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Abstract. The fair cycle detection problem is at the heart of both LTL and
fair CTL model checking. This paper presents a new distributed scalable al-
gorithm for explicit fair cycle detection. Our method combines the simplicity
of the distribution of explicitly presented data structure and the features of
symbolic algorithm allowing for an efficient parallelisation. If a fair cycle (i.e.
counterexample) is detected, then the algorithm produces a cycle, which is in
general shorter than that produced by depth-first search based algorithms. Ex-
perimental results confirm that our approach outperforms that based on a direct
implementation of the best sequential algorithm.

1 Introduction

The fair cycle detection problem is at the heart of many problems, namely in deciding
emptiness of ω-automata like generalised Büchi and Streett automata, and in model
checking of specifications written in linear and branching temporal logics like LTL and
fair CTL.

A generalised Büchi automaton is provided together with several sets of accept-
ing states. A run of such an automaton is accepting if it contains at least one state
from every accepting set infinitely often. Accordingly, the language of the automaton
is nonempty if and only if the graph corresponding to the automaton contains a reach-
able fair cycle, that is a cycle containing at least one state from every accepting set, or
equivalently a reachable fair strongly connected component, that is a nontrivial strongly
connected component (SCC) that intersects each accepting set. The acceptance con-
dition for Streett automata is more involved and consists of pairs of state sets. The
language of the automaton is nonempty if and only if the automaton graph contains a
cycle such that for every pair of sets whenever the cycle intersects the first set of the
pair then it intersects also the second set. The nonemptiness check for Streett automata
can thus be also based on identification of the fair SCCs of the automaton graph. Other
types of automata for which the nonemptiness check is based on identification of fair
cycles are listed in [13].

The LTL model checking problem and the LTL model checking with strong fairness
(compassion) reduce to language emptiness checking of generalised Büchi automata
and Streett automata respectively [29, 23]. Fair cycle detection is used to check the
CTL formula EGf under the full (generalised) fairness constraints [13]. Hence, the
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core procedure in many model checking algorithms is the fair cycle detection. These
algorithms are in common use in explicit and symbolic LTL model checkers such as
SPIN [20] and SMV [26] respectively, in fair-CTL model checkers such as SMV, VIS [7],
and COSPAN [17].

Despite the developments in recent years, the main drawbacks of model checking
tools are their high space requirements that still limit their applicability. Distributed
model checking tackles the space explosion problem by exploiting the amount of re-
sources provided by parallel environment. Powerful parallel computers can be build of
Networks Of Workstations (NOW). Thanks to various message passing interfaces (e.g.,
PVM, MPI) a NOW appears from the outside as a single parallel computer with a
huge amount of memory.

Reports by several independent groups ([30, 25, 15, 4, 3]) have confirmed the useful-
ness of distributed algorithms for the state-space generation and reachability analysis.
Methods for distributing LTL and CTL model checking have been presented in [1, 2, 8]
and [6] respectively. However, until today not much effort has been taken to consider
distributed algorithms for fair cycle detection. In our search for an effective distributed
algorithm let us first discuss diverse sequential algorithms for fair cycle detection.

In explicit algorithms the states of a graph are represented individually. The decom-
position of the graph into SCC can be solved in linear time by the Tarjan algorithm [31].
With the use of this decomposition it is easy to determine fair components and hence
our problem has linear time complexity. Moreover, the nested depth-first search algo-
rithm [21] (NestedDFS ) optimises the memory requirements and is able to detect
cycles on-the-fly. This makes NestedDFS the optimal sequential algorithm.

The explicit representation allows for a direct distribution of the state space. States
of the graph are distributed over particular computers in NOW and are processed in
parallel. When necessary, messages about individual states are passed to the neighbour
computers. However, the depth-first search crucially depends on the order in which
vertices are visited and the problem of depth-first search order is P-complete [28].
Therefore it is considered to be inherently sequential and we cannot hope for its good
parallelisation (unless NC equals P).

