RTIS Iy,
o FO@

éé &
rgs ass

Faculty of Informatics
Masaryk University

NekFA
®§$ Cuy 2,
S
Na g{@ﬁﬁ

>

T/4

Parallel Algorithms for Detection of Negative
Cycles

by

LuboévBrim
Ivana Cerna
Lukas Hejtmanek

FIMU-RS-2003-04
July 2003

FI MU Report Series
Copyright (©) 2003, FI MU




Parallel Algorithms for Detection of Negative
Cycles*

Lubo3 Brim, lvana Cerna and Lukas Hejtmanek

Faculty of Informatics
Masaryk University Brno
Botanicka 68a
Czech Republic

{brim,cerna,xhejtman }@fi.muni.cz

July 8, 2003

Abstract

Several new parallel algorithms for the single source shortest paths
and for the negative cycle detection problems on directed graphs with
real edge weights and given by adjacency list are developed, anal-
ysed, and experimentally compared. The algorithms are to be per-
formed on clusters of workstations that communicate via a message
passing mechanism.

1 Introduction

The single source shortest path problem (SSSP) is a fundamental problem
with many theoretical and practical applications and with several effective
and well-grounded sequential algorithms. The same can be said about the
closely related negative cycle detection problem (NCD) which is to find a
negative length cycle in a graph or to prove that there are none. In fact, all
known algorithms for NCD combine a shortest paths algorithm with some
cycle detection strategy.

*This work has been partially supported by the Grant Agency of Czech Republic grant
No0.201/03/0509.



In many applications we have to deal with extremely large graphs (a
particular application we have in mind is briefly discussed bellow). When-
ever a graph is too large to fit into memory that is randomly accessed a
memory that is sequentially accessed has to be employed. This causes a
bottleneck in the performance of a sequential algorithm owing to the sig-
nificant amount of paging involved during its execution. An obvious ap-
proach to deal with these practical limitations is to increase the computa-
tional power (especially randomly accessed memory) by building a pow-
erful (yet cheap) distributed-memory cluster of computers. The comput-
ers are programmed in single-program, multiple-data style, meaning that
one program runs concurrently on each processor and its execution is spe-
cialised for each processor by using its processor identity (id). The program
relies on a communication layer based on Message-Passing Interface stan-
dard.

Our motivation for this work was to develop a distributed model check-
ing algorithm for linear temporal logic. This problem can be reduced to
the negative cycle detection problem as shown in [1]. The resulting graph
iIs not completely given at the beginning of the computation through its
adjacency-list or adjacency-matrix representation. Instead, we are given a
root vertex together with a function which for every vertex computes its
adjacency-list. A possible approach is to generate the graph at first and
then to process it with a distributed NCD algorithm. However, this ap-
proach is highly non-efficient. If one processes the graph simultaneously
with its formation it can happen that a negative cycle is detected even be-
fore the whole graph is formated. Moreover, this on-the-fly technique allows
to generate the part of the graph reachable from the root vertex only and
thus reduces the space requirements. As successors of a vertex are deter-
mined dynamically there is no need to store any information about edges
permanently which brings yet another reduction in space complexity.

A natural starting point for building a distributed algorithm is to dis-
tribute an efficient sequential algorithm. Because of the aforementioned
reasons we have concentrated on algorithms which admit graphs speci-
fied with the help of adjacency lists (and omit those presupposing an ad-
jacency matrix representation of the graph). These algorithms (for an ex-
cellent survey see [2]), which are based on relaxation of graph’s edges, are
inherently sequential and their parallel versions are known only for spe-
cial settings of the problem. For general digraphs with non-negative edge
lengths parallel algorithms are presented in [3, 4, 5] (see [6] for a compar-
ative study) together with studies concerning suitable decomposition [7].
For special cases of graphs, like planar digraphs [8, 9], graphs with separa-



tor decomposition [10] or graphs with small tree-width [11] more efficient
algorithms are known. Yet none of these known algorithms are applicable
to general digraphs with potential negative-length cycles. In this paper we
propose several parallel algorithms for the general SSSP and NCD prob-
lems on graphs with real edge lengths and given by adjacency lists. We
analyse their worst-case complexity and conduct an extensive practical per-
formance study of these algorithms. We study various combinations of dis-
tributed shortest path algorithms and distributed cycle detection strategies
to determine the best combination measured in terms of their scalability.

