
Graph-based optimal reconfiguration planning
for self-reconfigurable robots

Feili Hou, Wei-Min Shen

presented by Viktória Vozárová

March 19, 2018

1 / 29



Outline

I Motivation

I Problem definition

I Optimal algorithm (MDCOP)

I Greedy algorithm (GreedyCM)

I Experiments

2 / 29



Motivation

Self-reconfigurable robots:

I distributive

I modular

I reconfigurable

Sounds amazing. How to implement it? Which layer?

3 / 29



Motivation

Self-reconfigurable robots:

I distributive

I modular

I reconfigurable

Sounds amazing. How to implement it?

Which layer?

4 / 29



Motivation

Self-reconfigurable robots:

I distributive

I modular

I reconfigurable

Sounds amazing. How to implement it? Which layer?

5 / 29



Problem definition – example

6 / 29



Problem definition

Given the initial configuration and the goal configuration,
determine the minimal number of attach/detach actions and
provide a minimal plan.

This problem definition:

I assumes that attach/detach actions are expensive.

I ignores joint movement.

I ignores real-world physics.

7 / 29



Problem definition

Given the initial configuration and the goal configuration,
determine the minimal number of attach/detach actions and
provide a minimal plan.

This problem definition:

I assumes that attach/detach actions are expensive.

I ignores joint movement.

I ignores real-world physics.

8 / 29



Robot configuration as c-graph

9 / 29



Maximum configuration matching

Definition

Configuration matching for configurations H1 and H2 is a bijection
from nodes of H1 to nodes of H2.

Definition

Given an initial configuration I , a goal configuration G and
a configuration matching, edges (u, v) ∈ I and (u′, v ′) ∈ G are
matched if u is matched to u′ and v is matched to v ′.

Find a configuration matching that maximizes the number of
matched edges.
Getting a reconfiguration plan from matching is straightforward.

10 / 29



Maximum configuration matching – example

11 / 29



Distributed constraint optimization problem

DCOP is defined as 〈X ,D,R〉, where:

I X = {X1,X2, . . .Xn} is a set of agents,

I D = {D1,D2, . . .Dn} is a set of finite domains,

I R = {R1,R2, . . .Rm} is a set of binary constraints
Rk : Di × Dj → N.

Each agent Xi chooses a value from Di .
The goal is to minimalize the sum of all constraints.

12 / 29



DCOP – example

Minimal solutions:
X1 = 0,X2 = 1,X3 = 0 X1 = 0,X2 = 1,X3 = 1.

13 / 29



DCOP – example

Minimal solutions:
X1 = 0,X2 = 1,X3 = 0 X1 = 0,X2 = 1,X3 = 1.

14 / 29



Mapping to DCOP

Let X be robots in the initial configuration.
Each Di is a set of nodes in the goal configuration.
Each Xi chooses one node in the goal configuration.

1. If agents Xi and Xj are connected and they choose
connected nodes, then R(Xi ,Xj) = 0. (matched)

2. If agents Xi and Xj are connected and they choose
not connected nodes, then R(Xi ,Xj) = 1. (unmatched)

3. If agents Xi and Xj choose the same node, then
R(Xi ,Xj) =∞. (invalid)

Minimizing R maximizes the number of matched edges.

15 / 29



Mapping to DCOP – optimization

The third condition is too strict.

Let each Di be a set of candidate mates1 of Xi .
There can be no candidate: add ∅ as a wild card.
Add the third condition only if Di ∩ Dj 6= ∅.

After running DCOP, a node matched to ∅ can
matched to any free node in G .

1nodes in G , which have at least one edge with the same connection type
16 / 29



GreedyCM

1. Find maximum common edge sub-configuration (MCESC).

2. Erase found matching.

3. Repeat until all nodes are matched.

Since node degrees are bound and labelled,
finding MCESC is easy (polynomial).

17 / 29



GreedyCM – example

18 / 29



GreedyCM – example

19 / 29



GreedyCM – example

20 / 29



GreedyCM – example

21 / 29



GreedyCM – example

22 / 29



GreedyCM – example

23 / 29



GreedyCM – optimal solution

24 / 29



GreedyCM – distributive

1. Each node u ∈ I computes for each v ∈ G MCESC
where u is matched to v .

2. All MCESC are sent to the leader.

3. The leader sorts all MCESC in a partial order.

4. Maximal disjoint MCESC are chosen and erased.

5. Repeat until all nodes are matched.

Example.

25 / 29



GreedyCM – distributive

1. Each node u ∈ I computes for each v ∈ G MCESC
where u is matched to v .

2. All MCESC are sent to the leader.

3. The leader sorts all MCESC in a partial order.

4. Maximal disjoint MCESC are chosen and erased.

5. Repeat until all nodes are matched.

Example.

26 / 29



Experimental results

I Videos.

I Paper.

27 / 29



Remaining problems

I Hardware limitation (how to align modules to connect).

I Order of reconfiguration steps.

I Parallel execution.

. . . and that is what we will try to solve.

28 / 29



Remaining problems

I Hardware limitation (how to align modules to connect).

I Order of reconfiguration steps.

I Parallel execution.

. . . and that is what we will try to solve.

29 / 29


