual
automata with the possibility of specification of individual
degradation constants.
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DiVinE – A Tool for Distributed Verification�

(Tool Paper)

Jǐŕı Barnat, Luboš Brim, Ivana Černá, Pavel Moravec,
Petr Ročkai, and Pavel Šimeček

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We present a tool for cluster-based LTL model-checking and
reachability analysis. The tool incorporates several novel distributed-
memory algorithms and provides a unique interface to use them. We
describe the basic structure of the tool, discuss the main architecture
decisions made, and briefly explain how the tool can be used.

1 Introduction

A few enumerative verification tools have been developed to support engineers
in their verification needs. Despite significant improvements in model-checking
techniques, their verification capabilities are in the case of real-life industrial
models limited by the amount of data a single state-of-the-art computer is able
to handle efficiently.

In recent years, extensive research has been conducted in parallel and dis-
tributed model-checking with the aim to push forward the frontiers of enumera-
tively verifiable systems [1,3,4,6,8]. Consequently, several distributed verification
prototype tools emerged. The deployment and usage of a distributed tool is sig-
nificantly more demanding compared to the sequential one. It assumes a cluster
with properly installed message passing software and also some programming
skills are required in the case the tool has to be compiled from its source codes.
These are some of the reasons why distributed verification tools are used rarely,
although their verification capabilities are undoubtedly bigger in comparison to
the sequential tools.

The goal of Distributed Verification Environment project (DiVinE) is to pro-
vide an extensible framework to support distributed verification on clusters.
DiVinE offers three means to achieve this goal: First, a library of common
functions (DiVinE Library) on top of which various distributed verification al-
gorithms can be implemented. Second, a collection of state-of-the-art distributed
verification algorithms incorporated into a single software product (DiVinE
Tool) which is as easy to install as most sequential tools. And third, a ready-
to-use cluster for users of sequential tools in case they need to run experiments
using DiVinE Tool without having access to their own cluster. In this paper
we report on DiVinE Tool only.
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.
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2 DiVinE Tool

DiVinE Tool is a parallel, distributed-memory enumerative model-checking
tool for verification of concurrent systems. The tool employs aggregate power
of network-interconnected workstations to verify systems whose verification is
beyond capabilities of sequential tools.

DiVinE modelling language is rich enough to describe systems made of syn-
chronous and asynchronous processes communicating via shared memory and
buffered or unbuffered channels. System properties can be specified either di-
rectly in Linear Temporal Logic (LTL) or alternatively as processes describing
undesired behaviour of systems under consideration (negative claim automata).
Thanks to the DivSPIN project [2], DiVinE Tool is also capable of verifying
models written in ProMeLa.

From the algorithmic point of view, the tool is quite unique. In automata-
based approach to LTL model-checking, the verification problem is reduced to
problem of accepting cycle detection in the graph of Büchi automaton. Two al-
gorithms are typically used for solving the problem: Nested Depth-First Search
algorithm and Tarjan’s algorithm for decomposition of the graph into strongly
connected components. Unfortunately, they both strongly rely on depth-first
search postorder that is known to be difficult to be computed in parallel. There-
fore, new, principally different, parallel algorithms for accepting cycle detection
had to be designed. These are, namely, algorithm for cycle detection using addi-
tional dependency data structure, algorithm based on negative cycles, algorithms
for forward and backward elimination of trivial and non-accepting strongly con-
nected components, algorithm for cycle detection based on breadth-first search,
and algorithm based on propagation of the value of maximal accepting prede-
cessor(see [1] for an overview). Besides these, DiVinE Tool includes also an
algorithm for distributed state space generation and an algorithm that performs
sequential NestedDFS in a distributed-memory setting. More details on algo-
rithms can be found on DiVinE project web pages [5].

DiVinE Tool can be deployed either as a complete software package to be
installed on a separate Linux cluster or as a small Java application to access
a pre-installed clusters. In the first case, basic Linux administrator skills are
required to install the tool, but the user is in the full control of environment
settings under which distributed algorithms are to be executed and can con-
trol the tool from a command line. In the second case, the tool can be used
employing DiVinE pre-installed clusters and accessed remotely via a graphical
user interface. The graphical user interface (GUI) requires properly installed
Java Runtime Environment. Both versions are available on DiVinE project web
page [5] together with a few models determined for initial acquaintance with the
tool.

An important part of the DiVinE project is the maintenance of a public
server together with a limited number of DiVinE dedicated clusters. For security
reasons registered users are allowed to connect to DiVinE public server only. New
users can be registered by following instructions given on DiVinE project web
pages.
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3 Interacting with DiVinE by Using GUI

The description of command line interface is beyond the scope of this paper.
Therefore, we focus on controlling DiVinE Tool with GUI only. GUI is imple-
mented as a client-server application where the server part is responsible for the
control of the tool. This means the server maintains currently verified models,
executes distributed algorithms, monitors cluster load, etc.

The client window is divided into three parts. In the main working area,
models and properties are specified, and outputs of distributed algorithms are
displayed. Another part of the client window has a tree-like structure and is
used to browse currently loaded models including corresponding properties and
verification results. The third part displays messages reporting changes in the
status of running algorithms.

A new verification project is started by pressing the New model button. The
system to be verified can be written directly into the main window or imported
from a local file. Having specified a model of the system the user is expected
to provide properties the system should meet using the button Add property.
Besides distributed state space generation, the tool is capable of verifying full
range of LTL formulae over state-based atomic propositions. Atomic proposi-
tions are specified using the keyword #define, e.g. #define p x>3, the formula
is specified using the keyword #property, e.g. #property FG(p). Property spec-
ification can also be imported from a local file. The pair model-property is called
a task. User can assign several distributed algorithms to be run for a given task.
The number of workstations to be used can be specified for every algorithm as
well. Individual algorithms are initiated with the button Execute.

Each algorithm produces two different types of output that can be accessed
with the client: the standard output and log files. While the standard output is
used to report progress in the computation and final verification results, logs are
used to generate multiple statistics to support the performance analysis. For each
computer participating in the computation, the logged values include the amount
of memory currently allocated by the algorithm, number of sent and received
messages, time spent in user and kernel space, size of queue of unexplored states,
etc. Client displays the last logged values with refresh rate around five seconds,
which allows the user to monitor the status of the computation in almost real
time.

