

Mornfall's Divine tool and me

Abstract representation in interval domain

Pavol Mišenko

Quick recap

How to deal with nondeterminism?

- Consider all possible options
- Symbolic representation
- Abstract domain representation
 - Unit domain
 - Zero domain
 - Sign domain
 - Interval domain

Analysis workflow

Problems to solve with interval domain

1. Domain representation

```
    Value representation [3, 5] ~ {3,4,5}
    Operations [3, 5] + [1, 2] = [4, 7] ~ {4, 5, 6, 7}
```

2. Nondeterministic control flow

3. Branch constraint propagation

Domain representation

Interval domain lattice

- Meet ∩
- Join ∪

– Nondeterminism

int
$$x = input()$$

$$x = [-\infty, \infty]$$

int
$$y = 5$$

 $y = [5, 5]$

Relational operations - LT

$$A = [1, 4]$$
 $B = [2, 7]$ $C = [5, 7]$

$$B = [2, 7]$$

$$C = [5, 7]$$

Relational operations – BOP_LT

$$A = [2, 5]$$
 $B = [3, 5]$
 $R = A + B = [5, 10]$

$$R' = [5, 7]$$

Trivial approach:

$$A_T = A \cap (R' - B) = [2, 5] \cap [0, 4] = [2, 4]$$

 $B_T = B \cap (R' - A) = [3, 5] \cap [0, 5] = [3, 5]$

$$A_T + B_T = R_T = [5, 9]$$

$$A = [2, 5]$$
 $B = [3, 5]$ $A_T = [2, 4]$ $B_T = [3, 5]$ Assume(R < 8) $R' = [5, 7]$ $R_T = [5, 9]$

'Choose' approach:

$$\Delta_{H} = RH_{T} - RH' = 9 - 7 = 2$$

$$i = choose(\Delta_{H} + 1)$$

$$A = [AL_{T}, AH_{T} - i]$$

$$B = [BL_{T}, BH_{T} - \Delta_{H} + i]$$

Invariants:

- Sum of intervals A and B after choose is equivalent to expected R'
- Unity of all intervals A across branches after choose is equivalent to A_T before choose. (Same for B)

What's Next

- Bitwise operation refinement
- Domain refinement
 - BOP splitting
- BOP propagation constraints

Thank you for attention

