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Abstract The runway safety monitor (RSM) designed
by Lockheed Martin is part of NASA’s effort to reduce
aviation accidents. We developed a Petri net model of
the RSM protocol and used the model checking func-
tions of our tool (stochastic and model checking analyzer
for reliability and timing) SmArT (Stochestic and model
checking analyses for seliability and tunnig) to inves-
tigate a number of safety properties for the RSM. To
mitigate the impact of state-space explosion, we built
a highly discretized model of the system, obtained by
partitioning the monitored runway zone into a grid of
smaller volumes and by considering scenarios involving
only two aircraft. The model also assumes that there are
no communication failures, such as bad input from radar
or lack of incoming data, thus it relies on a consistent
view of reality by all participants. In spite of these sim-
plifications, we were able to expose potential problems
in the conceptual design of RSM. Our findings were for-
warded to the design engineers, who undertook correc-
tive action. Additionally, the results stress the efficiency
attained by the new model checking algorithms imple-
mented in SmArT, and demonstrate their applicability to
real-world systems. Attempts to verify RSM with similar
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1 Introduction

As the avionics systems that are put into operation grow
in complexity every year, an increasing share of the
functionality in modern aircraft is shifted to computer-
based, automated devices. However, this rapid advance
in sophistication makes the verification and certification
of the deployed devices more difficult. This is due to the
tremendous amounts of resources, measured in time, hu-
man expertise, and money, required for the analysis of
complex systems.

The field of formal methods offers an alternative to
traditional testing approaches that can explore only a
limited number of scenarios. Formal verification uses
rigorous mathematical techniques to exhaustively check
that a model of the system satisfies a set of desired prop-
erties.

Model checking [13], which has gained increased pop-
ularity since the early 1990s, is an automatic technique
that relies on discovering the set of reachable states
of the model and evaluating whether a given property,
expressed in a temporal logic, is satisfied or not. The
model is usually specified in a modeling language, such
as automata, Petri nets, or pseudo-code, rather than
using mathematical notation. If a temporal property
holds, model checking attests it with 100% confidence.
When a property does not hold, the model checking tool
provides a counterexample, in the form of an execution
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path in the model, which can illustrate the source of the
errors.

When using these computerized tools to verify
modern protocols, the major obstacle is usually the state-
space explosion phenomenon. As the size and complex-
ity of a model increases, the size of the state-space
(in number of reachable states) also increases, some-
times exponentially (in the number of components, vari-
ables, or parts of the system). Nevertheless, advances
in model checking techniques, particularly in symbolic
model checking [23], have made it possible to analyze
systems with extremely large state spaces.

Model checking has been successful in the verifica-
tion of complex, mostly synchronous, circuit designs,
while verifying large asynchronous protocols and soft-
ware has been generally viewed as more difficult. For the
last several years, our research has targeted the class of
globally-asynchronous locally-synchronous systems [5],
consisting of loosely coupled systems (homogeneous or
heterogeneous) evolving somewhat independently of
each other. Recently, NASA and Lockheed Martin have
begun developing a protocol to detect runway incidents,
called the runway safety monitor (RSM) [16], which rep-
resents an excellent candidate for testing and evaluating
our techniques. Although the verification of RSM was
challenging and pushed our computational resources
to the limit, we were able to discover several obscure
scenarios that constitute potential hazards. Equally sig-
nificant, however, is the fact that so few hazards were
discovered overall, compared to the total number of
reachable states, 6.7 × 1042. This is strong evidence that
RSM is robust and safe.

The rest of the paper is structured as follows. Sec-
tions 2 and 3 describe RSM and our tool SmArT, which
we used for this study. Section 4 gives the details of the
RSM model we developed and Sect. 5 reports the results
of our analysis. Finally, Sect. 6 summarizes our work and
discusses ideas for future extensions.

2 The runway safety monitor

The RSM is a component of NASA’s runway incursion
prevention system (RIPS) research [20]. Designed and
implemented by Lockheed Martin engineers, RSM is
intended to be incorporated in the integrated display
system (IDS) [1], a suite of cockpit systems which NASA
has been developing since 1993. IDS also includes other
conflict detection and prevention algorithms, such as
TCAS II [22]. The IDS design enables RSM to exploit
existing data communications facilities, displays, global
positioning system (GPS), ground surveillance system
information, and data-links.