2 Serial Negative Cycle Problem

We are given a triple (G, s,l), where G = (V, E) is a directed graph with
n vertices and m edges, [ : E — R is a length function mapping edges to
real-valued lengths, and s € V is the root vertex. The length of the path
p =< vo,v1,...,v, > IS the sum of the lengths of its constituent edges,
I(p) = 3% I(vi—1,v;). Negative cycle is a cycle p =< w,v1, ..., 0,00 >
with length [(p) < 0. The negative cycle detection (NCD) problem is to find a
negative cycle in a graph or to prove that there are none.

Algorithms for the NCD problem that use the adjacency-list represen-
tation of the graph construct a shortest-path tree Gs; = (Vs, E5), where V; is
the set of all vertices reachable from the root s, £, C E, s is the root of G,
and for every vertex v € V; the path from s to v in G5 is a shortest path from
stovindG.

The labeling method maintains for every vertex v its distance label d(v)
and parent p(v). Initially d(v) = oo and p(v) = null, the method starts by
setting d(s) = 0. The method maintains for every vertex its status which
is either unreached, labeled, or scanned, initially all vertices but the root are
unreached and the root is labeled. The method is based on the scan operation.
During scanning a labeled vertex v, all edges (v, ) out-going from v are re-
laxed which means that if d(u) > d(v)+I(v,u) then d(u) is setto d(v)+1(v, u)
and p(u) is set to v. The status of v is changed to scanned while the status of
w is changed to labeled. During the computation the edges (p(v),v) for all v
: p(v) # null induce the parent graph G,. If all vertices are either scanned or
unreached then d gives the shortest path lengths and G, is the shortest-path
tree. On the contrary, any cycle in G, is negative and if the graph contains a
negative cycle then after a finite number of scan operations G, always has
acycle [2]. This fact is used for the negative cycle detection.



2.1 Scanning strategies

Different strategies for selecting a labeled vertex to be scanned next lead to
different algorithms.

The Bellman-Ford-Moore algorithm [12, 13] uses for selecting the FIFO
strategy and runs in O(nm) time. The D’Escopo-Pape algorithm [14] makes
use of a priority queue. The next vertex to be scanned is removed from the
head of the queue. A vertex that becomes labeled is added to the head of
the queue if it has been scanned previously, or to the tail otherwise. The Pal-
lotino’s algorithm [15] maintains two queues. The next vertex to be scanned
iIs removed from the head of the first queue if it is nonempty and from the
second queue otherwise. A vertex that becomes labeled is added to the
tail of the first queue if it has been scanned previously, or to the tail of the
second queue otherwise. Both last mentioned algorithms favour recently
scanned vertices and run in O(n?m) time in the worst case, assuming no
negative cycles. The network simplex algorithm [16] maintains the invariant
that in the current parent graph all edges have zero reduced cost (the re-
duced cost of an edge (v, u) is l(v,u)+d(u)—d(v)). Therefore, if the distance
label of a vertex u decreases, the algorithm decreases labels of vertices in
the subtree rooted at « by the same amount. Then a new edge with negative
reduced cost (so called pivot) is found and the process continues. There are
several heuristics to find a pivot. One can search the scanned vertices and
choose the pivot according to a FIFO strategy or depending on the value of
the reduced cost. The algorithm runs in O(n?m) time.

There are several other algorithms, like e.g the Goldberg-Radzik and
the Goldfarb et.al. [17, 18], which however make use of topological sort-
ing and leveling of the parent graph respectively and thus are not directly
convertable into distributed versions.

2.2 Cycle Detection strategies

Besides the trivial and non-efficient cycle detection strategies like time out
and distance lower bound, the algorithms put to use one of the following
strategies: walk to root, subtree traversal and subtree disassembly.

