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Motivation

Often impossible to compute the set of reachable states
precisely

Lets compute them on some level of abstraction
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Traces of program

Evolution of program state through time
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Error states
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Abstraction of trajectories
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Abstraction of trajectories
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Soundness of abstract interpretation

We want to exclude unsound abstractions
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Soundness of abstract interpretation

Bounded model-checking
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Over-approximation

False positive
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Good abstraction
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Preliminaries

1 Partially ordered sets and lattices

2 Monotone functions

3 Fixpoint computation

4 Strongest postcondition
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Abstract intersections and unions

Partially ordered set (P,6), where 6 is an ordering on P.

Intuition
a 6 b if a contains more information than b

[5, 10] 6 [0, 15]

Union ∼ Supremum (Join)

x

a∨ b

a b

∃

a b

a∧ b

x

∃
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Lattice

A poset in which all pairs of elements have the supremum and the
infimum is called a lattice.

Are the following posets lattices?

(Z,6)

(2A,⊆) for a set A

(Int,⊆) for a set of intervals in Int = {[a,b] | a,b ∈ Z,a 6 b}

(Int ∪ {∅},⊆)
(Unit ∪ {∅},⊆) for a set Unit of unit intervals (i.e. [a,a+ 1))
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Complete lattice

A poset (L,6) is a complete lattice, if for each M ⊆ L there exists
both sup(M) and inf(M).

Are the following lattices complete lattices?

(Z,6)

(Z ∪ {−∞,∞},6)

(2A,⊆) for a set A

(Int ∪ {∅, (−∞,∞)},⊆) = IntL

A complete lattice always has

the greatest element (>) called top

the least element (⊥) called bottom
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Monotonic function

Let (P,6), (R,v) are posets

a function f : P → R is monotone if for all x,y ∈ P it holds

x 6 y =⇒ f(x) v f(y)

Are following functions monotone?

sign : Z→ {−1, 0, 1}
abs : Z→ N
middle : IntL → R
size : IntL → N

A monotone function f : P → P on a poset (P,6) is called a
transformer.
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Fixpoint

Let (P,6) be a poset:

x ∈ P is called a fixpoint of transformer f if f(x) = x

What are fixpoints of following functions?

λx.(x+ 1) on (Z,6)

λ[x,y].([x+ 1,y+ 1]) on IntL
λx.(−x) on SigL = ({−1, 0, 1,>,⊥},6)

15 / 31
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Fixpoint theorems

Theorem (Knaster-Tarski)

A set of fixpoints of a transformer on a complete lattice forms a
complete lattice.

As a corollary, there is

the greatest fixed point gfp(f)

the least fixed point lfp(f)

What is gfp and lfp in SigL?

Theorem (Kleene)

Let (L,6) be a complete lattice of finite height and transformer f.
Then there exists n ∈ N such that for all k ∈ N it is
fn(⊥) = fn+k(⊥) and fn(⊥) = lfp(f).

16 / 31
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Fixpoint computation

Algorithm

1 x := ⊥;

2 do {

3 t := x;

4 x := f(x);

5 } while (x 6= t);
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Strongest postcondition

Given expression e and programs state s, then sp(s, e) is a
strongest postcondition

postcondition that implies any postcondition satisfied by the
final state of any execution from s

What is sp of of state S, where state is discribed as set of possible
values of x:

sp({x | x > 5}, x := x+ 3)
sp(S, x := x+ 3)
sp(S, x := 0)
sp(S,assume(x < 10))
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Concrete and abstract domains
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Concrete and abstract domains

Except meet and join operations we can equip lattice by other
transformers.

Concrete domain – (C,6,∧,∨, {f1, . . . , fk})
where f1, . . . , fk are concrete transformers

Abstract domain – (A,v,u,t, {af1, . . . ,afk})
where af1, . . . ,afk are abstract transformers
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Idea of abstract interpretation

Consider the assignment: c = a + b

Interpreter (concrete domain):a:10b:-1

c:3

 c = a + b−−−−−−→

a:10b:-1

c:9



Abstract interpreter (interval domain):a ∈ [0, 10]
b ∈ [−5, 5]
c ∈ [0, 10]

 c = a + b−−−−−−→

 a ∈ [0, 10]
b ∈ [−5, 5]
c ∈ [−5, 15]


Each abstract state represents set of concrete states.
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Abstract Interpretation Recipe: Setup

Given control-flow graph (V ,E, r), where

V = {v1, . . . , vn} is set of program locations

E ⊆ V × V are program transitions

r : E→ Expr, so each r(u, v) is labeled by expresion doing
transformation of state u to v

1 Design abstract domain A that represents sets of program
states. Example: SigL domain.

2 Define γ : A→ C giving meaning to elements of A

3 define lattice ordering v on A such that
a1 v a2 → γ(a1) ⊆ γ(a2)

4 Define spA : A× Expr→ A that maps an abstract element
and a CFG statement to new abstract element, such that
sp(γ(a), e) ⊆ γ(spA(a, e))

Example: a = 0, e = x := x + 1
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Running Abstract Interpretation

Compute lfp for each program state, where spA computes one
iteration of interpretation in abstract domain.

1 // a

2 x := 0;

3 // b

4 while (x 6 10) {

5 // d

6 if (x > 1)

7 // e

8 x := x + 3

9 else

10 // f

11 x := x + 2

12 // g

13 }

14 // c

a

b c

d

e f

g

x := 0
x > 10

x 6 10

x > 1
x 6 1

x := x+ 3
x := x+ 2

skip
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∅
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Running Abstract Interpretation

The resulting fixpoint describes an inductive program invariant.

1 // a

2 x := 0;

3 // b

4 while (x 6 10) {

5 // d

6 if (x > 1)

7 // e

8 x := x + 3

9 else

10 // f

11 x := x + 2

12 // g

13 }

14 // c

a

(−∞,∞)

b

[0, 12]

c
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d

[0, 9]

e[2, 9] f

[0, 1]

g

[2, 12]

x := 0
x > 10

x 6 10

x > 1
x 6 1

x := x+ 3
x := x+ 2

skip
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Abstractions

We want to abstract this set of traces with two variables x
and y
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Abstractions

Decomposition into set of local invariants on memory states
attached to each program point
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Abstractions: Sign analysis

Local invariants: x > 0,y > 0
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Abstractions: Interval

Local invariants: a 6 x 6 b, c 6 y 6 d, where a,b, c,d are
discovered by analysis

Cannot prove invariant 0 6 x 6 y
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Abstractions: Octagons

Local invariants: x 6 a, x− y 6 b, x+ y 6 c
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Abstractions: Convex Polyhedra

Local invariants: a · x+ b · y 6 c
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Abstractions: Ellipsoids

Local invariants: (x− a)2 + (y− b)2 6 c
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Abstractions: Exponential

Local invariants: ax 6 y
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