Collision avoidance protocols are already in opera-
tion. TCAS [22] has been in use since 1994 and is now
required by the Federal Aviation Administration (FAA)
on all commercial US aircraft. TCAS has a full formal
specification, but it has been verified only partially, due
to its complexity [4,17].

The Small Aircraft Transportation System SATS [3],
also under development at NASA Langley to help en-
sure safe landings of general aviation craft at towerless
regional airports, has instead been formally verified [14].

Purpose of RSM. The goal of the RSM is to detect
runway incursions, defined by the FAA as “any occur-
rence at an airport involving an aircraft, vehicle, person,
or object on the ground, that creates a collision hazard
or results in the loss of separation with an aircraft taking
off, intending to take off, landing, or intending to land.”

Since most air safety incidents occur on or near run-
ways, the Runway Safety Monitor plays a key role in
accident avoidance. RSM is not intended to prevent
incursions, but to detect them and alert the pilots. Pre-
vention is provided by other components of RIPS in the
form of a number of IDS capabilities such as heads-up
display, electronic moving map, cockpit display of traffic
information, and taxi routing. Experimental studies con-
ducted by Lockheed Martin [16,27] show that incursion
situations are less likely to occur when IDS technology
is employed on aircraft. RSM should greatly improve
this positive effect.

RSM design. Figure 1 shows the high-level archi-
tecture of the RSM algorithm. RSM runs on a device
installed in the cockpit and is activated prior to take-
off and landing procedures at airports. An independent
copy of RSM runs on each aircraft and refers to the air-
craft on which it is operating as ownship and to other
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aircraft, ground vehicles using the same runway, or even
physical obstacles such as equipment, as targets.

Runway safety monitors traffic in a zone surrounding
the runway where the takeoff or landing is to take place.
The zone is a 3-D volume of space that runs up to 220 ft
laterally from each edge of the runway, up to 400 ft of
altitude above the runway, and 1.1 nautical miles from
each runway end (the 400 ft altitude corresponds to a 3◦
glide slope for takeoff/landing trajectories).

The protocol, implemented as a C-language program,
consists of a repeat-loop over three major phases. In the
first phase, RSM gathers traffic information from radar
updates received through a data-link. It identifies each
target present in the monitored zone and stores its 3-D
physical coordinates. The frequency of the updates may
not be constant, updates can be lost, and data might
even be faulty. The implications of data-link errors or
omissions are not addressed in this study, but present
a challenging task for future study. These errors have
already been the subject of some experimental measure-
ments [27], and their analysis calls for a stochastic flavor
not captured in our present model, which is instead con-
cerned only with logical errors.

In the second phase, the algorithm assigns a status
to each target, from a predetermined set of values that
includes taxi, pre-takeoff, takeoff, climb out, landing,
roll out, and fly-through modes. We discuss in detail the
meaning of these states when we describe our model of
the system.

The third phase is responsible for detecting incur-
sions, and is performed for each target based on the
spatial attributes (position, heading, acceleration) of
ownship and target, plus some logical conditions.
Table 2, discussed later, shows the operational state ma-
trix of this phase. Our analysis focuses on verifying that
this decision procedure is able to detect all possible
incursion scenarios, or on finding possible incursion sce-
narios where RSM fails to raise an alarm.

3 Overview of the SmArT tool

To model the RSM, we employ our tool SmArT (the
stochastic and model checking analyzer for reliability
and timing) [7], which we developed for the logical and
stochastic analysis of structured systems. Given a formal
description of a system as a Petri net, SmArT can gen-
erate the state-space, verify temporal-logic properties,
and provide efficient numerical solutions for timing and
stochastic analysis. SmArT has several advantages over
most other model checkers:

− Compact storage for states with multiway decision
diagrams (MDDs) [24], a generalized version of the
Binary Decision Diagrams (BDDs [2]) for multi-
valued variables.

− Extremely compact encoding of the transition rela-
tion between states with Kronecker matrices [9].

− Efficient symbolic state-space exploration algorithms
based on saturation [8], a novel fixed-point iteration
strategy.

− Fast generation of counterexamples, based on Edge-
Valued MDDs (EVMDDs) [10].

The SmArT input is a Petri net with Turing-equivalent
extensions (immediate transitions and marking depen-
dent arc cardinalities) [26], required to have a finite
state-space. Each SmArT input file defines one or more
structured (i.e., partitioned into submodels) event-based
models. A model can be parameterized and defines a
set of measures, which, in our case, can be thought of
as logical queries to be evaluated by systematic state
exploration.