The walk to root method tests whether G, is acyclic. Suppose the parent
graph G, is acyclic and the scanning operation relaxes an edge (v,u). This
operation will create a cycle in G, if and only if u is an ancestor of v in the
current parent tree. Before applying the operation, the method follows the
parent pointers from v until it reaches « or a vertex with null parent (on this
path only the root can have null parent). If the walk stops at u a negative



cycle has been found; otherwise, the scanning operation does not create a
cycle. The walk to root method gives immediate cycle detection. However,
since the path to the root can be long, the relaxation cost becomes O(n) in-
stead of O(1). In order to optimise the overall computational complexity
we propose to use amortisation to pay the cost of checking G, for cycles.
More precisely, the parent graph G, is tested only after the underlying scan-
ning algorithm performs Q(n) work. A drawback of the amortised strategy
is the fact that even if the relaxation of an edge (v, u) does not create a cycle
in G, there can be a cycle on the way from v to the root. Therefore the
strategy marks every vertex through which it proceeds. A cycle is detected
whenever an already marked vertex is reached. If G, is acyclic, all marks
are removed. The running time is thus increased only by a constant fac-
tor. The correctness of the amortised strategy is based on the fact that if
GG contains a negative cycle reachable from s, then after a finite number of
scanning operation G, always has a cycle [2].

The subtree traversal method makes use of a symmetric idea: the relax-
ation of an edge (v, u) can create a cycle in G, if and only if v is an ancestor
of w in the current tree. This strategy fits naturally with the network sim-
plex method as the subtree traversal can be combined with the updating of
the pivot subtree.

The subtree disassembly method also searches the subtree rooted at w.
However, this time if v is not in the subtree, all vertices of the subtree ex-
cept u are removed from the parent graph and their status is changed to
unreached. The work of subtree disassembly is amortized over the work to
build the subtree and the cycle detection is immediate.

3 Distributed Negative Cycle Detection Algorithms

We develope distributed versions of aforementioned serial algorithms. These
parallel algorithms are enriched by several novel ideas. To the best of our
knowledge these are the first algorithms for the considered setting of NCD
and SSSP problems. The pseudo-codes are given in Subsection 3.3.

The distributed algorithms are designed for a cluster of workstations.
Each workstation executes the same algorithm. In addition, we consider a
distinguished workstation (called the manager) which is responsible for the
initialization of the entire computation, termination detection and synchro-
nization. The vertices of the input graph are divided equally and randomly
into disjoint parts by a partition function.



3.1 Distributed scanning strategies

The scanning strategies used in the first three serial algorithms can be con-
verted into their distributed counterparts at no cost and preserving the
asymptotic complexity. Correctness of the serial algorithms does not de-
pend on the order in which relaxations are performed. Therefore we can
maintain local queues and each processor scans vertices in their relative
order.

The network simplex algorithm chooses the pivot according to the FIFO
strategy. We only need to provide a distributed version of the subtree up-
date to maintain the invariant concerning zero reduced costs. Thanks to
the fact that the parent graph does not contain any cycle (first some cycle
detection strategy is employed) one can traverse the subtree in the breadth
first manner without the necessity to mark visited vertices. The breadth
first search is well distributable. The asymptotic complexity is preserved.

3.2 Distributed Cycle Detection strategies

All the three considered cycle detection strategies can be modified preserv-
ing their asymptotic time complexity.

The subtree traversal method requires only a minor modification. The
breadth first traversal of the parent tree can be distributed in a natural way.
Thanks to the asynchronous relaxations it can happen that the structure of
the subtree is modified before succesfull completion of the subtree traver-
sal and thus a “false” negative cycle can be detected. To recognize such
a situation it is enough to count the distance from the subtree root to the
particular vertices.

The subtree disassembly strategy is more involved. When dissasemblig
the subtree we need to maintain distances as in the previous strategy to
discover “false” cycles. On top of that it can happen that a cycle in the
subtree spanning over several processors is not discovered due to strictly
synchronous sequence of relaxations and subtree disassembles. In such a
situation the cycle is detected using the distance lower bound.

The walk to root strategy follows the parent pointers starting from the
vertex where the detection has been invoked and marking the vertices through
which it proceeds. At the same time several detections can be invoked (on
different processors). Therefore every processor has its own mark and all
marks are linearly ordered. If a walk reaches a vertex marked with a lower
or higher mark it overwrites this mark or it stops respectively. A vertex
marked with the same stamp implies the presence of negative cycle. Af-



ter finishing the detection the strategy needs to remove the marks start-
ing from the vertex where the detection has been initiated. To find all the
marked vertices the parents of the vertices can not be changed in the mean-
time. This is guaranteed by locking the marked vertices.

