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m Often impossible to compute the set of reachable states
precisely

m Lets compute them on some level of abstraction



Traces of program

Possible

m Evolution of program state through time
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Abstraction of trajectories
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Abstraction of the trajectories
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Soundness of abstract interpretation

i "
Forbidden zone — Error !!

>,
' Possible

trajectories

Erroneous trajectory abstraction

m We want to exclude unsound abstractions
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Soundness of abstract interpretation

Forbidden zone Error 1!

Possible
trajectories

Erroneous trajectory abstraction

m Bounded model-checking
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Over-approximation

Forbidden zone False alarm

Possible
trajectories

Imprecise trajectory abstraction

m False positive
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Good abstraction

Forbidden zone

Possible
trajectories
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Preliminaries

Partially ordered sets and lattices
Monotone functions

Fixpoint computation

Strongest postcondition
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Abstract intersections and unions

Partially ordered set (P, <), where < is an ordering on P.

Intuition
a < b if a contains more information than b
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Union ~ Supremum (Join)

X
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Abstract intersections and unions

Partially ordered set (P, <), where < is an ordering on P.

Intuition
a < b if a contains more information than b

(5,10] < [0,15]

Intersection ~ Infimum (Meet)
Union ~ Supremum (Join)

a b

: N\~

a/A\b
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Abstract intersections and unions

Partially ordered set (P, <), where < is an ordering on P.

Intuition
a < b if a contains more information than b

(5,10] < [0,15]

Union ~ Supremum (Join) Intersection ~ Infimum (Meet)
x a b
13 \ /
aVb a/Ab
a b X

1,31V 12,4] =[1,4] 1,31\ 12,4] =[2,3]

11/31



A poset in which all pairs of elements have the supremum and the
infimum is called a lattice.
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A poset in which all pairs of elements have the supremum and the
infimum is called a lattice.

Are the following posets lattices?
" (Z,<)
m (27, Q) for a set A
m (Int,C) for a set of intervals in Int ={[a,b] | a,b € Z,a < b}
m (Intu {0}, C)
m (Unit U{0}, C) for a set Unit of unit intervals (i.e. [a,a+ 1))
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Complete lattice

A poset (L, <) is a complete lattice, if for each M C L there exists
both sup(M) and inf(M).
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Complete lattice

A poset (L, <) is a complete lattice, if for each M C L there exists
both sup(M) and inf(M).

Are the following lattices complete lattices?

A complete lattice always has
m the greatest element (T) called top

m the least element (L) called bottom
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Monotonic function
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m a function f: P — R is monotone if for all x,y € P it holds
x<y = f(x) Cf(y)
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Monotonic function

Let (P, <), (R,C) are posets
m a function f: P — R is monotone if for all x,y € P it holds
x <y = f(x) Ef(y)
Are following functions monotone?
m sign:7Z —{-1,0,1}
mabs:Z — N
m middle : Int; — R

m size:Int; - N

A monotone function f: P — P on a poset (P, <) is called a
transformer.
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Let (P, <) be a poset:

m x € P is called a fixpoint of transformer f if f(x) =x

What are fixpoints of following functions?
m Ax.(x+1) on (Z, <)
m Alx,yl.(x+ 1,y +1]) on Intg
m Ax.(—x) on Sig; = ({-1,0,1, T, 1},<)
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Fixpoint theorems

Theorem (Knaster-Tarski)

A set of fixpoints of a transformer on a complete lattice forms a
complete lattice.
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Fixpoint theorems

Theorem (Knaster-Tarski)

A set of fixpoints of a transformer on a complete lattice forms a
complete lattice.

As a corollary, there is
m the greatest fixed point gfp(f)
m the least fixed point 1fp(f)
What is gfp and lfp in Sig, ?

Theorem (Kleene)

Let (L, <) be a complete lattice of finite height and transformer f.
Then there exists n € N such that for all k € N jt is
fr (L) = fMR(L) and (L) = lfp(f).
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Fixpoint computation

dLg

~

X
do
t = x;
x := f(x);
} while (x # t);

(S PO SR
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Strongest postcondition

Given expression e and programs state s, then sp(s,e) is a
strongest postcondition

m postcondition that implies any postcondition satisfied by the
final state of any execution from s
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Strongest postcondition

Given expression e and programs state s, then sp(s,e) is a
strongest postcondition

m postcondition that implies any postcondition satisfied by the
final state of any execution from s

What is sp of of state S, where state is discribed as set of possible
values of x:

B sp({x|x>5},x:=x+3)
m sp(S,x:=x+3)

m sp(S,x:=0)

m sp(S, assume(x < 10))
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Concrete and abstract domains

C: Concrete domain A: Abstract domain

approx. of
fixpoint

monotonic
function

approx. of

" ®
Initial state initial state
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Concrete and abstract domains

Except meet and join operations we can equip lattice by other
transformers.

