Graph-based optimal reconfiguration planning for self-reconfigurable robots

Feili Hou, Wei-Min Shen
presented by Viktória Vozárová

March 19, 2018

Outline

- Motivation
- Problem definition
- Optimal algorithm (MDCOP)
- Greedy algorithm (GreedyCM)
- Experiments

Motivation

Self-reconfigurable robots:

- distributive
- modular
- reconfigurable

Motivation

Self-reconfigurable robots:

- distributive
- modular
- reconfigurable

Sounds amazing. How to implement it?

Motivation

Self-reconfigurable robots:

- distributive
- modular
- reconfigurable

Sounds amazing. How to implement it? Which layer?

Problem definition - example

Problem definition

Given the initial configuration and the goal configuration, determine the minimal number of attach/detach actions and provide a minimal plan.

Problem definition

Given the initial configuration and the goal configuration, determine the minimal number of attach/detach actions and provide a minimal plan.

This problem definition:

- assumes that attach/detach actions are expensive.
- ignores joint movement.
- ignores real-world physics.

Robot configuration as c-graph

Maximum configuration matching

Definition

Configuration matching for configurations H_{1} and H_{2} is a bijection from nodes of H_{1} to nodes of H_{2}.

Definition

Given an initial configuration I, a goal configuration G and a configuration matching, edges $(u, v) \in I$ and $\left(u^{\prime}, v^{\prime}\right) \in G$ are matched if u is matched to u^{\prime} and v is matched to v^{\prime}.

Find a configuration matching that maximizes the number of matched edges.
Getting a reconfiguration plan from matching is straightforward.

Maximum configuration matching - example

Goal configuration G
(a) An instance of configuration matching that is not maximum.

Initial configuration I

Goal configuration G
(b) An instance of maximum configuration matching.

Distributed constraint optimization problem

DCOP is defined as $\langle X, D, R\rangle$, where:

- $X=\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ is a set of agents,
- $D=\left\{D_{1}, D_{2}, \ldots D_{n}\right\}$ is a set of finite domains,
- $R=\left\{R_{1}, R_{2}, \ldots R_{m}\right\}$ is a set of binary constraints

$$
R_{k}: D_{i} \times D_{j} \rightarrow \mathbb{N}
$$

Each agent X_{i} chooses a value from D_{i}.
The goal is to minimalize the sum of all constraints.

DCOP - example

DCOP - example

Minimal solutions:
$X_{1}=0, X_{2}=1, X_{3}=0 \quad X_{1}=0, X_{2}=1, X_{3}=1$.

Mapping to DCOP

Let X be robots in the initial configuration.
Each D_{i} is a set of nodes in the goal configuration.
Each X_{i} chooses one node in the goal configuration.

1. If agents X_{i} and X_{j} are connected and they choose connected nodes, then $R\left(X_{i}, X_{j}\right)=0$. (matched)
2. If agents X_{i} and X_{j} are connected and they choose not connected nodes, then $R\left(X_{i}, X_{j}\right)=1$. (unmatched)
3. If agents X_{i} and X_{j} choose the same node, then $R\left(X_{i}, X_{j}\right)=\infty$. (invalid)
Minimizing R maximizes the number of matched edges.

Mapping to DCOP - optimization

The third condition is too strict.
Let each D_{i} be a set of candidate mates ${ }^{1}$ of X_{i}. There can be no candidate: add \emptyset as a wild card. Add the third condition only if $D_{i} \cap D_{j} \neq \emptyset$.

After running DCOP, a node matched to \emptyset can matched to any free node in G.

[^0]
GreedyCM

1. Find maximum common edge sub-configuration (MCESC).
2. Erase found matching.
3. Repeat until all nodes are matched.

Since node degrees are bound and labelled, finding MCESC is easy (polynomial).

GreedyCM - example

b

GreedyCM - example

GreedyCM - example

GreedyCM - optimal solution

b

GreedyCM - distributive

1. Each node $u \in I$ computes for each $v \in G$ MCESC where u is matched to v.
2. All MCESC are sent to the leader.
3. The leader sorts all MCESC in a partial order.
4. Maximal disjoint MCESC are chosen and erased.
5. Repeat until all nodes are matched.

GreedyCM - distributive

1. Each node $u \in I$ computes for each $v \in G$ MCESC where u is matched to v.
2. All MCESC are sent to the leader.
3. The leader sorts all MCESC in a partial order.
4. Maximal disjoint MCESC are chosen and erased.
5. Repeat until all nodes are matched.

Example.

Experimental results

- Videos.
- Paper.

Remaining problems

- Hardware limitation (how to align modules to connect).
- Order of reconfiguration steps.
- Parallel execution.

Remaining problems

- Hardware limitation (how to align modules to connect).
- Order of reconfiguration steps.
- Parallel execution.
... and that is what we will try to solve.

[^0]: ${ }^{1}$ nodes in G, which have at least one edge with the same connection type