SmArT implements a wide range of explicit as well as
implicit exploration methods. Use of the most advanced
techniques requires a partition of the model to exploit
the system structure. A partition of the Petri net model
into K submodels is equivalent to partitioning its places
(representing the system variables) into subnets. Sub-
sequently, a system state (a marking of the places with
tokens) can be written as the concatenation of K local
states (submarkings) and thus be encoded as an MDD.
In particular, a partition is Kronecker-consistent if any
global system behavior can be expressed as a functional
product of local behaviors for each subsystem. From a
logical point of view, for example, an event in the model
is globally enabled if it is locally enabled in each of the
K submodels in isolation. Similar consistency require-
ments can be defined for transition guard expressions
or, from a stochastic point of view, for transition firing
rates (but only the logical interpretation of Kronecker
consistency is needed in this study). A more detailed dis-
cussion of the implications of consistency requirements
follows in Sect. 4.

A comprehensive SmArT User Manual is available
on-line [6].

There are several reasons for using a tool designed
for the analysis of discrete-state systems to model and
verify an embedded (hybrid) system. Even though there
exist tools for the verification of hybrid systems, such as
HyTech [18], their focus is on the integration of discrete
and continuous aspects of the systems. The discrete as-
pects of a large application like RSM are well beyond
the scope of the state-of-the-art hybrid model check-
ers. Moreover, it is clear that the actual RSM algorithm
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is implicitly using a discretized view of time: the radar
updates are not fed continuously to the RSM device,
but only at a given frequency (nominally, at every 0.5 s).
This suggests that an abstraction scheme for the other
continuous-type variables (location and speed of air-
craft) is adequate in this case. Last but not least, the
discretized RSM model belongs to the class of globally
asynchronous/locally synchronous systems, for which the
saturation-based algorithms for analysis implemented in
SmArT excel.

4 The SmArT model of RSM

To model RSM, we first identify the variables repre-
senting the system state and the events describing the
potential state-to-state transitions. Then, we translate
this information into a Petri net for input into SmArT.
We partition the model into n + 1 submodels where n
is the number of targets moving inside the zone. The
variables of the first submodel (indexed 0) describe the
state of ownship. The variables of the other n submodels
describe the state of each target. For submodel i, 0 ≤ i ≤
n, the relevant attributes are:

Location: a 3-D vector (xi, yi, zi), where the X-axis is
across the width of the runway, the Y-axis is along
the length, and the Z-axis is on the vertical.

Speed and heading: a second 3-D vector (vxi, vyi, vzi).
Acceleration along the runway: ayi.
Status: an enumerated type variable, statusi.
Alarm flag: a boolean variable, alarmi.
Phase: an integer variable, phasei.

All other variables are deemed irrelevant to our study
and can be abstracted away from the model to reduce
the size of its state space.

As mentioned earlier, SmArT requires a partitioning
of the model variables in order to apply the most ad-
vanced symbolic model checking techniques. A natural
choice is to group variables referring to the same target
together. However, assigning all variables to the same
partition leads to extremely large “local” state spaces for
each submodel, which is unacceptable. A better choice
is to further split the subnets into even smaller ones. We
arranged the variables in n + 1 clusters, as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

subnet 5i + 1 : phasei
subnet 5i + 2 : statusi, alarmi

subnet 5i + 3 : xi, vxi

subnet 5i + 4 : yi, vyi, ayi

subnet 5i + 5 : zi, vzi

Domain of the state variables. Since SmArT oper-
ates on discrete-type systems, abstraction by discreti-
zation is necessary to cope with the continuous-type
variables of the RSM algorithm. To come up with a
good representation of the variable domains, we start
with the roughest possible discretization that can be ex-
tracted from the protocol specifications, and then man-
ually refine it further as needed. We had to take into
consideration a balanced solution between a very rough
discretization (which potentially hides too many mean-
ingful behaviors by merging distinct states into a sin-
gle representative), and a discretization that is too fine
for an efficient state-space generation (which prevents
analysis due to the state-space explosion problem). In
the end, we chose the following domains (the subscript
i is omitted for clarity):

− The coordinates x, y, z could be as simple as x, y, z ∈
{0, 1, 2}, where 0 means “out of the monitored zone”,
1 means “in the vicinity”, and 2 means “on the run-
way”. However, we chose a finer parametric rep-
resentation: x ∈ {0, . . . , maxx}, y ∈ {0, . . . , maxy},
and z ∈ {0, . . . , maxz}, where 0 means outside the
zone, and the constants maxx, maxy, and maxz can
be adjusted to the modeler’s preference. In other
words, location (0, 0, 0) represents all positions out-
side the zone. A target that exits the zone, or has
not yet entered it, is assigned this location. As an
alternative, we could have used an “outer layer” of
locations surrounding the monitored zone, but this
would unnecessarily increase the state space with
entries of the form (0, y, z), (x, 0, z), and (x, y, 0), all
representing the same circumstance: the target is
not being monitored.