Concrete domain = (C, <, A, V, {f1,...,T})
where fq,..., Tk are concrete transformers

Abstract domain — (A, C, M, U, {afq,..., afy})
where afy,..., afy are abstract transformers
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Consider the assignment: ¢ = a + b
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Interpreter (concrete domain):

a:10 a:10
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Idea of abstract interpretation

Consider the assignment: ¢ = a + b

Interpreter (concrete domain):

a:10 a:10
bi-1| S22 0 1y
c:3 c:9

Abstract interpreter (interval domain):

ac0,10] a € [0,10]
bel[-575| S22*8 |y ¢ [-5,5
c € 0,10] c € [-5,15]

Each abstract state represents set of concrete states.
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Abstract Interpretation Recipe: Setup

Given control-flow graph (V,E, 1), where
m V={vq,...,vn} is set of program locations
m E CV xV are program transitions

m v: E — Expr, so each r(u,v) is labeled by expresion doing
transformation of state u to v
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Abstract Interpretation Recipe: Setup

Given control-flow graph (V,E, 1), where
m V={vq,...,vn} is set of program locations
m E CV xV are program transitions

m v: E — Expr, so each r(u,v) is labeled by expresion doing
transformation of state u to v

Design abstract domain A that represents sets of program
states. Example: Sig; domain.

Define v : A — C giving meaning to elements of A

define lattice ordering C on A such that
a1 C ap = ylag) € ylap)

Define spa : A x Expr — A that maps an abstract element
and a CFG statement to new abstract element, such that

sp(v(a),e) Cv(spala,e))
Example: a=0,e=x :=x + 1
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Running Abstract Interpretation

Compute Ufp for each program state, where sps computes one
iteration of interpretation in abstract domain.

// a
x := 0;
// b
while (x < 10) {
// 4
if (x > 1)
// e
x = x + 3
else
// £
X = x + 2

// g

© N o UA WN R

o e
N = O

=
> W
~N Y
~

C
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Running Abstract Interpretation

Compute lfp for each program state, where spa computes one
iteration of interpretation in abstract domain.

C—O0,00)

1 // a

2 x := 0;

3 // b

4 while (x < 10) {
5 // d

6 if (x > 1)

7 // e

8 x = x + 3
9 else

10 // £

11 X = x + 2
12 // g

13 }

14 // c
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Running Abstract Interpretation

Compute lfp for each program state, where spa computes one
iteration of interpretation in abstract domain.

C—O0,00)

// a
x = 0;
// b
while (x < 10) {
// 4
if (x > 1)
//

x = x + 3

© 0N R W N
o

else
// £
X = x + 2
/!l g
}
// ¢

N
> w N RO
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Running Abstract Interpretation

Compute lfp for each program state, where spa computes one
iteration of interpretation in abstract domain.

(—O0,00)

—
) . x = 0N\ 10,2] 0
2 x := 0; x > 10
3 // b @
4 while (x < 10) { < 0,2]
5 // d x<10
6 if (x > 1)
7 // e
8 x := x + 3 >1 x g 1
9 else x [0’1]
10 // £
11 X = x + 2 Sklp
12 // g
13 } 3
14 // ¢
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Running Abstract Interpretation

The resulting fixpoint describes an inductive program invariant.

(*OO/OO)
H.
L /) a x :— O\ 10,12] (10,12]
2 x := 0;
3 // b
4 while (x < 10) {
5 // d
6 if (x > 1)
7 // e
8 x = x + 3
9 else
10 // £
11 X = x + 2
12 // g
13 }
14 // c
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Abstractions

A

m We want to abstract this set of traces with two variables x
and y
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Abstractions

A

»
>

m Decomposition into set of local invariants on memory states
attached to each program point
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Abstractions: Sign analysis

\

m Local invariants: x >0,y >0
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Abstractions: Interval

m Local invariants: a < x <b,c <y < d, where a,b,c,d are
discovered by analysis

m Cannot prove invariant 0 <x <y




Abstractions: Octagons

m Local invariants: x < a,x—y <b,x+y<c
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Abstractions: Convex Polyhedra

m Local invariants: a-x+b-y<c
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Abstractions: Ellipsoids

m Local invariants: (x —a)?2+(y—b)><c
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Abstractions: Exponential

m Local invariants: a* <y