Symbolic algorithms represent sets of states via their characteristic function, typi-
cally with binary decision diagrams (BDDs) [9], and operate on entire sets rather than
on individual states. This makes the depth-first approach inapplicable and symbolic
algorithms typically rely on the breadth-first search (for surveys see [14, 27]). Unfortu-
nately, the time complexity of symbolic algorithms is not linear; the algorithms contain
a doubly-nested fixpoint operator, hence require time quadratic in the size of the graph
in the worst case. The main advantage of symbolic algorithms over their explicit coun-
terpart is the fact that BDDs provide a more compact representation of the state
space capturing some of the regularity in the space and allow to verify systems with
extremely large number of states. Nevertheless, there are applications where explicit
model checkers outperform the others, for examples see [30, 22, 12]

Thank to the fact that symbolic algorithms search the graph in a manner where
the order in which vertices are visited is not crucial, these algorithms are directly
parallelizable. On the other hand, the distribution of the BDD data structure is rather
complicated. A parallel reachability BDD-based algorithm in [18] partitions the set
of states into slices owned by particular processes. However, the state space has to
be dynamically repartitioned to achieve the memory balance and the method requires
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passing large BDDs between processes, both for sending non-owned states to their
owners and for balancing. This causes a significant overhead.

Bearing all the reported arguments in mind we have tried to set down a parallel
algorithm for fair cycle detection combining advantages of both explicit and symbolic
approach. Our algorithm is in its nature explicit as the states are represented indi-
vidually. The state space is well distributable and the parallel computation needs to
communicate only information about individual states. The way how the algorithm
computes resembles that of symbolic algorithms and thus allows for a good paralleli-
sation of the computation alone.

Since our algorithm is based on symbolic ones, its worst-case complexity is O(n ·h)
where h is the height of the SCC quotient graph. Previous experiments ([14]) clearly
show that this height is in practice very small and thus the algorithm is nearly linear.
This observation has been confirmed also by our experiments.

The proposed algorithm is not on-the-fly and the whole state space has to be gen-
erated. For this reason the algorithm is meant not to replace but to complement the
depth-first search based algorithms used in LTL model checking. The depth-first search
based algorithms are of help before spacing out the available memory. On the other
hand, our algorithm performs better in cases when the whole state space has to be
searched. This distinction has been confirmed also by our initial performance evalua-
tion using several protocols. Our algorithm outperforms that based on a direct imple-
mentation of the best sequential algorithm in a distributed environment especially in
cases, when a fair cycle is not detected.

In model checking applications, the existence of a fair cycle indicates a failure of
the property. In such a case, it is essential that the user is given a fair cycle as a
counterexample, typically presented in the form of a finite stem followed by a cycle.
The counterexample should be as short as possible, to facilitate debugging. Finding
the shortest counterexample, however, is NP-complete [19]. The great advantage of our
approach is that thanks to the breadth-first search character of the computation the
computed fair cycle (counterexample) is very short in comparison with those computed
by a depth-first search based algorithm.

Last but not least, we would like to emphasis that the algorithm is compatible with
other state-space saving techniques used in LTL model checking. Namely, the algorithm
can be applied together with static partial order reduction [24].

Section 2 reviews basic notions and explains the basics of symbolic fair cycle detec-
tion algorithms. In Section 3 a new sequential explicit fair cycle detection algorithm is
presented. The proof of its correctness and analysis of its complexity can be found in
Appendix. The distributed version of the algorithm is described in Section 4. Modifi-
cations of the algorithm allowing for a fair cycle detection for generalised Büchi and
Streett automata and a simplification for weak ω-automata are presented in Section 5.
Section 6 presents experimental results on real examples and compares the performance
of our algorithm to a distributed implementation of the best sequential algorithm.

