Gentle introduction to abstract interpretation

Henrich Lauko

September 25, 2017

- Often impossible to compute the set of reachable states precisely
- Lets compute them on some level of abstraction

Traces of program

Evolution of program state through time

Abstraction of trajectories

Abstraction of trajectories

Soundness of abstract interpretation

We want to exclude unsound abstractions

Soundness of abstract interpretation

Bounded model-checking

False positive

- 1 Partially ordered sets and lattices
- 2 Monotone functions
- **3** Fixpoint computation
- 4 Strongest postcondition

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \text{ if } a \text{ contains more information than } b$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

a

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

Partially ordered set (P, \leqslant) , where \leqslant is an ordering on P.

Intuition

 $a \leqslant b$ if a contains more information than b

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

 $[1,3] \lor [2,4] = ???$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

 $[1,3] \lor [2,4] = [1,4]$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5, 10] \leq [0, 15]$

Union ~ Supremum (Join)

Intersection ~ Infimum (Meet)

 $[1,3] \lor [2,4] = [1,4]$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

 $[1,3] \vee [2,4] = [1,4]$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

 $[1,3] \vee [2,4] = [1,4]$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

Intersection ~ Infimum (Meet)

 $[1,3] \vee [2,4] = [1,4]$

Partially ordered set (P, \leqslant) , where \leqslant is an ordering on P.

Intuition $a \leqslant b$ if a contains more information than b

 $[5,10]\leqslant [0,15]$

Union \sim Supremum (Join)

Intersection ~ Infimum (Meet)

 $[1,3] \lor [2,4] = [1,4]$

 $[1,3] \land [2,4] = ???$

Partially ordered set (P, \leq) , where \leq is an ordering on P.

Intuition $a\leqslant b \mbox{ if } a \mbox{ contains more information than } b$

 $[5,10] \leqslant [0,15]$

Union ~ Supremum (Join)

Intersection ~ Infimum (Meet)

 $[1,3] \vee [2,4] = [1,4]$

 $[1,3] \land [2,4] = [2,3]$

•
$$(\mathbb{Z}, \leq)$$

• $(2^A, \subseteq)$ for a set A

- (ℤ, ≤)
- $(2^A, \subseteq)$ for a set A
- (Int, \subseteq) for a set of intervals in Int = {[a, b] | a, b \in \mathbb{Z}, a \leq b}

- $\bullet \ (\mathbb{Z},\leqslant)$
- $(2^A, \subseteq)$ for a set A
- (Int, \subseteq) for a set of intervals in $Int = \{[a, b] \mid a, b \in \mathbb{Z}, a \leqslant b\}$
- $(Int \cup \{\emptyset\}, \subseteq)$

- $\blacksquare (\mathbb{Z},\leqslant)$
- $(2^A, \subseteq)$ for a set A
- (Int, \subseteq) for a set of intervals in Int = {[a, b] | a, b \in \mathbb{Z}, a \leq b}
- $(Int \cup \{\emptyset\}, \subseteq)$
- $(Unit \cup \{\emptyset\}, \subseteq)$ for a set Unit of unit intervals (i.e. [a, a + 1))

Are the following lattices complete lattices?

■ (ℤ,≤)

Are the following lattices complete lattices?

$$(\mathbb{Z} \cup \{-\infty,\infty\},\leqslant)$$

Are the following lattices complete lattices?

$$(\mathbb{Z} \cup \{-\infty,\infty\},\leqslant)$$

•
$$(2^A, \subseteq)$$
 for a set A
Are the following lattices complete lattices?

- $\blacksquare (\mathbb{Z},\leqslant)$
- $\bullet \ (\mathbb{Z} \cup \{-\infty,\infty\},\leqslant)$
- $(2^A, \subseteq)$ for a set A
- $(Int \cup \{\emptyset, (-\infty, \infty)\}, \subseteq)$

Are the following lattices complete lattices?

- $\blacksquare (\mathbb{Z},\leqslant)$
- $\bullet \ (\mathbb{Z} \cup \{-\infty,\infty\},\leqslant)$
- $(2^A, \subseteq)$ for a set A
- $(Int \cup \{\emptyset, (-\infty, \infty)\}, \subseteq)$

Are the following lattices complete lattices?