3.3 The pseudo-codes

Program for a particular processor is specialised by using its processor
identity «. The function Owner(u) identifies the processor that owns vertex
u.

Each processor runs the Main procedure with root vertex s. The pro-
cedure send_msg sends a message to another processor. The procedure
process_messages() checks the incoming messages queue and does an ap-
propriate action.

The pseudo-codes for D’Escopo Pape and Pallotino heuristics are not
included as they can be obtained from the Bellman-Ford-More algorithm
by a straightforward modification.

1 proc Main(s)

InitializeSingleSource(); Q% := empty;

if @« = Manager then push(Q%, s); d(s) := 0; p(s) := nil; fi

while not finished do
if Q“ # empty then u := pop(Q*); {STD,STT,WTR} Scan(u); fi
process_messages();

~N O o1 A W DN

od

proc InitializeSingleSource()
foreach v € V do if Owner(v) = a then p(v) := nil; d(v) := oo; fiod

N =

Bellman-Ford-Moore with Subtree Disassembly

1 proc STD_Scan(u)

2 foreach v € Succ(u) do

3 if Owner(v) = «

4 then ST D_Update(v, u,d(u) + 1({u,v}));

5 else send_msg(Owner(v),” ST D_Update(v,u, d(u) + [({u,v)))”); fi
6 od

1 proc Update(v,u,t)

2 ifd(v) >t

3 then d(v) := t; p(v) = u;

4 if d(u) < threshold then ”Negative cycle found”; terminate; fi
5 Std(v,u, l(v,u));

6 ifv ¢ Qthen push(Q*,v); fi

7



1 proc Std(v, p,1)

2 ifp(v) # pthen return; fi

3 Local Qy; push(Q1, (v,1);

4  while @Q,not empty do

5 (v1,11) == pop(Q1);

6 if (v1 = a) A (I; < 0) then ”Negative cycle found”; terminate; fi
7 foreach u € Succ(v1) A p(u) = v, do

8 if Owner(u) = «

9 then push(Q1, (u,l; + 1({v1,u)))); p(u) := deleted;

10 ifu € Q° then remove(Q%,u); fi

11 else send_-msg(Owner(u),” Std(u, p,l; + 1({v1,u)))”); fi

12 od od
Network Simplex

1 proc STT_Scan(u)

2 foreach v € Succ(u) do

3 if Owner(v) = «

4 then STT Update(v,u,l({u,v)),d(u));
5 else send-msg(Owner(v),” STT_Update(v,u,l({u,v)),d(u))”); fi
6 od

1 proc Update(v,u, luv,t)

2 ifd(v) > t+luv

3 then if p(v) = nil then d(v) := t + luv; p(v) := u;
4 else p(v) := u; Pivot(v,u,d(v) — (t + luv),luv); fifi
5 if p(v) = u then push(Q",v); fi

1 proc Pivot(v,u,t,luv)

2 LocalQq; push(Q1, (v, luv));

3 while @,not empty do

4 (v1,11) == pop(Q1);

5 if (u =v1) A (I; < 0) then ”Negative cycle found”; terminate; fi
6 if (u = vy) then continue; fi

7 d(vy) :=d(vy) — t;

8 foreach u; € Suce(v1) A p(uy) = vy do

9

if Owner(u;) = «
10 then push(Q1, (u1, i1 + I({v1, u1)));
11 else send_msg(Owner(u1),” Pivot(ui, u, t, 1 + I({v1,w1}))”); fiod
12 if vy; € Q° then remove(Q*,v1); fiod

Bellman-Ford-Moore with Walk to Root

1 proc WTR_Scan(v)

2 foreach (v,u) € E do

3 if Owner(u) = «

4 then WT R _Update(u,v,d(v) + l(v,u))

5 else send_message(Owner(u),”WTR_-Update(u,v,d(v) + l(v,u))”) fi
6 od



1 proc WT'R_Update(u,v,t)

2 ifd(u) > t then if walk(u) £ nil

3 then if Owner(v) = «

s then push(Q®, )

5 else send_message(Owner(v),” push(Q,v)”) fi
6 else d(u) := t; p(u) := v;

7 if WTR_amortization then WT R([u, Stamp], u);
8 stamp + + fi;

9 ifu ¢ Q° then push(Q“, u) fifi fi

1 proc WTR([origin, stamp], at)

2 done:= false;