2 Fair Cycle Detection Problem

A directed graph is a pair G = (V,E), where V is a finite set of states and E ⊆ V × V
is a set of edges. A path from s1 ∈ V to sk ∈ V is a sequence (s1, . . . , sk) ∈ V + such
that (si, si+1) ∈ E for 1 ≤ i < k. A cycle is a path from a state s to itself. We say that
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a state r (a cycle c) is reachable from a state s if there exists a path from s to r (to
a state r on the cycle c). Moreover, every state is reachable from itself. Given a set of
states U , the graph G(U) = (U,E ∩ (U × U)) is the graph induced by U .

A strongly connected component (SCC) of G is a maximal (with respect to set
inclusion) set of states C ⊆ V such that for each u, v ∈ C, the state v is reachable from
u and vice versa. The quotient graph of G is a graph (W,H), such that W is the set of
the SCCs of G and (C1, C2) ∈ H if and only if C1 6= C2 and there exist r ∈ C1, s ∈ C2

such that (r, s) ∈ E. The height of the graph G is the length of the longest path in the
quotient graph of G (note that the quotient graph is acyclic).

A strongly connected component C is a trivial component if G(C) has no edges and
initial if it is a source of the quotient graph. Let F ⊆ V be a set of fair states. An SCC
C is a fair component if it is nontrivial and C ∩ F 6= ∅. A cycle is fair if it contains
a fair state. The fair cycle detection problem is to decide, for a given graph G with a
distinguished initial state init state and a set of fair states F , whether G contains a
fair cycle reachable from the initial state. In the positive case a fair cycle should be
provided.

Our goal is to bring in an algorithm for the fair cycle detection problem that is
not based on a depth-first search and thus enables effective distribution. Here we take
an inspiration in symbolic algorithms for cycle detection, namely in SCC hull algo-
rithms. These algorithms compute the set of states that contains all fair components.
Algorithms maintain the approximation of the set and successively remove unfair com-
ponents until they reach a fixpoint. Different strategies of removal of unfair components
lead to different algorithms. An overview, taxonomy, and comparison of symbolic algo-
rithms can be found in independent reports [14] and [27]. As the base for our algorithm
we have chosen the One Way Catch Them Young algorithm [14]. The reasons for this
choice are discussed in Section 4.

Symbolic algorithms are conveniently described with the help of µ-calculus formu-
lae. Our algorithm makes use of the functions Reachability(S) = µZ.(S ∪ image(Z))
and Elimination(S) = νZ.(S ∩ image(Z)). The set image(Z) contains all successors of
states from Z in a graph G. The function Reachability(S) computes the set of all states
that are reachable from the set S. The function Elimination(S) computes the set of all
states q for which either q lies on a cycle in S or q is reachable from a cycle in S along
a path that lies in S. The computation of Elimination(S) is performed by successive
removal of states that do not have predecessors in S. With the help of these functions
the algorithm One Way Catch Them Young can be formulated as follows:

proc OWCTY(G, F, init state)
S := Reachability(init state);
old := ∅;
while (S 6= old) do

old := S;
S := Reachability(S ∩ F );
S := Elimination(S);

od
return (S 6= ∅);

end

The assignment S := Reachability(S ∩F ) removes from the set S all initial compo-
nents of G(S), which do not contain any fair state (in fact only SCCs reachable from a
fair component are left in S). The assignment S := Elimination(S) removes from the
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set S all initial trivial components (besides others). Thus each iteration of the while
cycle (so called external iteration) removes initial unfair components of G(S) until the
fixpoint is reached.

The worst-case complexity of the algorithm OWCTY is O(n2) steps1 or more
precisely O(h · n) where n is the number of states of the graph and h is the height of
G. However, numerous experiments show that the number of external iterations tends
to be very low and hence the number of steps is practically linear [14].

3 Sequential algorithm

In this section we present a new sequential algorithm for fair cycle detection prob-
lem, prove it correctness, and analyse its complexity. The distributed version of the
algorithm is discussed in the next section.