- $(\mathbb{Z} \cup \{-\infty, \infty\}, \leqslant)$
- $(2^A, \subseteq)$ for a set A
- $(Int \cup \{\emptyset, (-\infty, \infty)\}, \subseteq) = Int_L$

Are the following lattices complete lattices?

- $(\mathbb{Z} \cup \{-\infty, \infty\}, \leqslant)$
- $(2^A, \subseteq)$ for a set A
- $(Int \cup \{\emptyset, (-\infty, \infty)\}, \subseteq) = Int_L$

A complete lattice always has

- the greatest element (\top) called top
- the least element (\bot) called bottom

Let $(P, \leq), (R, \sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

 $x \leqslant y \implies f(x) \sqsubseteq f(y)$

Let $(P, \leqslant), (R, \sqsubseteq)$ are posets

■ a function $f : P \to R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

• sign :
$$\mathbb{Z} \rightarrow \{-1, 0, 1\}$$

Let $(P, \leqslant), (R, \sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

Are following functions monotone?

• sign :
$$\mathbb{Z} \rightarrow \{-1, 0, 1\}$$

• $abs : \mathbb{Z} \to \mathbb{N}$

Let $(P,\leqslant),(R,\sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

• sign :
$$\mathbb{Z} \to \{-1, 0, 1\}$$

- $abs : \mathbb{Z} \to \mathbb{N}$
- middle : $Int_L \to \mathbb{R}$

Let $(P, \leqslant), (R, \sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

- $\operatorname{sign} : \mathbb{Z} \to \{-1, 0, 1\}$
- $abs : \mathbb{Z} \to \mathbb{N}$
- middle : $Int_L \to \mathbb{R}$
- size : Int_L $\rightarrow \mathbb{N}$

Let $(P, \leqslant), (R, \sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

- $\operatorname{sign} : \mathbb{Z} \to \{-1, 0, 1\}$
- $abs : \mathbb{Z} \to \mathbb{N}$
- middle : $Int_L \to \mathbb{R}$
- size : Int_L $\rightarrow \mathbb{N}$

Let $(P,\leqslant),(R,\sqsubseteq)$ are posets

a function $f: P \rightarrow R$ is monotone if for all $x, y \in P$ it holds

$$x \leqslant y \implies f(x) \sqsubseteq f(y)$$

Are following functions monotone?

• sign :
$$\mathbb{Z} \to \{-1, 0, 1\}$$

- $abs : \mathbb{Z} \to \mathbb{N}$
- middle : $Int_L \to \mathbb{R}$
- size : $Int_L \rightarrow \mathbb{N}$

A monotone function $f:P\to P$ on a poset (P,\leqslant) is called a transformer.

• $x \in P$ is called a fixpoint of transformer f if f(x) = x

• $x \in P$ is called a fixpoint of transformer f if f(x) = x

What are fixpoints of following functions?

• $\lambda x.(x+1)$ on (\mathbb{Z},\leqslant)

• $x \in P$ is called a fixpoint of transformer f if f(x) = x

What are fixpoints of following functions?

- $\lambda x.(x+1)$ on (\mathbb{Z},\leqslant)
- $\lambda[x,y].([x+1,y+1])$ on Int_L

• $x \in P$ is called a fixpoint of transformer f if f(x) = x

What are fixpoints of following functions?

- $\lambda x.(x+1)$ on (\mathbb{Z},\leqslant)
- $\lambda[x,y].([x+1,y+1])$ on Int_L
- $\lambda x.(-x)$ on $Sig_L = (\{-1, 0, 1, \top, \bot\}, \leqslant)$

A set of fixpoints of a transformer on a complete lattice forms a complete lattice.

A set of fixpoints of a transformer on a complete lattice forms a complete lattice.

As a corollary, there is

- the greatest fixed point gfp(f)
- the least fixed point lfp(f)

A set of fixpoints of a transformer on a complete lattice forms a complete lattice.

