
My DIVINE contribution
IV115 2018

Tadeáš Kučera

Masaryk University
Brno, Czech Republic

February 26, 2018

1 / 8



ParaDiSe
Diploma thesis

Contents of my thesis
C/C++ API for monitoring ω regular properties of verified
programs
May consider implementation of own translation of LTL

+ easier usage – bigger automata
Implement it into DIVINE

2 / 8



ParaDiSe
Previuous work

PROGRESS
LTL parser
decided for our own embedded translation LTL to Buchi
LTL to TGBA by D. Giannakopoulou and F. Lerda (see [5])
implemented it and used SPOT to test it
ltlc.cpp then generates c++ API of the TGBA
standard (stupid) degeneralizer of TGBA

Where is it now?
/divine/divine/ltl
/divine/divine/ui/ltlc.cpp
/divine/runtime/dios/lib/degeneralizer.hpp
/divine/runtime/libc/include/sys/monitor.h

3 / 8



ParaDiSe
More about TGBA?

Definition (TGBA)

TGBA is a 5-touple (S,A,T , q0,F ), where
S is a finite set of states and q0 ∈ S is initial state
A is a finite alphabet (set of used atomical propositions),
T ⊆ S × A× S is a set of all transitions,
F ⊆ 2T is a set of sets of accepting transitions (colors).

Definition (TGBA accepting condition)
An infinite word w ∈ A∗ is accepted by the TGBA iff there exists
an execution θ of the automaton on w that for every C ∈ F
contains at least one element from C infinitely many times.

4 / 8



ParaDiSe
Statistics

Used SPOT randltl and ltlcross to test our LTL -> TGBA on 400
random formulas (manual in [4])

5 / 8



ParaDiSe
Current work

Testing the C++ API
of TGBA and its
Degeneralizer on some
of our examples of
synchronous systems

Reading [3].

Looking for some
smarter Degeneralizer

6 / 8



ParaDiSe
Future work

Smarter Degeneralizer - why should we try?
There is simple conversion from state to transition based
acceptance with NO SPACE INCREASE.
Not the other way:

DIVINE uses TBA -> transition acceptance is fully enough.
Smarter Degeneralizer - what all could that bring to us?

Smaller product with our TGBA
Smaller product with SPOTs TGBA - possible even smaller
than their state based BA

Lets start with [1] and [2]!

7 / 8



Souheib Baarir and Alexandre Duret-Lutz.
Mechanizing the minimization of deterministic generalized büchi automata.
In Erika Ábrahám and Catuscia Palamidessi, editors, Formal Techniques for Distributed Objects,
Components, and Systems, pages 266–283, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmír Křetínský, and Jan Strejček.
Compositional approach to suspension and other improvements to ltl translation.
In Ezio Bartocci and C. R. Ramakrishnan, editors, Model Checking Software, pages 81–98, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

Vincent Bloemen, Alexandre Duret-Lutz, and Jaco van de Pol.
Explicit state model checking with generalized büchi and rabin automata.
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software,
SPIN 2017, pages 50–59, New York, NY, USA, 2017. ACM.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Étienne Renault, and
Laurent Xu.
Spot 2.0 — a framework for ltl and ω-automata manipulation.
In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for Verification and Analysis,
pages 122–129, Cham, 2016. Springer International Publishing.

Dimitra Giannakopoulou and Flavio Lerda.
From states to transitions: Improving translation of ltl formulae to büchi automata.
In Doron A. Peled and Moshe Y. Vardi, editors, Formal Techniques for Networked and Distributed Sytems
— FORTE 2002, pages 308–326, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

8 / 8