3.1 Detection of a Fair Cycle

The explicit algorithm Detect-Cycle emulates the behaviour of the OWCTY algo-
rithm. The set S is represented explicitly. For each state q the information whether q
is in the set S is stored in the boolean array inS. The emulation of the intersection op-
eration and the Reachability(S) function is straightforward (see the procedures Reset
and Reachability respectively). The emulation of Elimination(S) is more involved:
concurrently with the emulation of Reachability(S) we count for each state q the num-
ber of its predecessors belonging to the set S (array p). On top of that we keep the list
L of vertices, which have no predecessors in S, that is, those for which p[q] = 0. These
vertices are eliminated from S in the procedure Elimination. Data structures used by
the algorithm and their initial settings are:
– inS is a boolean array and is set to false for each state.
– p is an integer array and is set to 0 for each state.
– L is a list of states, initially empty. L is implemented as doubly linked list, hence

all necessary operations (insertion and removal of a state) can be performed in
constant time.

– Ssize and oldSsize are number variables initially set to 1 and 0 respectively.
– queue is an initially empty queue.

1 proc Detect-Cycle(G, F, init state)
2 put init state into queue;
3 inS [init state] := true;
4 Reachability;
5 while (Ssize 6= oldSsize ∧ Ssize > 0) do
6 Reset;
7 Reachability;
8 Elimination;
9 od

10 return(Ssize > 0);
11 end

1 The complexity of symbolic algorithms is usually measured in number of steps (image com-
putations), since the real complexity depends on the conciseness of the BDD representation.
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1 proc Reset
2 oldSsize := Ssize;
3 Ssize := 0;
4 foreach q ∈ V do
5 inS [q] := inS [q] ∧ q ∈ F ;
6 p[q] := 0;
7 if inS [q] then Ssize := Ssize + 1;
8 put q in queue;
9 put q in L; fi

10 od
11 end

1 proc Reachability
2 while queue 6= ∅ do
3 remove q from queue;
4 foreach (q, r) ∈ E do
5 if (¬inS [r]) then inS [q] := true;
6 Ssize := Ssize + 1;
7 put r in queue; fi
8 if p[r] = 0 then remove r from L; fi
9 p[r] := p[r] + 1;

10 od
11 od
12 end

1 proc Elimination
2 while L 6= ∅ do
3 remove q from L;
4 inS [q] := false;
5 Ssize := Ssize − 1;
6 foreach (q, r) ∈ E do
7 p[r] := p[r]− 1;
8 if p[r] = 0 then put r to L fi
9 od

10 od
11 end

Theorem 1 (Correctness). Detect-Cycle terminates and returns true if and only
if G contains a fair cycle reachable from the init state.

Theorem 2 (Complexity). The worst-case complexity of the algorithm Detect-Cycle
is O(h · (n + m)), where n is the number of states in G, m is the number of edges in
G, and h is the height of G.

Proofs of both theorems are in full version of the paper [10].

3.2 Extraction of a Fair Cycle

In this section we present an algorithm, which complements Detect-Cycle and for
graphs with fair cycles returns a particular fair cycle. The algorithm for the extraction
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makes use of values stored in the boolean array inS computed by Detect-Cycle.
The set S (represented via inS ) initially contains all fair cycles.

The procedure Extract-Cycle searches the graph G from the initial state for a
fair state s from the set S. A nested search is initialised from s and an existence of a
cycle from s to s is checked. In the nested search only the graph G(S) induced by S is
searched. Moreover, every state, which has been completely searched by a nested search
without discovering a cycle, can be safely removed from S. This ensures that each state
is visited in nested searches only once and the algorithm has linear complexity.

In both searches the graph is traversed in a breadth-first manner. Nevertheless,
the order in which states are visited is not important and this allows for an effective
distribution of the computation. The discovered cycle is output with the help of parent
values.