All specified models, properties and verification results are stored on the server
until they are explicitly removed. Therefore, the user can disconnect from the
server, while initiated algorithms are still running, and reconnect later to collect
the verification results. It is also possible to specify and initiate new tasks during
computation of others. Hence, several tasks can be computed in parallel.

4 Conclusion

DiVinE is a tool for enumerative model checking of LTL properties on a cluster
of workstations. We performed numerous experiments that clearly demonstrates
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the tool is capable to handle systems intractable by a single machine. E.g. for
some classical verification problems the results on a cluster with 20 worksta-
tions were: Anderson’s mutual exclusion problem – space required was 10GB
of memory/verification took about 40 minutes, Dining Philosophers – 9GB/20
minutes, Leader Election – 17GB/46 minutes. For more examples see the tool
web page. Another interesting performance characteristic is the scalability. The
figure shows typical behaviour of algorithms with respect to the number of work-
stations involved.
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Abstract. We present a tool for parallel shared-memory enumerative
LTL model-checking and reachability analysis. The tool is based on
distributed-memory algorithms reimplemented specifically for multi-core
and multi-cpu environments using shared memory. We show how the par-
allel algorithms allow the tool to exploit the power of contemporary hard-
ware, which is based on increasing number of CPU cores in a single system,
as opposed to increasing speed of a single CPU core.

1 Introduction

DiVinE Multi-Core has evolved from DiVinE Tool [2], sharing its input
language and state space generator. As DiVinE Tool, it is an enumerative LTL
model checker based on parallel fair cycle detection. The full source code can be
obtained from [6] and compiled on a number of computer architectures.

The groundwork of tool design and algorithm choice has been laid down in [1].
We have crafted a tool from the ground up with shared-memory parallelism
in mind. Due to natural choices of algorithms and memory organisation (the
latter explored in more detail in [3]), the tool implementation closely resembles
a distributed-memory one and may lend itself to extension to clusters of multi-
core machines.

The primary motivation behind DiVinE Multi-Core has always been per-
formance. Until recently, improvements in hardware architecture have been pro-
viding verification tools with performance increases mostly for free – without
any need for implementational or algorithmic changes in the tools. However,
this trend appears to be diminishing in favour of increasing parallelism in the
system – which is nowadays much cheaper and easier to implement than it is to
build computers with even faster sequential operation.

However, this architectural shift means that it is no longer possible to benefit
from hardware progress, without introducing algorithmic changes to our tools.
This is what DiVinE Multi-Core is striving for – providing algorithms able
to exploit such parallel architectures and offering an implementation that can
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.
�� This work has been partially supported by Red Hat, Inc.
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be deployed in practical situations. The main challenging aspect of the design of
a parallel application is to achieve practical scalability – a decrease in runtime
with an increase in the number of involved CPU cores.

Other researchers have recognized this trend and multi-core algorithms have
been added to at least to previously purely serial model checker SPIN [7]. Un-
fortunately, only a dual-core algorithm has been devised for full LTL model
checking, limiting the multi-core capabilities to reachability analysis.

2 DiVinE-MC Algortihm

DiVinE Multi-Core is based on automata-theoretic approach to LTL model
checking [9]. The input language allows for specification of processes in terms of
extended finite automata and the verified system is then obtained as an asyn-
chronous parallel composition of these processes. This system is in turn synchro-
nously composed with a property process (negative claim automaton) obtained
from the verified LTL formula through a Büchi automaton construction.

The resulting finite product automaton is then checked for presence of ac-
cepting cycles (fair cycles), indicating nonemptiness of its accepted language –
which in turn indicates invalidity of the verified LTL property.

The algorithm employed for accepting cycle detection is OWCTY [5] aug-
mented with a heuristic for on-the-fly cycle detection inspired by the MAP
algorithm [4]. It is not the purpose of this tool paper to go into details of
the algorithm, so for in-depth description, we refer the reader to the two cited
papers.

The main idea behind the OWCTY algorithm is to use topological sort for
cycle detection – an algorithm that does not depend on DFS postorder and can
be thus parallelized reasonably well. Detection of cycles in this way is linear, but
since we do accepting cycle detection, provisions for removing non-accepting
cycles need to be added. This makes the algorithm quadratic in the worst case
for general LTL properties, although for a significant subset of formulae (those
that translate to weak Büchi automata) the algorithm runs in linear time in the
size of the product automaton.

The MAP algorithm uses maximal accepting predecessors to identify accept-
ing cycles in the product automaton. The main idea is based on the fact that
each accepting vertex lying on an accepting cycle is its own predecessor. Instead
of expensively computing and storing all accepting predecessors for each accept-
ing vertex (which would be sufficient to conclude the presence of an accepting
cycle), the algorithm computes only a single representative accepting predecessor
for each vertex – the maximal one in a suitable ordering. Clearly, if an accept-
ing vertex is its own maximal accepting predecessor then it lies on an accepting
cycle. This condition is used as the heuristic mentioned above. Note that the
opposite direction does not hold in general. It can happen that the maximal
accepting predecessor for an accepting vertex on a cycle does not lie on the cycle
and the original MAP algorithm employs additional techniques to handle such
a case.
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process P_$1 {

byte j=0, k=0;

state NCS, CS, wait, q2, q3;

init NCS;

trans

NCS -> wait { effect j = 1, active = $1, waiting[$1] = 1; },

wait -> q2 { guard j < N;

effect pos[$1] = j, active = $1; },

q2 -> q3 { effect step[j-1] = $1, k = 0, active = $1; },

q3 -> q3 { guard (k == $1 || pos[k]< j) && k < N;

effect k = k+1, active = $1; },

q3 -> wait { guard step[j-1] != $1 || k == N;

effect j = j+1, active = $1; },

wait -> CS { guard j == N;

effect in_critical = in_critical+1,

active = $1, waiting[$1] = 0; },

CS -> NCS { effect pos[$1] = 0, in_critical = in_critical-1,

active = $1; };

}

Fig. 1. An example of model specification: A single process participating in peterson
mutual exclusion protocol (the $1 placeholder signifies the id of the process)

#define a_0 (active == 0)

#define a_1 (active == 1)

#define w_0 (waiting[0] == 1)

#define w_1 (waiting[1] == 1)

#define c_0 (P_0.CS)

#define c_1 (P_1.CS)

#property G(F(c_0)) && G(F(c_1))

#property ((GF(a_0 && w_0)) -> GF(c_0)) && ((GF(a_1 && w_1)) -> GF(c_1))

Fig. 2. Atomic propositions and LTL properties for the model in a .ltl file

If the heuristic fails, the OWCTY run will still detect accepting cycles if
present. The heuristic does not interfere in any way when there are no accepting
cycles – OWCTY will detect that condition by itself. The cost of the heuristic
is a very slight increase in per-state memory usage, and a small runtime penalty
in the first phase of the first iteration of OWCTY. Overall, it does not increase
the time complexity compared to OWCTY and in a number of cases it detects
property violation without generating the entire state space, which makes the
combined algorithm on-the-fly.

