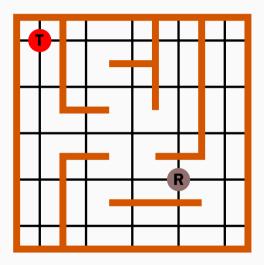
Introduction to Robotics

Lecture 1: Introduction

17. 9. 2018

 $\mathsf{ParaDiSe}$


Build an overview in the robotics field from A to Z.

- get familiar with a low-level hardware & learn to tackle hardware-related problems
 - simple (digital) electronics
 - screws, glue, hacksaw...
 - etc.
- learn to program bare-metal MCUs
- get familiar with basic sensors & actuators
- learn the high level theory
- fill the gap between the low level stuff and high level abstracted view on robotics

What Are We Not Up To

- learn to produce industrial-grade robots
- getting tied to a specific platform
 - we will work with Atmel based 8-bit MCUs
 - but in theory we will cover other vendors and solutions
- learning advanced electronics & mechanics
 - no analog circuitry
 - no custom PCBs
 - no (sophisticated) custom mechanics

Project

Build an autonomous robot which is able to:

- move in square grid based maze
 - using guide lines and
 - walls
- explore the maze and fullfil given tasks:
 - find a spot with given property
 - build a map and navigate efficiently
 - possibly move an object around? (sokoban?)

Our Robot

- attend the seminars
- bring you own laptop
- do your homeworks
- be proactive (eg. build test arena)
- use VCS and make your sources public so we can inspire & learn from each other

Electronics Preliminaries

Required Level of Knoweledge

Only a small subset of high-school physics & common sense is required

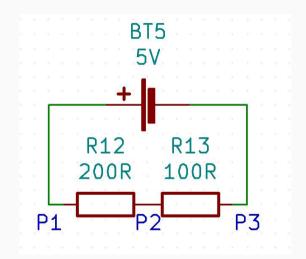
Voltage and Current

Voltage

- is a *potential* for current to flow
- denoted as U
- measured in volts (V)
- measured between two points

Watefall parable:

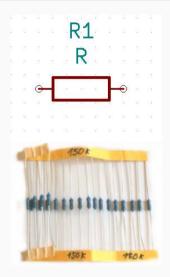
- voltage is the height, current is the amount of water
- "the power" is linear to the height and the amount


Current flows from positive to negative potential ¹

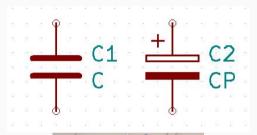
Current

- is an amount of electrons flowing
- denoted as I
- measured in ampers (A)
- measured on a single point

¹electrons actually go the other way

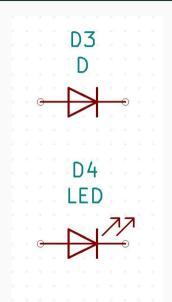

Voltage and Current

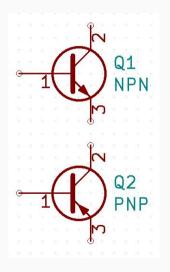
It makes sense to talk about:


- current at point P1
- current at point P2
- current at point P3
- voltage between points P1 and P2
- voltage between points P2 and P3
- voltage between points P1 and P3
 Nothing else makes sense.

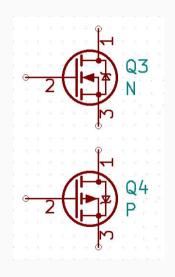
Resistor

- limits the current flow
- properties:
 - resistance (R), measured in ohms (Ω)
 - maximal power dissipation, measured in watts (W)
- typical usage:
 - limit current (e.g. for LED)
 - divide voltage (pull-up/pull-down)
- notation of the units:
 - 42 $\Omega = 42R$
 - 4200 $\Omega = 4k2$
 - 2500000 $\Omega = 2M5$