The great advantage of our approach is that due to the fact that the graph is
searched in a breadth-first fashion the revealed fair cycles (i.e. counterexamples) tend
to be much shorter than those generated by depth-first based algorithms (see Section 6).

proc Extract-Cycle(G, F, init state, inS)
put init state into queue;
while cycle not found do

remove s from queue;
if inS [s] ∧ s ∈ F then NestedBFS(s); fi
foreach (s, r) ∈ E do

if parent [r] = nil then parent [r] := s;
put r in queue; fi

od
od
while s 6= init state do output s; s := parent [s]; od

end

proc NestedBFS(s)
put s into queue2 ;
while cycle not found and queue2 not empty do

remove q from queue2 ;
foreach (q, r) ∈ E do

if inS [r] ∧ parent2 [r] = nil then parent2 [r] = q;
put r in queue2 fi

if r = s then cycle found;
r := parent2 [r];
while r 6= s do output r; r := parent2 [r]; od

fi
od
inS [q] := false;

od
end

Theorem 3 (Correctness). The Extract-Cycle procedure finds a fair cycle. The
sequence of states output by Extract-Cycle forms (in the reverse order) a cycle
containing a fair state followed by a path from the fair state to the initial state.

Theorem 4 (Complexity). The complexity of Extract-Cycle is O(n + m).
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4 Distributed Algorithm

Similar to other works devoted to the distributed model checking [6, 3, 8, 30, 4] we as-
sume the MIMD architecture of a network of workstations, which communicate via
message passing (no global information is directly accessible). All workstations execute
the same program. One workstation is distinguished as a Manager and is responsible
for the initialisation of the computation, detection of the termination, and output of
results.

The set of states of the graph to be searched for fair cycles is partitioned into disjoint
subsets. The partition is determined by the function Owner, which assigns every state
q to a workstation i. Each workstation is responsible for the graph induced by the
owned subset of states. The way how states are partitioned among workstations is very
important as it has a direct impact on the communication complexity and thus on the
runtime of the algorithm. We do not discuss it here because it is itself quite a difficult
problem, which moreover depends on a particular application (see e.g. [2]).

The procedures Reset, Reachability, and Elimination can be easily trans-
formed into distributed ones. Each workstation performs the computation on its part
of the graph. Whenever a state s belonging to a different workstation is reached, the
workstation sends an appropriate message to the Owner(s). All workstations periodi-
cally read incoming messages and perform required commands.

Computations on particular workstations can be performed in parallel. However,
some synchronisation is unavoidable. All workstations perform the same procedure
(Re- set, Reachability, or Elimination). As soon as a workstation completes the
procedure it sends a message to the Manager and becomes idle. When all workstations
are idle and there are no pending messages the Manager synchronises all workstations
and the computation continues.

The need of synchronisation after each procedure is the reason why we have chosen
the One Way Catch Them Young algorithm as a base for our explicit algorithm. The
analysis and experiments by Fisler at al. [14] indicates that this algorithm performs
less external iterations then for example the well-known Emerson-Lei algorithm2. The
number of external iteration determines the number of necessary synchronisations.

Due to space limitations we do not display the pseudo-code of the distributed
Detect- Cycle algorithm. It can be found in the full version of the paper [10].

The distributed counterpart of the procedure Extract-Cycle comes by in a sim-
ilar way as for Detect-Cycle. The important point is that only one NestedBFS
can be performed at a time. The basic traversal is executed in parallel. Whenever a
workstation finds a suitable candidate s for the nested traversal (that is, s ∈ S ∩ F ) it
sends it to the Manager. The Manager puts the incoming candidates into a queue and
successively starts NestedBFS from them.

5 Modifications

In LTL model checking one often encounters not only Büchi automata for which the
non-emptiness problem directly corresponds to a detection of fair cycles, but also their
2 We note that some other algorithms studied by [14] perform even less external iterations.

These algorithms make use of the preimage computation (i.e. computation of predecessors),
which is usually not available in the explicit model checking
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variants called weak and generalised Büchi automata and Streett automata. For these
automata the non-emptiness problem corresponds to a slightly different version of the
fair cycle detection problem. The advantage of the Detect-Cycle algorithm is that
it can be easily modified in order to solve these problems.