However, even though the algorithm is not asymptotically optimal, in practice
it is hardly a problem when it comes to performance – the bottlenecks can be
found elsewhere.
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$ divine-mc owcty mutex_peterson.naive.dve

initialize... |S| = 81219

------------- iteration 0 -------------

reachability... |S| = 81219

elimination & reset... |S| = 59736

------------- iteration 1 -------------

reachability... |S| = 59736

elimination & reset... |S| = 59736

=====================================

Accepting cycle FOUND

=====================================

generating counterexample... done

Fig. 3. Invocation of the tool for LTL model checking

3 Using the Tool

First and foremost, the model needs to be specified in the DVE modelling lan-
guage and the property needs to be specified either as an LTL formula or as a
Büchi automaton. We will present usage of the tool on a simple example of a
mutual exclusion protocol. Source code of DVE specification of a single process
of such a model can be found in Figure 1. The first LTL property we will use is
GFc0 ∧GFc1, which is a näıve formulation of the idea that the two processes
are infinitely often in the critical section. An improved version of the formula
that enforces fairness will be (GF(a0∧w0)→ GFc0) ∧ (GF(a1∧w1)→ GFc1).
The propositions a and w mean that the given process is active (when a holds)
and that it is waiting (when w holds). First of these formulae is invalid (and the
tool produces a counterexample), whereas the second one will be shown to hold
for the model presented.

An example invocation of the tool for the model with 3 processes (and the
formulae extended to 3 processes straightforwardly) can be seen in Figure 3.
The counterexample could be browsed by running divine-mc.simulator on
the produced mutex peterson.naive.trail. The simulator is currently fairly
rudimentary, but it still serves the purpose. When the same verifier command
is used on the second formula, no counterexample is generated and the tool
declares that an acceepting cycle has not been found, which means that the LTL
property holds.

It can be seen that the input file to the verifier is a single DVE file that
already contains a property process. Such a file could be written by hand
(when the property has been specified as a Büchi automaton) or produced by
divine-mc.combine, which takes a set of LTL formulae as input (in an .ltl
file containing definitions of atomic propositions and the formulae – an exam-
ple of such file containing the 2 discussed properties can be seen in Figure 2).
The divine-mc.combine script will produce a single DVE file for each property,
which can then be used as an input for the verifier.
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Fig. 4. Timing and speedup of reachability analysis
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Fig. 5. Timing and speedup of LTL model checking, the algorithm used is OWCTY

4 Implementation

DiVinE Multi-Core is implemented on top of the POSIX Threads standard.
Similarly to the distributed-memory approach, the state space is partitioned into
parts, each thread being responsible for states of one of the parts. A thread main-
tains its own hashtable, explores successors of states of its part of the state space,
and communicates with other threads by means of lock-free shared-memory mes-
sage passing.

5 Experiments

The figures presented come from a 16-way AMD Opteron 885 (8 CPU units
with 2 cores each) machine, with 64G of RAM, compiled with gcc 4.2.2 in 64-
bit mode, using -O2. The models have been taken from a DVE model data-
base [8]. Their descriptions and the verified properties can be found in the
database: anderson is anderson.6.dve and anderson.6.prop4.dve, elevator
is elevator2.3.dve and elevator2.3.prop4.dve, at is at.5.dve, leader2 is
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leader election.5.prop2.dve and finally telephony is telephony.7.dve. The
property-less models have been used in reachability timing, whereas those con-
taining LTL property (suffixed propN.dve) have been used for OWCTY timing.

More experimental data can be found on the tool webpage [6].

6 Future Work

To improve the usefulness of the tool we plan to implement a graphical interface
for counterexample browsing, which would be much more intuitive than the
current fairly rudimentary simulator available.

Moreover, we intend to further optimize the state space generator, which
currently seems to be the main bottleneck of the tool – therefore the tool would
benefit greatly from an improved interpreter.

Another future goal is to adapt and implement some of the known distributed
memory partial order reduction techniques.
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In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool
exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently
detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core
algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool out-
performs non-accelerated version of the algorithm and we discuss where the limits of the tool are and
what we intend to do in the future to avoid them.

1 Introduction

Verification and validation became an important part of the design process. Unfortunately, the gap be-
tween the complexity of systems the current formal verification tools can handle and the complexity of
systems built in practice is still quite wide. Therefore, any technique that accelerates the verification
process is highly desirable. A possible way to reduce the delay due to the formal verification process
is to accelerate the computation of verification tools using contemporary parallel hardware. Hardware
platforms such as multi-core multi-cpu systems or many-core hardware accelerators, e.g. GPGPUs, have
recently received a lot of attention in this aspect.

CUDA (Compute Unified Device Architecture) is a parallel computing architecture developed by
NVIDIA [7]. Recently, it has been successfully used to accelerate formal verification process for selected
settings. In [4] authors demonstrated significant speedup in the verification of probabilistic systems,
while in [8, 9] CUDA has been used to accelerate disk-based model checking and state space generation.
Let alone the CUDA technology, other many-core hardware acceleration platforms have been tried. For
example, an implementation of FPGA accelerated Murϕ[13] verification tool has been reported in [10].

In this paper we introduce a new CUDA accelerated verification tool for model checking formulas of
Linear Temporal Logic (LTL). The problem of LTL model checking is well established problem in the
formal verification community. Computationally the problem reduces to the problem of detection of an
accepting cycle in a directed graph [14]. The new tool builds upon the DiVinE [2] framework, hence the
name of the tool is DiVinE CUDA.