As a corollary, there is

- the greatest fixed point gfp(f)
- the least fixed point lfp(f)

What is gfp and lfp in $\mathrm{Sig}_{\mathrm{L}}?$

A set of fixpoints of a transformer on a complete lattice forms a complete lattice.

As a corollary, there is

- the greatest fixed point gfp(f)
- the least fixed point lfp(f)

What is gfp and lfp in Sig_L?

Theorem (Kleene)

Let (L, \leq) be a complete lattice of finite height and transformer f. Then there exists $n \in \mathbb{N}$ such that for all $k \in \mathbb{N}$ it is $f^n(\bot) = f^{n+k}(\bot)$ and $f^n(\bot) = lfp(f)$.

Algorithm

1	x := ⊥;	
2	do {	
3	t := x;	
4	x := f(x);	
5	} while (x \neq t));

postcondition that implies any postcondition satisfied by the final state of any execution from s

postcondition that implies any postcondition satisfied by the final state of any execution from s

What is sp of of state S, where state is discribed as set of possible values of x:

•
$$sp({x | x \ge 5}, x := x + 3)$$

postcondition that implies any postcondition satisfied by the final state of any execution from s

What is sp of of state S, where state is discribed as set of possible values of x:

•
$$sp({x | x \ge 5}, x := x + 3)$$

• sp(S, x := x + 3)

postcondition that implies any postcondition satisfied by the final state of any execution from s

What is sp of of state S, where state is discribed as set of possible values of x:

•
$$sp({x | x \ge 5}, x := x + 3)$$

•
$$sp(S, x := x + 3)$$

• sp(S, x := 0)

postcondition that implies any postcondition satisfied by the final state of any execution from s

What is sp of of state S, where state is discribed as set of possible values of x:

- $\operatorname{sp}(\{x \mid x \ge 5\}, x := x + 3)$
- sp(S, x := x + 3)
- sp(S, x := 0)
- sp(S, assume(x < 10))

Concrete and abstract domains

Except meet and join operations we can equip lattice by other transformers.

Concrete domain – $(C, \leq, \land, \lor, \{f_1, \dots, f_k\})$ where f_1, \dots, f_k are concrete transformers

Abstract domain – $(A, \sqsubseteq, \sqcap, \sqcup, \{af_1, \dots, af_k\})$ where af_1, \dots, af_k are abstract transformers

Consider the assignment: c = a + b

Consider the assignment: c = a + b

Interpreter (concrete domain):

$$\begin{bmatrix} a:10\\b:-1\\c:3 \end{bmatrix} \xrightarrow{c = a + b} \begin{bmatrix} a:10\\b:-1\\c:9 \end{bmatrix}$$

Consider the assignment: c = a + b

Interpreter (concrete domain):

$$\begin{bmatrix} a:10\\b:-1\\c:3\end{bmatrix} \xrightarrow{c = a + b} \begin{bmatrix} a:10\\b:-1\\c:9\end{bmatrix}$$

Abstract interpreter (interval domain):

$$\begin{bmatrix} a \in [0,10] \\ b \in [-5,5] \\ c \in [0,10] \end{bmatrix} \xrightarrow{c = a + b} \begin{bmatrix} a \in [0,10] \\ b \in [-5,5] \\ c \in [-5,15] \end{bmatrix}$$

Consider the assignment: c = a + b

Interpreter (concrete domain):

$$\begin{bmatrix} a:10\\b:-1\\c:3\end{bmatrix} \xrightarrow{c = a + b} \begin{bmatrix} a:10\\b:-1\\c:9\end{bmatrix}$$

Abstract interpreter (interval domain):

$$\begin{bmatrix} \mathbf{a} \in [0, 10] \\ \mathbf{b} \in [-5, 5] \\ \mathbf{c} \in [0, 10] \end{bmatrix} \xrightarrow{\mathbf{c} = \mathbf{a} + \mathbf{b}} \begin{bmatrix} \mathbf{a} \in [0, 10] \\ \mathbf{b} \in [-5, 5] \\ \mathbf{c} \in [-5, 15] \end{bmatrix}$$

Each abstract state represents set of concrete states.