In this section we provide pseudocodes of set based algorithms for the modified
problems. The necessary modifications in both sequential and distributed explicit al-
gorithms straightforwardly reflect changes of the set based algorithm and we do not
state them.

Weak Graphs

We say that a graph G with a set F of fair states is weak if and only if each component
C in SCC decomposition of G is either fully contained in F (C ⊆ F ) or is disjoint with
F (C ∩ F = ∅).

Our study of hierarchy of temporal properties [11] suggests that in many cases the
resulting graph is weak. Thus it is useful to develop specialised algorithms for these
graphs. Actually, Bloem, Ravi, and Somenzi [5] have already performed experiments
with specialised symbolic algorithms and state-of-the-art algorithms for generation of
automaton for an LTL formula [29] include heuristics generating automaton as “weak”
as possible.

From the definition of weak graphs it follows that the set F is a union of some SCCs.
Thus a fair component exists if and only if some nontrivial component is contained in
F . These observations lead to the following algorithm:

proc Weak-Detect-Cycle(G, F, init state)
S := Reachability(init state);
S := Elimination(S ∩ F );
return (S 6= ∅);

end

The algorithm Weak-Detect-Cycle has several advantages. At first, its complexity
is O(n + m). This is asymptotically better than the complexity of Detect-Cycle
and is the same as the complexity of the NestedDFS algorithm. At second, in the
distributed environment, the specialised algorithm needs to synchronise only two times.

Thus one can use the specialised algorithm profitably whenever it is possible. The
natural question is how expensive is to find out whether a graph is weak. In model
checking applications the graph to be searched for fair cycles is a product of a system
description (that is a graph without fair states) and a rather small graph expressing
a desired property of the system. The weakness of the graph is determined by the
property graph and hence it suffices to put the small graph to the weakness test.

Generalised Fair Condition

Generalised fair condition F is a set {Fi} of fair sets. A cycle is fair in respect to a
generalised fair condition {Fi} if and only if for each fair set Fi there exists a state q
on the cycle such that q ∈ Fi.

In model checking applications, algorithms translating an LTL formula into an
automaton usually end up with generalised fair conditions [16]. One can transform
(and model checker tools usually do so) the generalised condition into the ordinary
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one through a “counter construction”. But the transformation increases the number of
states, which is highly undesirable. Therefore it is more favourable to test directly the
generalised condition.

The modification of the Detect-Cycle algorithm for the generalised condition is
rather simple. It suffices to guarantee that states in S are reachable from all fair sets.

proc Generalized-Detect-Cycle(G,F , init state)
S := Reachability(init state);
old := ∅;
while (S 6= old) do

old := S;
foreach Fi ∈ F do

S := Reachability(S ∩ Fi); od
S := Elimination(S); od

return (S 6= ∅);
end

Streett Fair Condition

Streett fair condition F is a set of tuples {(Pi, Qi)}. A cycle C is fair in respect to
a Streett fair condition if and only if for each tuple (Pi, Qi) it holds C ∩ Pi 6= ∅ ⇒
C ∩Qi 6= ∅.

Streett fair condition is used to express strong fairness (compassion), that is, intu-
itively “if there is an infinite number of requests then there is an infinite number of
responses”. Strong fairness can be expressed in LTL and thus it is possible to use the
algorithm for (generalised) Büchi fair condition in order to check properties of system
with strong fairness requirements. However, this approach leads to the blowup of the
size of formula automaton and thus it is more efficient to check the strong fairness
directly (see [23]).

The set based algorithm for the Street fair condition can be formulated as follows:

proc Streett-Detect-Cycle(G,F , init state)
S := Reachability(init state);
old := ∅;
while (S 6= old) do

old := S;
foreach (Pi, Qi) ∈ F do

S := (S − Pi) ∪ Reachability(S ∩Qi); od
S := Elimination(S); od

return (S 6= ∅);
end

For the proof of correctness see [23]. Corresponding modification of the explicit
algorithm is more technically involved though rather straightforward.