2 DiVinE CUDA Algorithmics

DiVinE-CUDA employs algorithm MAP [5] for accepting cycle detection. The algorithm is, however,
formulated as a repeated matrix-vector product procedure [3] in order to efficiently utilize CUDA archi-
∗This work has been partially supported by Czech Science Foundation grants No. 201/09/P497, 102/09/H042 and by

Academy of Sciences of Czech Republic grant No. 1ET408050503.
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tecture. The idea of the MAP algorithm is as follows. Given a directed graph with accepting vertices,
the algorithm impose ordering on accepting vertices and repeatedly computes the maximal (w.r.t. the or-
dering) accepting predecessor map(u) for every accepting vertex u in the graph. If the algorithm detects
an accepting vertex that is its own maximal accepting predecessor, then the vertex lies on an accepting
cycle and the algorithm terminates. In the other case, all accepting vertices that were maximal accepting
predecessors for some other vertices are marked as non-accepting (because they do not lie on an accept-
ing cycle) and the procedure is restarted (goes to the next iteration). The algorithm terminates either if
accepting cycle is found or there are no more accepting vertices in the graph. From technical reasons
we employ MAP algorithm on a transposed state space graph, note that graph transposition preserves the
presence of accepting cycles.

The main computation demanding step of the algorithm is the computation of the maximal accepting
predecessor for every accepting vertex. This is done by means of value propagation of accepting vertices
along edges in the graph. If multiple values are propagated into a single vertex, the maximum among
all the incoming values and the value of the vertex is computed and used for further propagation. Every
vertex keeps the maximum value that has been propagated through the vertex. Once a fix-point is reached
(no value can be improved), values of maximal accepting successors are computed.

In DiVinE CUDA tool it is the maximal accepting successor computation that is accelerated with
CUDA device. In particular, relevant parts of the graph to be analyzed are represented in an adjacency
matrix. Having the matrix, the value propagation can be realized as matrix-vector product [3] for com-
putation of which the CUDA architecture is known to be extremely efficient [11].

When initiated the DiVinE CUDA tool proceeds as follows. It starts a thread that computes the
adjacency matrix needed for CUDA processing. We use CSR (compressed sparse row) format to store
the matrix. Note that we do not list all reachable states in the matrix, but only those that are in components
containing some accepting vertices [12]. This feature significantly reduces the size of the matrix to be
handled. (The size reduction is up to 20-30% of the full size in most cases). At the same time the tool
runs a second thread that repeatedly performs CUDA accelerated accepting cycle detection on the part
of the matrix that has been computed so far. If an accepting cycle is present in that part of the graph it is
discovered before the full state space is generated. Therefore, DiVinE CUDA works on-the-fly.

3 Using the Tool

DiVinE-CUDA is a tool that stems from parallel and distributed LTL Model Checker DiVinE [2, 1]. As
such, DiVinE-CUDA tool uses DiVinE native modeling language DVE [2]. In DVE modeling language
the system to be verified is given as an asynchronous network of communicating finite automata. Transi-
tions of every automaton in the network can be augmented with guards, buffered and unbuffered channel
communication primitives, and variable updates.

The scheme of how the DiVinE CUDA tool should be used is given in Figure 1. Having prepared the
model either directly as a .dve file or from a .mdve template using divine.preprocessor the user has
to specify the property to be verified. The property can be given either directly as a property automaton
(also known as never claim automaton) in the model file, or as (a set of) LTL formula(s) in a separate file,
in which case the files have to be further processed by divine.combine tool to get a model file with the
property automaton.

The next step in the verification process is to produce precompiled version of the model using
divine.precompile tool. Precompiled version of the model (file with extension .dveC) is actually
a dynamically linked library containing functions to generate states of the model with specification. Fi-
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.dve

.dve

.dve

.dve

.ltl

.mdve .dve
divine.preprocessor

.dve .dveC

stdout
divine−cuda

.dveC

divine.precompile

divine.combine

Figure 1: DiVinE CUDA work-flow.

nally, the precompiled representation of the model is used as an input for the divine-cuda tool itself.
During the computation the tool reports periodically the numbers of generated states and transitions,

numbers of MAP iterations and CUDA device calls made so far to the standard output. At the end the
tool outputs whether an accepting cycle has been found, in which case the given model does not satisfy
the specification, or whether no accepting cycle has been discovered, i.e. the specification is satisfied.

4 Experiments

To briefly evaluate our tool we compared our implementation of CUDA accelerated MAP algorithm
with the existing algorithms implemented in the DiVinE-Cluster version 0.8.2 model checker. For the
comparison we used selected DiVinE native models including leader election protocol, elevator cabin
system, Peterson’s and Anderson’s solutions to mutual exclusion problem and dining philosophers. We
tested both the models with specification error (with an accepting cycle) as well as models without
a specification error. All the experiments were run on a Linux workstation equipped with two AMD
Phenom(tm) II X4 940 Processors @ 3MHz, 8 GB DDR2 @ 1066 MHz RAM and NVIDIA GeForce
GTX 280 GPU with 1GB of GPU memory.

Table 1 provides details on run-times of individual algorithm parts. As for the CUDA MAP algo-
rithm, the total run-time includes the initialization time (not reported in the table), CSR construction time
(CSR time), and time spent on CUDA computation (CUDA time). Note that the first iteration of CPU
MAP is actually slower than construction of the CSR representation. This is because the first iteration of
the CPU MAP not only generates the state space, but also computes first stable values of map. Just for
curiosity we also compare the performance of the new tool with DiVinE Cluster tool running OWCTY
Algorithm [6]. Algorithms MAP and OWCTY were running on a single core.

Table 2 gives a comparison of overall run-times for both valid and invalid model checking instances.
Though, the overall speedup is not that significant, it is still impressive. We can also see that the burden
of data preparation is huge compared to the CUDA processing itself.

5 Availability and Future Work

At the moment the tool cannot handle models for which the corresponding reduced matrix of the graph
does not fit the memory of a single CUDA device, it lacks the ability of counterexample generation, and
cannot employ multiple threads to compute the CSR representation in parallel. We intend to address all
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CUDA MAP CPU MAP CPU OWCTY
accepting CSR CUDA total 1st iter. other iter. total reachability total

Model cycle time time time time time time # iter. time time
elevator 1 N 26 7 34 44 56 100 16 24 41

leader N 87 1 90 97 600 697 17 90 297
peterson 1 N 105 6 113 175 270 445 16 110 188
anderson N 31 7 39 64 51 115 5 33 113

elevator 2 Y 33 1 35 50 – 50 1 41 177
phils Y 45 1 47 295 102 397 5 180 576

peterson 2 Y 25 5 31 173 – 173 1 114 404
bakery Y 24 1 26 240 – 240 1 219 907

Table 1: Comparison of run-times (in seconds) for CUDA accelerated MAP algorithm, non-accelerated
MAP algorithm and OWCTY algorithm.