3 while —~done do

4 if owner(at) = «

5 then if walk(at) = [origin, stamp] then ” Negativecycle found”;
6 terminate; fi

7 if (at = root) V (walk(at) > |origin, stamp))

8 then if Owner(origin) = «

9 then REM ([origin, stamp], origin)

10 else send_message(Owner(origin),
11 "REM ([origin, stamp), origin)”); fi
12 done := true; continue; fi
13 if walk(at) = [nil,nil]) V (walk(at) < [origin, stamp])
14 then walk(at) := [origin, stamp];
15 at := p(at);
16 fi
17 else send_message(Owner(at),” WT R([origin, stamp], at)”);
18 done := true; fi
19 od

1 proc REM ([origin, stamp], at)

2 done:= false;

3 while ~done do

4 if Owner(at) = «

5 then if walk(at) = [origin, stamp] then walk(at) := [nil, nil];
6 at := p(at);

7 else done := true fi

8 else send_message(Owner(at),” REM ([origin, stamp], at)”);
9 done := true fi

od

-
o

4 Comparison of Distributed Algorithms

The challenge for distributed algorithms is to beat their (usually very effi-
cient) static counterparts. However, their actual running time may depend



on many parameters that have to do with the type of the input, the distri-
bution of the graph, and others. Hence, it is inevitable to perform a series
of experiments with several algorithms in order to be able to select the most
appropriate one for a specific application.

A parallel execution is characterized by the time elapsed from the time
the first processor started working to the time the last processor completed.
We present the average of a filtered set of execution times. Our collection
of datasets consists of a mix of real (representing verification problems)
and generated instances, the instances scale up linearly with the number of
processors.
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Figure 1: Real graph (model of a lift with 14 levels)

The algorithms have been implemented in C++ and the experiments
have been performed on a cluster of 20 Pentium PC Linux workstations
with 512 Mbytes of RAM each interconnected with a 100Mbps Ethernet
and using Message Passing Interface (MPI) library.

We compared the following combinations of SSSP and NCD algorithms:
Network Simplex with Subtree Traversal [nts ], Nellman-Ford with Subtree Dis-
assembly and distance lower bound [std ], Pallottino with Subtree Disassembly
[std-palt ], D’Escopo Pape with Subtree Disassembly [std-pape ], Bellman-
Ford with Walk to Root [wtr ].

The results are summarised in Figures 1 to 4. From the experiments
we can draw some remarkable conclusions. The first and the most impor-
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Figure 2: Real graph (lift with 12 levels, 500000 nodes, no negative cycle)
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Figure 3: Generated graph (no negative cycle, 64000 nodes)
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tant one is that distributing SSSP and NCD algorithms (even if done in
a very straightforward manner) allows to solve these problems for huge
graphs within reasonable amount of time. This is in particular important
in applications like model checking — more realistic systems can be verified.
All the implemented algorithms show good scalability, the exception is the
situation which represents the worst case (the negative cycle in grid-like
graph passes through all the processors) where the measurements corre-
spond to the theoretical worst case complexity (Figure 4). Proper choice of
cycle detection strategy is in the distributed environment more important
than the labelling strategy. As regards cycle detection the algorithms be-
have differently depending on the “type” of the input graph. For example
for randomly generated graphs with negative-valued edges and without
cycles we could conlude that std-palt Is the best choice and the nts has
the worst behaviour. For generated graphs with positive-valued edges all
the algorithms scale well and are reasonably fast. For graphs resulting from
model-checking problems the witr approach proved to beat all the others
regardless of the presence or absence of a negative cycle. The experiments
also demonstrated the fact that spliting the graph into too many small parts
does not bring additional speedup of the computation due to increase in
communication.
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Figure 4: Generated graph — the worst case
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5 Conclusions

We provide and analyse parallel algorithms for the general SSSP and NCD
problems for graphs specified with adjacency lists. The algorithms are de-
signed for networks of workstations where the input graph is distributed
over individual workstations communicating via a message passing inter-
face.

Based on our experiments we conclude that in situations where no a
priori information about the graph is given the best choice is the Subtree
Disassembly algorithm (in the sequential version known also as Tarjan’s al-
gorithm). For specific applications other algorithms or their combinations
can be more suitable, as demonstrated by Walk to Root in case of applica-
tion to model checking.
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