The important fact is that other algorithms like NestedDFS or algorithm pre-
sented in [8] cannot cope with generalised and Streett condition in such a simple way
(in fact the distributed algorithm from [8] cannot be directly modified to cope with
generalised and Streett fair cycles).
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6 Experiments

We performed series of experiments in order to test the practical usefulness of the
proposed algorithms. In this section we mention representative results and discuss
conclusions we have drawn from the experiments.

The implementation has been done in C++ and the experiments have been per-
formed on a cluster of twelve 700 MHz Pentium PC Linux workstations with 384 Mbytes
of RAM each interconnected with a fast 100Mbps Ethernet and using Message Passing
Interface (MPI) library. Reported runtimes are averaged over several executions.

Graphs for experiments were generated from a protocol and an LTL formula in
advance and programs have been provided with an explicit representation of a graph.
This approach simplifies the implementation. However, as discussed later it has an
unpleasant impact on the scalability of the distributed algorithm.

For graphs generation a simple model-checking tool has been used allowing us to
generate graphs with approximately one million states. The algorithm was tested on
several classical model checking examples:
– Absence of a starvation for a simple mutual exclusion protocol and for the Peterson

protocol (Mutex, Peterson).
– Safety property for the alternation bit protocol (ABP).
– Reply properties (with fairness) for a model of an elevator (Elevator1, Elevator2).
– Safety and liveness properties for a token ring (Ring1,Ring2,Ring3,Ring4).
– Liveness property for the dining philosophers problem (Philosophers).

General Observations

At first, we have compared the sequential version of our algorithm with the sequentially
optimal NestedDFS algorithm. We remind that from the theoretical point of view
our algorithm is asymptotically worse. Table 1 summarises experiments with graphs
without fair cycles and Table 2 covers experiments with graphs having fair cycles. The
following conclusions can be drawn from the experiments:
– The number of external iterations of Detect-Cycle is very small (less than 40)

even for large graphs. This observation is supported by experiments in [14] with the
symbolic implementation of the set-based algorithm. They obtained similar results
for hardware circuits problems.

– The complexity of Detect-Cycle is in practice nearly linear.
– The runtime of our algorithm is comparable to NestedDFS for correct specifica-

tions (graphs without fair cycles).
– In the case of an erroneous specification (graphs with fair cycles) NestedDFS is

significantly faster because it is able to detect cycles “on-the-fly” without traversing
the whole graph.

– On the other hand, the counterexamples generated by Detect-Cycle are signif-
icantly shorter because of the breadth-first nature of the algorithm. This is practi-
cally very important feature as counterexamples consisting of several thousands of
states (as those generated by NestedDFS ) are quite useless.

– The last observation compares the runtime of the first phase (cycle detection) to
the second phase (cycle extraction) of our algorithm. Evidently the time needed
for the second phase is significantly shorter than that for the first phase. Thus
potential optimisations, heuristics, etc. of the algorithms should be directed at the
first phase.
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System Algorithm Time (s) External
Size Iterations

Peterson NestedDFS 0.02
376 Detect-Cycle 0.06 18

ABP NestedDFS 0.22
7 286 Detect-Cycle 0.41 1

Ring1 NestedDFS 17.13
172 032 Detect-Cycle 7.61 1

Elevator2 NestedDFS 35.10
368 925 Detect-Cycle 55.76 30

Philosophers NestedDFS 72.68
608 185 Detect-Cycle 52.04 1

Table 1. Sequential experiments for graphs without fair cycles.