CUDA MAP CPU MAP CPU OWCTY
Models total time total time CUDA MAP speedup total time CUDA MAP speedup

non-accepting 276 1357 4.92 639 2.32
accepting 139 860 6.19 2064 14.87

both 415 2173 5.24 2730 6.51

Table 2: The overall run-times in seconds, and speedup of the whole model checking procedure.

CUDA MAP
CSR CUDA total CPU MAP CPU OWCTY
time time time

1 core: 386 + 29 = 415 Total time: 2 173 Total time: 2 730
Speedup: 5.24 Speedup: 6.51

2 cores: 193 + 29 = 222 Total time: 1087 Total time: 1365
Speedup: 4.87 Speedup: 6.15

4 cores: 97 + 29 = 126 Total time: 544 Total time: 683
Speedup: 4.32 Speedup: 5.42

8 cores: 49 + 29 = 78 Total time: 272 Total time: 342
Speedup: 3.48 Speedup: 4.38

Table 3: A hypothetical speedup of DiVinE CUDA w.r.t. multicore parallel algorithms. We suppose
optimal (linear) speed-up for both parallel algorithms MAP and OWCTY and for the CSR construction
phase of the CUDA MAP algorithm.
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these issues in the next version of the tool. As for the run-times, we expect significant improvement due
to parallel preparation of the CSR graph representation. See Table 3. As for the limit on the size of the
verification problem, we plan to introduce sort of clever swapping mechanism of the matrix stored in the
GPU memory and to extend the memory available by employ multiple CUDA devices.

DiVinE CUDA tool is freely available from DiVinE web pages 1 where we provide both download
and install instructions as well as simple tutorial on using the tool.
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Abstract—We present a tool for parallel enumerative LTL
model-checking and reachability analysis. The tool brings model
checking to high-powered multi-core systems, as well as high-
performance clusters. Boasting pluggable modelling language
framework, it is possible to leverage the available parallel
algorithms for multiple problem domains, by using suitable input
language.

I. INTRODUCTION

In modern computer science, there are many applications
for model checking. No doubt, a number of applications is
placing great demands on model checkers – the models have
become very large and vast resources are required to verify
the desired properties. This is the case, for example, if we
want to apply model checking algorithms to verification of
specific properties of a complex biological model in order to
verify consistency of predictions of the system behaviour with
experimental data [1].

However, even though contemporary hardware is capable
of providing these resources, it is difficult to employ them
efficiently in model checking: a tool is needed that would
target high-performance parallel computers and clusters.

Historically, there have been two branches of DIVINE. First
of those two, DIVINE Cluster [2], targeted distributed-memory
environments through use of Message Passing Interface [3].
However, in 2007, we have found that the existing DIVINE im-
plementation is inadequate for contemporary shared-memory
multiprocessors. Parts of the tool have been rewritten specif-
ically for shared-memory systems and released as a separate
tool, DIVINE MULTI-CORE [4], [5].

In the course of its development, it became clear that
the distributed-memory branch of DIVINE would benefit
from improvements that have been made in DIVINE MULTI-
CORE. The current version, DIVINE 2.0 builds on both those
branches. The shared-memory capabilities give the tool high
performance on modern multi-core machines. Moreover, it can
take advantage, through distributed memory, of multiple such
systems at once, using the large aggregated memory to handle
very complex models that do not fit the physical memory of
a single computer.

Apart from the now-classical DVE modelling language,
DIVINE 2.0 comes with a flexible model input system that
allows for additional modelling languages to be used. The
input model may be either interpreted by one of the built-
in interpreters, or through an external interpreter that can be
provided by 3rd parties, or the model may be compiled by

an external compiler and loaded using a binary interface into
DIVINE, providing further performance benefits.

Full source code of the tool can be obtained from [6]. As
of this writing, the latest available version is first beta of 2.0.

II. MODEL-CHECKING ALGORTIHM

DIVINE is based on automata-theoretic approach to LTL
model checking [7]. The DVE input language lets the user
specify processes in terms of extended finite automata. These
processes are then composed asynchronously to obtain the
system to be verified. This system is in turn synchronously
composed with a property process (negative claim automaton)
obtained from the verified LTL formula through a Büchi
automaton construction.

The resulting finite product automaton is then checked for
presence of accepting cycles (fair cycles), indicating non-
emptiness of its accepted language – which coincides with
invalidity of the verified LTL property.

It is the fair cycle detection that happens to be the most
time-consuming part of the model-checking process. It is also
very memory-intensive, since the complete product automaton
needs to be stored in RAM, and for moderately complex
systems, the product automaton can have tens or hundreds
of millions of vertices. With certain algorithms (including the
one employed by DIVINE), the memory requirements can be
smaller when the considered system contains an error: only
the part of the system that the algorithm explored until it
discovered the error needs to be stored. Unfortunately, this
does not help with error-free models – and it is in the nature
of model checking, that erroneous models often evolve into
bug-free ones.

Since fair cycle detection is such a resource-intensive task,
it is only logical to apply parallel algorithms. Unfortunately, it
also happens to be a task that is hard to parallelise efficiently.
Nevertheless, as DIVINE shows, it is definitely possible to
outperform the strictly serial algorithms, even though the latter
have better theoretical complexity. Moreover, with ongoing
hardware development, the performance gap between best
parallel and best serial algorithms will only widen.

III. USING THE TOOL

The input model can be provided in a DVE format, or, as
outlined above, custom interpreters or pre-compiled binaries
can be used. In case of a DVE model, the property needs to be
specified either as an LTL formula or as a Büchi automaton.
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$ divine verify beem-peterson.4.prop4.dve
initialise... |S| = 1119479

------------- iteration 1 -------------
reachability... |S| = 1119479
elimination & reset... |S| = 0
=====================================

Accepting cycle NOT found
=====================================

Fig. 1. Invocation of the tool for LTL model checking.

