III U II I FI

Mornfall's Divine tool and me

Abstract representation in interval domain

Pavol Mišenko

Quick recap

How to deal with nondeterminism?

- Consider all possible options
- Symbolic representation
- Abstract domain representation
- Unit domain
- Zero domain
- Sign domain
- Interval domain

Analysis workflow

III U || I

Problems to solve with interval domain

1. Domain representation

- Value representation $\quad[3,5] \sim\{3,4,5\}$
- Operations
$[3,5]+[1,2]=[4,7] \sim\{4,5,6,7\}$

2. Nondeterministic control flow
3. Branch constraint propagation
```
    i = [4, 8 ]
```

 if \(\mathrm{i}<6\) :
 \(i=[4,5]\)
 else
 \(i=[6,8]\)
 III U II I

Domain representation

- Interval domain lattice
- Meet - \cap
- Join - U
- Nondeterminism

> int $\mathrm{x}=$ input() \downarrow $\mathrm{x}=[-\infty, \infty]$

$$
\begin{gathered}
\text { int } y=5 \\
\downarrow \\
y=[5,5]
\end{gathered}
$$

||| U || I

Relational operations - LT

III U II I

Relational operations - BOP_LT

III U II I

Arithmetic operations - BOP_ADD

$$
\begin{aligned}
& A=[2,5] \quad B=[3,5] \\
& R=A+B=[5,10] \\
& R^{\prime}=[5,7]
\end{aligned}
$$

Trivial approach:

$$
\begin{aligned}
& A_{T}=A \cap\left(R^{\prime}-B\right)=[2,5] \cap[0,4]=[2,4] \\
& B_{T}=B \cap\left(R^{\prime}-A\right)=[3,5] \cap[0,5]=[3,5]
\end{aligned}
$$

$$
A_{T}+B_{T}=R_{T}=[5,9]
$$

|| U || I

Arithmetic operations - BOP_ADD

$$
\begin{array}{ll}
A=[2,5] & B=[3,5] \\
A_{T}=[2,4] & B_{T}=[3,5] \\
R^{\prime}=[5,7] & R_{T}=[5,9]
\end{array}
$$

'Choose' approach:
$\Delta_{H}=R H_{T}-R H^{\prime}=9-7=2 \quad \Delta_{L}=R L^{\prime}-R_{T}=5-5=0$
$\mathrm{i}=$ choose $\left(\Delta_{H}+1\right)$
$\mathrm{A}=\left[\mathrm{AL}_{\mathrm{T}}, A H_{\mathrm{T}}-\mathrm{i}\right]$
$B=\left[B L_{T}, B H_{T}-\Delta_{H}+i\right]$
III U II I

Arithmetic operations - BOP_ADD

III U II I

Arithmetic operations - BOP_ADD

Invariants:

- Sum of intervals A and B after choose is equivalent to expected R^{\prime}
- Unity of all intervals A across branches after choose is equivalent to A_{T} before choose.
(Same for B)

III U II I

Multiple level propagation

III U II I

Multiple level propagation

III U II I

Multiple level propagation

II U || I

Multiple level propagation

II U || I

What's Next

- Bitwise operation refinement
- Domain refinement
- BOP splitting
-BOP propagation constraints

III U II I

$$
\begin{gathered}
\Lambda \\
---- \\
-(0)--
\end{gathered}
$$

Thank you for attention

|| U || I