System Algorithm Time (s) Extract External Fair cycle
Size time (s) Iterations Prefix Loop

Mutex NestedDFS 0.01 76 3
232 Detect-Cycle 0.02 0.01 2 2 2

Ring3 NestedDFS 2.70 14420 3
389 542 Detect-Cycle 29.07 1.17 2 28 23

Elevator1 NestedDFS 7.28 304 76
683 548 Detect-Cycle 99.43 1.80 8 20 22

Ring2 NestedDFS 12.82 2754 363
1 027 394 Detect-Cycle 305.51 11.31 40 52 14

Table 2. Sequential experiments for graphs with a fair cycle. The column Time gives the
overall time, Extract time is the time needed for the extraction of the cycle.

Fig. 1. Comparison of distributed NestedDFS and Detect-Cycle.
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Distributed Tests

We note that experiments concerning the distributed version are only preliminary since
the current implementation is straightforward and is far from being optimal. For exam-
ple, it suffers from problems with load-balancing. The only optimisation that we have
used is the reduction of communication by packing several messages into one.

We have compared our algorithm to the distributed version of NestedDFS where
only one processor, namely the one owning the actual state in the depth-first search, is
executing the search at a time. The network is in fact running the sequential algorithm
with extended memory. The runtime of NestedDFS increases with the number of
workstations thanks to the additional communication. On the other hand, our algo-
rithm can take advantage of more workstations since it exploits parallelism. Hence in
the distributed environment our algorithm convincingly outperforms NestedDFS .

The current implementation of Detect-Cycle algorithm is not optimised and
does not scale ideally. We identify two main reasons. The first one is the straightfor-
wardness of our implementation. The second, more involved reason, is based on fact
that in our experiments we use pre-generated graphs, which however are not too large
in comparison to the memory capacity of the NOW. Consequently the local computa-
tions are very fast and the slow communication has high impact on the overall runtime.
We infer, in a similar way as [6], that if the algorithm computed the graph on-the-fly
from the specification language then the communication and synchronisation would
have smaller impact on the runtime and the algorithm would achieve better speedup.
To support this explanation we have measured besides the real time taken by the com-
putation also the CPU time consumed by particular workstations. Fig. 2 resumes the
results. The numbers indicate that the time taken by a local computation (CPU time)
really scales well.

We have also implemented the distributed Weak-Detect-Cycle algorithm and
performed a comparison of the general and the specialised algorithm on weak graphs.
Experiments indicate that the specialised algorithm can yield a considerable improve-
ment (see the full version [10]).

Fig. 2. Dependency of the runtime on the number of workstations. Figure shows the difference
between real time taken by the program and the average CPU time used by a workstation.

7 Conclusions & Future Work

In this paper, we present a new distributed algorithm for fair cycle detection problem.
The demand for such an algorithm becomes visible especially referring to automata-
based LTL model checking. This verification method suffers from the state explosion.
Distributed model checking allows to cope with the state explosion by reason of allo-
cation of the state space to several workstations in a network.

Our distributed algorithm comes out from a set-based algorithm, which searches the
state space in a breadth-first search manner, which makes a distribution possible. On
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the other hand, the state space is represented explicitly and thus can be partitioned
very naturally. The algorithm is compatible with other state space saving methods,
namely with static partial order reduction. It aims not to replace but to complement
the classical nested depth-first search algorithm used in explicit LTL model checkers
as it demonstrates its efficiency especially in cases when the searched space does not
contain any fair cycle.

We have implemented our approach within an experimental platform. We found
out that the complexity of our algorithm is nearly linear. The runtime of the sequential
Detect-Cycle algorithm is comparable to that of NestedDFS on correct specifica-
tions. For an erroneous specifications counterexamples generated by our algorithm tend
to be significantly shorter. The distributed Detect-Cycle algorithm is noteworthy
faster than the distributed implementation of NestedDFS for all types of graphs. In
the future we plan to implement our approach to an existing tool and to compare its
efficiency with other distributed LTL model checking algorithms ([1, 8]).

There are several alternatives to One Way Catch Them Young in the literature, for
excellent reviews see [27, 14]. The natural question thus is whether similar distributed
algorithms for fair cycle detection as the one we have proposed can be build upon other
symbolic algorithms for cycle detection.
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