1 2 3 4
1 101 64.9 50 39.5
2 84 42 35.7 (48.4)
3 49.4 29.1 34.9 (35.7)
4 39.5 21.6 22.3 (27.6)
6 38.7 16.5 16.8 (21.2)
8 20.8 14.5 13.4 (19.1)

10 21.4 13.4 12.5 (18.8)

TABLE I
TIMING OF REACHABILITY ON DIFFERENT NUMBER OF MACHINES (1-10)
AND DIFFERENT NUMBER OF THREADS PER MACHINE (1-4). THE TIMES

ARE IN SECONDS.

An example invocation of the tool for a model of Peterson’s
mutual exclusion protocol with four processes can be seen in
Figure 1. The LTL property states that a process enters the
critical section infinitely often.

As shown in the figure, the input file to the verifier is
a single DVE file that already contains a property process.
Such a file could be written by hand (when the property
has been specified as a Büchi automaton) or produced by
divine-mc.combine, which takes a set of LTL formulae
as input (in an .ltl file containing definitions of atomic
propositions and the formulae). The divine-mc.combine
script will produce a single DVE file for each property, which
can then be used as an input for the verifier.

For external models, it is the responsibility of the interpreter
or compiler in question to provide the full (i.e. including
property) product automaton with marked accepting states –
it is currently not possible for DIVINE to verify arbitrary LTL
properties for models provided externally, although a limited
support for such a mode is planned for a future release.

IV. IMPLEMENTATION AND EXPERIMENTS

DIVINE 2.0 is based on the POSIX Threads [8] standard
for shared memory parallelism, and on Message Passing Inter-
face [3] for distributed memory computations. The state space
is partitioned into parts, each thread of each MPI node being
responsible for vertices of its assigned part of the state space.
Each thread maintains its own hashtable, exploring successors
of states of its own part of the state space, and communicates
with other threads when foreign states are discovered.

To test the tool’s scalability, we have executed a small ex-
periment using 10 identical machines, each with 4 Intel Xeon
5130 cores and 16G of memory, interconnected using off-
the-shelf gigabit ethernet. We have used simple reachability

on a model with very small states and very fast successor
generation to stress the parallel algorithm. The results are
shown in Table I. When using 3 worker and 1 MPI thread per
node, the tool can use all 10 machines without any major speed
regressions – to the contrary the time required is dropping with
increasing number of machines employed (though using 12 or
14 nodes does not bring any further speedup). However, this
places almost 160G of RAM at the tool’s disposal, using stock
hardware, while maintaining interesting speedup.

With all 10 machines in the test cluster (total of 40 cores),
the overall speedup is over 8 and using 4 machines (and
therefore 16 cores) of the cluster gives speedup of 4.6. For
reference, using 16-cores in a single shared-memory machine,
the speedup obtained on this model was around 6. Of course,
the cluster’s commodity ethernet interconnect cannot match
the internal bus of the 16-core shared memory system, which
is also clearly reflected in the test results.

V. FUTURE WORK

Work is being done on graphical counterexample browser,
which would greatly improve usability. Moreover, state space
reductions and further optimisation is planned, to push the size
of verifiable models even further.

Moreover, a new modelling language is being designed to
replace the aging DVE format, with both an interpreter and
a compiler (for high-performance model checking). The new
language aims to improve modelling flexibility to facilitate
modelling of wider array of system types.
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checking large-scale genetic regulatory networks with divine,” Electron.
Notes Theor. Comput. Sci., vol. 194, no. 3, pp. 35–50, 2008.
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Abstract

We introduce a parallel model checker for checking
Markov decision processes against linear time properties.
The model checker extends the parallel model checker Di-
VinE and supports verification of qualitative properties.

1. Introduction

Probabilistic systems like Markov chains and Markov
decision processes provide a reasonable semantics for sys-
tems that exhibit uncertainty. Model checking of proba-
bilistic systems branches into qualitative and quantitative
approach. In the qualitative setting it is checked whether
a property holds with probability 0 or 1; in a quantitative
setting it is verified whether the probability for a certain
property meets a given lower or upper bound.

For probabilistic systems the state explosion problem is
more critical than in the non-probabilistic case. Several
methods that have been developed for non-probabilistic sys-
tems to avoid the state explosion, were adapted to prob-
abilistic systems. For branching time logics these are
the symbolic approach implemented in the model checker
PRISM [8, 7] and the MDP model checker RAPTURE [3]
which uses an iterative abstraction refinement. For linear
time logic the most prominent partial order approach has
been recently adapted as well [1] and implemented in the
verification tool LiQuor [4].

Over the past decade, many techniques using distributed
and/or parallel processing have been proposed to combat
the computational complexity of non-probabilistic verifica-
tion, model checking in particular. However, not much has
been done in applying these techniques to the verification
and analysis of probabilistic systems. A notable exception
is the work on parallelizing the symbolic model checker
PRISM [10].

In this short tool paper we introduce a parallel model
checker PROBDIVINE for qualitative model checking of fi-
nite state Markov decision processes (MDPs) against LTL

∗This work has been supported in part by the Academy of Sciences
grant No. 1ET408050503.

properties. We use the automata-theoretic approach [9, 5, 6]
where qualitative LTL model checking of MDPs is reduced
to the question whether the product automaton for a given
MDP with a Büchi acceptance condition contains an accept-
ing end component (AEC).

2. How the tool works

The tool implements a parallel adaptation of the algo-
rithm of de Alfaro (dA) [2]. It computes the set of states
that contain all accepting end components. In particular, the
algorithm maintains an approximation set of states that may
belong to an AEC. The algorithm repeatedly refines the ap-
proximation set by locating and removing states that cannot
belong to an AEC, we call this a pruning step. The core of
the algorithm is the set of conditions determining the states
to prune.

The algorithm by de Alfaro was the only one from the
existing sequential approaches that allowed for a reason-
able parallelization. The other algorithms, like the one of
Courcoubetis and Yannakakis (CY) and CY with recursive
elimination (CY+RE) [5] are based on repeated decomposi-
tion of the underlying graph of product MDP into strongly
connected components and elimination of states violating
their ergodic consistency or other techniques that are inher-
ently sequential. For convenience PROBDIVINE also pro-
vides these serial algorithms and can use them on a single
machine.