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare\ r: E \to Expr,$ so each $r(u,\nu)$ is labeled by expresson doing transformation of state u to ν

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare \ r: E \to Expr,$ so each $r(u, \nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare \ r: E \to Expr,$ so each $r(u, \nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.
- **2** Define $\gamma : A \to C$ giving meaning to elements of A

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare\ r: E \to Expr,$ so each $r(u, \nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.
- **2** Define $\gamma : A \to C$ giving meaning to elements of A
- 3 define lattice ordering \sqsubseteq on A such that $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare\ r: E \to Expr,$ so each $r(u, \nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.
- **2** Define $\gamma : A \to C$ giving meaning to elements of A
- 3 define lattice ordering \sqsubseteq on A such that $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$
- 4 Define sp_A : A × Expr → A that maps an abstract element and a CFG statement to new abstract element, such that sp(γ(a), e) ⊆ γ(sp_A(a, e))
Abstract Interpretation Recipe: Setup

Given control-flow graph (V, E, r), where

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare\ r: E \to Expr,$ so each $r(u,\nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.
- **2** Define $\gamma: A \to C$ giving meaning to elements of A
- 3 define lattice ordering \sqsubseteq on A such that $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$
- 4 Define sp_A : A × Expr → A that maps an abstract element and a CFG statement to new abstract element, such that sp(γ(a), e) ⊆ γ(sp_A(a, e))

Abstract Interpretation Recipe: Setup

Given control-flow graph (V, E, r), where

- $V = \{v_1, \dots, v_n\}$ is set of program locations
- $E \subseteq V \times V$ are program transitions
- $\blacksquare\ r: E \to Expr,$ so each $r(u,\nu)$ is labeled by expression doing transformation of state u to ν
- Design abstract domain A that represents sets of program states. Example: Sig₁ domain.
- **2** Define $\gamma: A \to C$ giving meaning to elements of A
- 3 define lattice ordering \sqsubseteq on A such that $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$
- 4 Define sp_A : A × Expr → A that maps an abstract element and a CFG statement to new abstract element, such that sp(γ(a), e) ⊆ γ(sp_A(a, e))

Example: a = 0, e = x := x + 1

Compute lfp for each program state, where sp_A computes one iteration of interpretation in abstract domain.

а $\mathbf{x} := \mathbf{0}$ // a 1 x > 102 x := 0: b // b 3 $x \leq 10$ while (x \leq 10) { // d 5 d if (x > 1)6 x ≤ 1 // e 7 x := x + 3 $\chi >$ 8 else 9 10 // f f е skip x := x + 2 11 // g 12 $\mathbf{x} := \mathbf{x} + \mathbf{3}$ 13 x := x + 2// c 14 g

Compute lfp for each program state, where sp_A computes one iteration of interpretation in abstract domain.

Compute lfp for each program state, where sp_A computes one iteration of interpretation in abstract domain.

Compute lfp for each program state, where sp_A computes one iteration of interpretation in abstract domain.

The resulting fixpoint describes an inductive program invariant.

// a 1 2 := 0: x // b 3 while (x \leq 10) { // d 5 if (x > 1)6 // e 7 x := x + 38 else 9 // f 10 x := x + 2 11 // g 12 } 13 // c 14

Abstractions

 \blacksquare We want to abstract this set of traces with two variables \boldsymbol{x} and \boldsymbol{y}

Abstractions

 Decomposition into set of local invariants on memory states attached to each program point

Abstractions: Sign analysis

• Local invariants: $x \ge 0, y \ge 0$

Abstractions: Interval

- Local invariants: $a \le x \le b, c \le y \le d$, where a, b, c, d are discovered by analysis
- Cannot prove invariant $0 \leqslant x \leqslant y$

Abstractions: Octagons

• Local invariants: $x \leq a, x - y \leq b, x + y \leq c$

Abstractions: Convex Polyhedra

• Local invariants: $a \cdot x + b \cdot y \leq c$

Abstractions: Ellipsoids

• Local invariants: $(x - a)^2 + (y - b)^2 \le c$

Abstractions: Exponential

• Local invariants: $a^x \leq y$