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ParaDiSe
Diploma thesis

Contents of my thesis
C/C++ API for monitoring ω regular properties of verified
programs
May consider implementation of own translation of LTL

+ easier usage – bigger automata
Implement it into DIVINE
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ParaDiSe
Previuous work

PROGRESS
LTL parser
decided for our own embedded translation LTL to Buchi
LTL to TGBA by D. Giannakopoulou and F. Lerda (see [5])
implemented it and used SPOT to test it
ltlc.cpp then generates c++ API of the TGBA
standard (stupid) degeneralizer of TGBA

Where is it now?
/divine/divine/ltl
/divine/divine/ui/ltlc.cpp
/divine/runtime/dios/lib/degeneralizer.hpp
/divine/runtime/libc/include/sys/monitor.h
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ParaDiSe
More about TGBA?

Definition (TGBA)

TGBA is a 5-touple (S,A,T , q0,F ), where
S is a finite set of states and q0 ∈ S is initial state
A is a finite alphabet (set of used atomical propositions),
T ⊆ S × A× S is a set of all transitions,
F ⊆ 2T is a set of sets of accepting transitions (colors).

Definition (TGBA accepting condition)
An infinite word w ∈ A∗ is accepted by the TGBA iff there exists
an execution θ of the automaton on w that for every C ∈ F
contains at least one element from C infinitely many times.
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ParaDiSe
Statistics

Used SPOT randltl and ltlcross to test our LTL -> TGBA on 400
random formulas (manual in [4])
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ParaDiSe
Current work

Testing the C++ API
of TGBA and its
Degeneralizer on some
of our examples of
synchronous systems

Reading [3].

Looking for some
smarter Degeneralizer
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ParaDiSe
Future work

Smarter Degeneralizer - why should we try?
There is simple conversion from state to transition based
acceptance with NO SPACE INCREASE.
Not the other way:

DIVINE uses TBA -> transition acceptance is fully enough.
Smarter Degeneralizer - what all could that bring to us?

Smaller product with our TGBA
Smaller product with SPOTs TGBA - possible even smaller
than their state based BA

Lets start with [1] and [2]!
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