The input language PROBDVE of PROBDIVINE is a
modification of DIVINE’s native language DVE. PROB-
DVE models systems as a composition of processes, which
can change their states via probabilistic (=>) or non-
probabilistic (->) transitions and can synchronize using
channels. An example of a PROBDVE source-code for
randomized solution to the dining philosophers problem is
given in Figure 1.

A non-probabilistic transition may have a guard (a con-
dition which has to be satisfied for the transition to be en-
abled), an effect (assignment to a variable), and a sync ex-
pression (for synchronization with another transition via
channel). A probabilistic transition just determines proba-
bility of resulting state, which is given by weights assigned
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byte fork[3]={0,0,0}; byte hungry[3]={1,1,1};
process Philosopher_0 {
state thinks, eats, want_L, want_R, has_L, has_R;
init thinks;
trans
thinks => { want_L:1, want_R:1 },
want_L -> has_L { guard fork[0] == 0;

effect fork[0] = 1; },
has_L -> eats { guard fork[1] == 0;

effect fork[1] = 1; },
has_L -> thinks{ guard fork[1] == 1;

effect fork[0] = 0; },
want_R -> has_R { guard fork[1] == 0;

effect fork[1] = 1; },
has_R -> eats { guard fork[0] == 0;

effect fork[0] = 1; },
has_R -> thinks{ guard fork[0] == 1;

effect fork[1] = 0; },
eats -> thinks{ effect hungry[0]= 0; };

}
process Philosopher_1 { ... }
...
system async;

Figure 1. Example of PROBDVE source-code.

to states. For example s => {s : 3, t : 2, u : 2} means that
from the state s system results in the state s with probability
3
7 , in the state t with the probability 2

7 , as well as in the state
u.

PROBDIVINE is build on the top of the DIVINE library
that offers common functions needed to develop a parallel
or distributed enumerative model checker. The only exten-
sion to the library that was necessary, was the extension of
the state generator to a probabilistic state generator, hence,
it can handle probabilistic transitions of PROBDVE as in-
troduced above. For the structure of PROBDIVINE imple-
mentation and connection to DIVINE see Figure 2.
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Figure 2. ProbDiVinE structure.

PROBDIVINE is currently operated in command-line
mode. The input is the model given as a .probdve
file and the LTL formula given as an .ltl file. Fur-

ther parameters include the algorithm to be used, num-
ber of workstations involved in the computation etc. De-
tails are given in the documentation. The tool can be
downloaded together with the DIVINE tool from the page
http://anna.fi.muni.cz/divine/probdivine.

Our initial experiments confirmed good scalability on
many examples. In several cases the sequential algorithms
were much faster than the parallel algorithm, however, once
the internal memory has been exhausted only the parallel
algorithm was able to finish the computation.

Our intention is to extend PROBDIVINE to quantitative
LTL model checking by using a distributed linear solver, to
add the possibility of checking reward properties, as well as
to build a suitable graphical user interface.
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ProbDiVinE-MC: Multi-Core LTL Model Checker for Probabilistic Systems∗
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Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic

Abstract

We present a new version of PROBDIVINE – a par-
allel tool for verification of probabilistic systems against
properties formulated in linear temporal logic. Unlike the
previous release [1], the new version of the tool allows
for both quantitative and qualitative model-checking. It is
also strictly multi-threaded, therefore, protects users from
unwanted burden of parallel computing in a distributed-
memory environment.

1. Introduction

Model-checking of probabilistic systems splits into qual-
itative and quantitative branch. While in qualitative verifica-
tion the procedure decides whether the property holds with
probability one or less, in the quantitative approach the pro-
cedure decides whether the probability of a certain property
meets a given lower or upper bound.

There are several model-checking tools available for
qualitative and quantitative verification of probabilistic sys-
tems. Similarly to the non-probabilistic case, the tools
suffer from the well known state space explosion prob-
lem. Therefore, they apply various techniques to fight it
and to extend the applicability of the tool. For branch-
ing time logic, we should mention PRISM [6] – a model-
checker that uses symbolic state space representation, or
MDP model-checker RAPTURE [2] that builds upon an au-
tomatic abstraction refinement and essential state reduction
techniques. For linear time logic, the standard partial order
reduction was implemented in LiQuor [3]. An alternative
approach for coping with the state space explosion is also
to investigate alternate computer architectures such as par-
allel or distributed systems. As an example of this approach
we refer to the previous release of PROBDIVINE [1] that
was capable of utilizing aggregate memory of computers in
a network of interconnected workstations.

In this paper we consider automata-theoretic approach

∗This work has been supported in part by the Czech Science Foundation
grant No. GA201/06/1338 and by the Academy of Sciences of the Czech
Republic grant No. 1ET408050503.

for enumerative LTL model-checking of probabilistic sys-
tems represented as Markov decision processes (MDP). The
property to be verified is negated and the negation is ex-
pressed as a semi-deterministic Büchi automaton [4] which
is then multiplied with an MDP of the system under con-
sideration into a product Büchi MDP. Having the graph of
the Büchi MDP, the problem of qualitative verification is re-
duced to the problem of detection of a reachable accepting
ergodic component (AEC) in the graph [5]. The detection
of AECs may be done in time almost linear with respect to
the size of the product MDP. Therefore, the main factor that
limits the applicability of a qualitative tool are the memory
requirements for storing visited states of the MDP. How-
ever, this is not the case in the quantitative approach where
the detection of AECs is further succeeded by a transfor-
mation of the product MDP into a set of linear inequalities
(linear program) to be solved by some linear programming
solver. Experience shows, that the solver is the bottleneck
point as finding the optimal solution to the linear program is
rather expensive in time as compared to the AEC detection.
What our tool does to solve the quantitative problem effi-
ciently is that it applies several subtle techniques to decom-
pose the linear program into many smaller ones and uses
parallel calls to the solver to partially remedy the limiting
computational time factor.

