Motion planning in known environment

Viktória Vozárová

December 9, 2018

 \triangleright \mathbb{R}^2 space with obstacles

restricted robot movements

the robot is nonholonomic

The robot is set in a metric space X on initial position x_{init} .

His objective is to reach the roboprincess in $X_{goal} \subset X$.

There are some obstacles on the way $X_{obs} \subset X$.

Let's make it more formal.

Let's make it more formal.

Initialize tree $T = (\{x_{init}\}, \emptyset).$

 ^{1}d is a metric of X

1. Pick random
$$x_{rand} \in X_{free}$$
.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:

Initialize tree $T = (\{x_{init}\}, \emptyset).$

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:

• x_{new} is reachable from x_{near} in Δt ,

Initialize tree $T = (\{x_{init}\}, \emptyset).$

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:

 \blacktriangleright x_{new} is reachable from x_{near} in Δt ,

all intermediate points are in X_{free},

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:
 - x_{new} is reachable from x_{near} in Δt ,
 - all intermediate points are in X_{free},
 - ► $d(x_{new}, x_{rand})$ is minimal.¹

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:
 - x_{new} is reachable from x_{near} in Δt ,
 - all intermediate points are in X_{free},
 - ► $d(x_{new}, x_{rand})$ is minimal.¹
- 4. Add the vertex x_{new} and the edge (x_{near}, x_{new}) to T.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:
 - x_{new} is reachable from x_{near} in Δt,
 all intermediate points are in X_{free},
 - d(x_{new}, x_{rand}) is minimal.¹
- 4. Add the vertex x_{new} and the edge (x_{near}, x_{new}) to T.
- 5. Repeat until $x_{new} \in X_{goal}$.

 $^{^{1}}d$ is a metric of X

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:
 - x_{new} is reachable from x_{near} in Δt,
 all intermediate points are in X_{free},
 - d(x_{new}, x_{rand}) is minimal.¹
- 4. Add the vertex x_{new} and the edge (x_{near}, x_{new}) to T.
- 5. Repeat until $x_{new} \in X_{goal}$.

 $^{^{1}}d$ is a metric of X

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ such that:
 - x_{new} is reachable from x_{near} in Δt,
 all intermediate points are in X_{free},
 - ► d(x_{new}, x_{rand}) is minimal.¹
- 4. Add the vertex x_{new} and the edge (x_{near}, x_{new}) to T.
- 5. Repeat until $x_{new} \in X_{goal}$.

Return path from x_{init} to $x \in X_{goal}$.

 $^{^{1}}d$ is a metric of X

 c^{2} is a cost function

1. Pick random $x_{rand} \in X_{free}$.

^{2}c is a cost function

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find *x*_{parent} in *T* such that:

Initialize tree $T = (\{x_{init}\}, \emptyset)$.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:

• x_{new} is reachable from x_{parent} in Δt ,

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find *x*_{parent} in *T* such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.
- 6. For each x in T where $d(x, x_{new}) < \varepsilon$:

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.
- 6. For each x in T where $d(x, x_{new}) < \varepsilon$:
 - if the path from x_{init} to x can be improved by changing x's parent to x_{new}, rewire.

 $^{^{2}}c$ is a cost function

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.
- 6. For each x in T where $d(x, x_{new}) < \varepsilon$:
 - if the path from x_{init} to x can be improved by changing x's parent to x_{new}, rewire.
- 7. Repeat until $x_{new} \in X_{goal}$.

 c^{2} is a cost function

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.
- 6. For each x in T where $d(x, x_{new}) < \varepsilon$:
 - if the path from x_{init} to x can be improved by changing x's parent to x_{new}, rewire.
- 7. Repeat until $x_{new} \in X_{goal}$.

 c^{2} is a cost function

Initialize tree $T = (\{x_{init}\}, \emptyset)$.

- 1. Pick random $x_{rand} \in X_{free}$.
- 2. Find the closest point x_{near} to x_{rand} from T.
- 3. Find $x_{new} \in X_{free}$ as in RRT.
- 4. Find x_{parent} in T such that:
 - x_{new} is reachable from x_{parent} in Δt ,
 - the path from x_{init} to $x_{parent} + c(x_{parent}, x_{new})$ is minimal.²
- 5. Add the vertex x_{new} and the edge (x_{parent}, x_{new}) to T.
- 6. For each x in T where $d(x, x_{new}) < \varepsilon$:
 - if the path from x_{init} to x can be improved by changing x's parent to x_{new}, rewire.
- 7. Repeat until $x_{new} \in X_{goal}$.

Return path from x_{init} to $x \in X_{goal}$.

 $^{^{2}}c$ is a cost function

PRM, RRT, and RRT*

Frank Dellaert

Based on materials by Steve Lavalle, Lydia Kavraki, Emilio Frazzoli and their students

Monday, February 21, 2011

RRT vs RRT*

RRT vs RRT*

RRT* with Obstacles

Anytime RRT*

Fig. 4. RRT* algorithm shown after 500 (a), 1,500 (b), 2,500 (c), 5,000 (d), 10,000 (e), 15,000 (f) iterations.

- Bidirectional RRT
- Rapidly-exploring random graph (RRG)
- Informed RRT*
- RRT*-Smart
- Real-Time RRT*