Capacitor


- stores (small amount) of energy
- properties:
 - capacity (C), measured in Farads (F)
 - maximal rated voltage
- typical usage:
 - analog circuitry
 - power filtering
 - oscillators
- notation of the units:
 - 10 pF = 10p
 - 100 nF = 100n
 - 4700 uF = 4u7

Diode


- conducts current only in one direction
- LED light diode emitting
- properties:
 - forward voltage (V_f)
 - maximal current, (nominal current for LED)
- typical usage:
 - rectification
 - power spike filtering
 - LED light

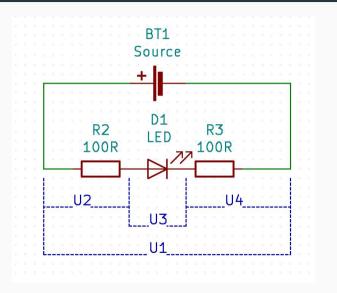
Transistor (bipolar)

- acts as a valve (small amount of current controls flow)
 - NPN current going into base opens it
 - PNP current going from base opens it
- properties:
 - maximal current
 - amplification (denoted h_{FE})
 - maximal switching frequency
 - maximal power dissipation
- typical usage:
 - power switch
 - basic element of logic gates

Transistor (unipolar)

- acts as a valve (voltage controls current flow)
 - N-channel **positive** voltage between gate and source opens it
 - P-channel negative voltage between gate and source opens it
- properties:
 - maximal current
 - maximal switching frequency
 - maximal power dissipation
 - GS-voltage to current characteristic
 - on-resistance
- typical usage:
 - power switching
 - low-power
- better parameters than bipolar, not so foolproof

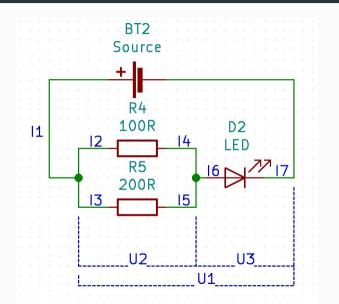
"The Formulas" – Ohm's Law, Electric Power & Kirchhoff's Law

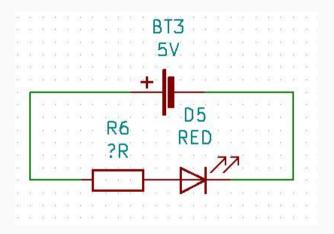

Ohms law	Electric power	Kirchnoff's law
		n m
$U = I \cdot R$	$P = U \cdot I$	$0=\sum_{k=1}I_k, 0=\sum_{k=1}U_k$

Usage: everywhere

- resitor values
- power losses (thermal dissipation)
- voltage dividers
- etc.

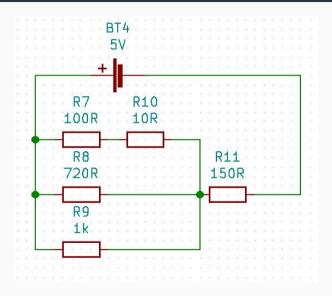
 $|Z_{i}^{\dagger}| = |z_{i}| = C_{i}^{\dagger} = |z_{i}|$


Example – Serial Connection


- there is the same current *I* going through all the points of the circuit
- *U*₁ is the voltage on the source terminals

•
$$U_1 = U_2 + U_3 + U_4$$

Example – Paralel Connection



- *U*₁ is the voltage on the source terminals
- $U_1 = U_2 + U_3$
- $I_1 = I_6 = I_7$
- $I_2 = I_4$
- $I_3 = I_5$
- $I_1 = I_2 + I_3$

- there is 5V voltage source
- desired current through LED is 10 mA
- forward voltage drop of red LED at 10 $$\rm mA$$ is 2.2 V
- what is an appropriate value for R6?

HW 2

- identify all possible voltages and currents in the circuit
- think about their relations
- determine their values

Prepare the PlatformIO toolchain on your machine for the next lecture. https://platformio.org/

HW 4

Source: https://xkcd.com/356/