2. ProbDiVinE-MC

First, we would like to state explicitly what are
the differences between the previous release, referred to
as PROBDIVINE, and the new version, reffered to as
PROBDIVINE-MC. PROBDIVINE [1] allows users to per-
form parallel verification of qualitative aspects of prob-
abilistic systems using distributed-memory environment,
i.e. using aggregate power of computers in a cluster. On
the other hand, PROBDIVINE-MC allows users to perform
both parallel qualitative and parallel quantitative verifica-
tion of probabilistic systems using shared-memory environ-
ment. Shared-memory parallelism became popular in re-
cent years mainly due to the general availability of multi-
cored CPUs and due to the fact that unlike the distributed-
memory applications, shared-memory applications are eas-
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# inequalities for LP solver % of the whole graph
whole reduced largest reduced largest

Model graph graph subproblem graph problem
Cons 55734 52776 30774 94.7 55.2
Phils 2817561 184604 246 6.6 Almost 0
Stabi 6897480 5983080 0 86.7 0
Leads 8800096 5678656 0 64.5 0
Crypts 8954217 132183 0 1.5 0  1

 2

 3

 4

 5

 1  2  4  8
Number of cores

Speedup

Cons
Crypts
Leads
Phils
Stabi

Figure 1. a) Size of LP problem with respect to used reduction techniques b) Overall speedup.

ier to be used by inexperienced users. Also the compu-
tational requirements of the quantitative analysis simply
render shared-memory parallelism more convenient. Both
PROBDIVINE and PROBDIVINE-MC use the ProbDVE in-
put language [1].

For the construction of the tool, we have analyzed and
reviewed the process of quantitative model checking phase
by phase and pointed out several algorithmic modifications
that have significant impact on a general performance of a
quantitative verification tool. We also identified indepen-
dent subtasks within individual phases of the process and
apply parallel processing when possible. In particular, the
tool employs our parallel technique to identify and remove
states of MDP that are irrelevant with respect to the solution
of the verification process. Then it applies a parallel algo-
rithm for the detection of strongly connected components to
partition the global LP problem into independent subprob-
lems, solves the subproblems in parallel, and computes the
global solution from the solutions to the subproblems. We
have also identified a particular type of a subproblem for
which the solution can be derived directly from the inequal-
ities without using a call to an external LP solver.

3. Experimental evaluation

We have implemented the tool using the DiVinE Library
and generally available LP solver lpsolve. We run a
set of experiments on machines equipped with Intel Xeon
5130 and AMD Opteron(tm) 885 processors allowing us ef-
ficiently measure the performance of the tool when using 1
to 8 threads. In this paper we report on two different exper-
iments related to quantitative verification only.

The table in Figure 1.a) captures the size of the linear
programming problem (the number of inequalities to be
solved by an LP solver) for five different models before and
after the application of our reduction techniques. The first
column (whole graph) gives the size before any reduction,
the second column (reduced graph) gives the size when re-
dundant inequalities were removed, and the third column
(largest subproblem) gives the maximal size of a subprob-
lem solved by an LP solver. Note that in some cases (largest

subproblem = 0) we were able to find the global solution
without calling LP solver at all. The size of the problem
plays a crucial role in the performance of the tool. For ex-
ample, the time consumed by the lpsolve to solve the
model of Philosophers (Phils) was more than 2 days in the
case of the whole graph, 45 minutes in the case of the re-
duced graph, and only 38 seconds, when all our reduction
techniques were applied.

The verification process involves the parallel detection of
AECs in an implicitly given graph, parallel detection and re-
moval of redundant inequalities in the linear program, par-
allel decomposition of the linear program into subprograms,
and all the concurrent calls to the LP solver. Figure 1.b) re-
ports on the overall speed-up in the verification process we
achieved using our tool on various number of CPU cores.
We claim that our approach is quite successful as overall
runtimes tend to decrease as more CPU cores are used. The
tool is available at http://anna.fi.muni.cz/probdivine.
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DiVinE: A Parallel Qualitative LTL Model Checker. In Proc.
of QEST’07, pages 215–216. IEEE Computer Society, 2007.

[2] B.Jeannet, P. de Argenio, and K. Larsen. RAPTURE: A tool
for verifying Markov Decision Processes. In Proc. Tools Day
/ CONCUR’02. Tech.Rep. FIMU-RS-2002-05, pages 84–98.
MU Brno, 2002.

[3] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and
Quantitative Linear Time analysis of Reactive Systems. In
Proc. of QEST’06, pages 131–132. IEEE Computer Society,
2006.

[4] C. Courcoubetis and M. Yannakakis. The complexity of prob-
abilistic verification. Journal of the ACM, 42(4):857–907,
1995.

[5] L. de Alfaro. Formal Verification of Stochastic Systems. PhD
thesis, Stanford University, Department of Computer Science,
1997.

[6] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic sys-
tems. In Proc. of TACAS’06, volume 3920 of LNCS, pages
441–444. Springer, 2006.

78

Authorized licensed use limited to: Masaryk University Brno. Downloaded on July 13,2010 at 12:49:52 UTC from IEEE Xplore.  Restrictions apply. 

244 CHAPTER 6. TOOL PAPERS


	I Commentary
	Introduction
	Motivation
	Focus of the Thesis
	Preliminaries

	State of the Art
	Parallel Model Checking
	State Space Generation
	Beyond State Space Generation
	Shared-Memory Architectures
	GPU Computing

	Parallel Symbolic Model Checking
	Embarrassingly Parallel Model Checking
	SCC Decomposition
	Model Checking with Disks

	Thesis Contribution
	Parallel and Distributed-Memory LTL Model Checking
	I/O Efficient Verification
	SCC Decomposition
	Verification of Probabilistic Systems
	Tools and Tool Papers

	4 Bibliography

	II Collection of Articles
	Journal and Conference Papers
	Shared Hash Tables in Parallel Model Checking
	Scalable shared memory LTL model checking
	Efficient Large-Scale Model Checking
	Optimal On-the-Fly Parallel Algorithm for Weak LTL
	CUDA accelerated LTL Model Checking
	Parallel Algorithms for Finding SCCs
	Distributed Algorithms for SCC Decomposition
	I/O Efficient Accepting Cycle Detection
	Can Flash Memory Help in Model Checking
	Revisiting Resistance Speeds Up LTL Model Checking
	Cluster-Based I/O Efficient LTL Model Checking
	Local Quantitative LTL Model Checking
	Model Checking of Systems with Degradation

	Tool Papers
	DiVinE -- A Tool for Distributed Verification
	DiVinE Multi-Core -- A Parallel LTL Model-Checker
	DiVinE-CUDA: A Tool for GPU Accelerated LTL MC
	DiVinE 2.0: High-Performance Model Checking
	ProbDiVinE: A Parallel Qualitative LTL Model Checker
	ProbDiVinE-MC: Model Checker for Probabilistic Systems