− The speed values vx, vy, vz could be assigned the
domain {0, ±1, ±2}, where 0 means not moving,
±1 means moving slowly (below the predetermined
taxi speed threshold TS of 45 knots), and ±2 means
moving fast (above TS). Again, a better representa-
tion is vx, vy, vz ∈ {−maxspeed, . . . , 0, . . . , maxspeed},
using another parameter maxspeed.
Since, in Petri nets, places cannot hold a negative
number of tokens, we have to offset the values of
the speed variables by −maxspeed.

− The acceleration ay has only two relevant values:
non-negative or strictly negative.

− The status is one of {out, taxi, takeoff , climb, land,
rollout, flythru}.

− The phase is one of {radar_update, set_status, detect}.

The variable phase works like a program counter
for the execution of the algorithm on each participant,
which loops through three steps:
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(A) Update location of targets (phase = radar_update).
(B) Update status of targets (phase = set_status).
(C) Set or reset alarm (phase = detect).

We next discus in detail the modeling decisions that
were taken for each of these three steps.

A. The 3-D motion of targets. Our discretization
divides the monitored space into a number of volumes
arranged in a 3-D grid. As a result, the possible positions
of the aircraft are identified by a finite number of grid
cells, from the discrete domain (0, 0, 0)∪{1, . . . , maxx}×
{1, . . . , maxy} × {1, . . . , maxz}. Similarly, continuous tra-
jectories have to be represented by abstract, discret-
ized trajectories through the cells of the 3-D grid. This
is a reasonable compromise when modeling continu-
ous variables with discrete-state approaches. Regarding
the possible trajectories allowed in the model, there are
three alternatives to be considered.

First is the projection method, which assigns to every
continuous trajectory its corresponding discrete path in
the grid. An example of such a projection is given in
Fig. 2 (in a 2-D space, for the sake of readability). The
grid cells in the figure have the size of 100 units (in feet),
and the snapshots are taken after each 0.5 time units
(in s). The speed units are measured in the number axis
divisions traveled after each update. The major chal-
lenge in putting in practice this method is the difficulty
in discerning between physical possibilities and impossi-
bilities. There is no efficient way of ruling out all anoma-
lies. For example, a target could change its real location,
while its discretized location might not. The dependency
between the speed and the number of time units a tar-
get may remain in one grid cell is also very difficult to
establish: it could be one move (at high speed), or more
(at low speed), but no upper bound on the number of
time units allowed within one grid cell can be computed
in the discretized model.

1 2 3 4

1

2

Real trajectory: (51.5, 161.3), (128.5, 93.6), (220.1, 80.3), (318.5, 111), ...

Discretized trajectory:     (1,2),          (2,1),             (3,1),              (4,2), ...

t=2.0

t=2.5 t=3.0

t=3.5

t=4.0

Discretized speed:       (+1,-1),        (+1,-1),           (+1,0),           (+1,+1), ...

Fig. 2 Example projection of a continuous trajectory in 2-D

Therefore, we have considered a different approach
to modeling the motion of targets, that proved to be
more practical. One alternative allows nearly free move-
ment of a target, in the sense that a move to an adjacent
cell is always allowed. In principle, a target is free
to remain in the current cell or to move to any of the
neighboring 26 cells, corresponding to a nondeterminis-
tic decrease, no change, or increase in the coordinates x,
y, and z. However, the changes must be consistent with
the heading. This allows for almost random movements.
On the one hand, the restriction to allow transitions only
between adjacent cells excludes a large number of tra-
jectories, most of which are truly physically impossible.
On the other hand, we have to argue that no realistic
trajectory is excluded by the model. This is indeed true
when the cell size is large (corresponding to a “rough”
discretization of the space, into a small number of cells).
In our simplest model, which captured all the interest-
ing properties, the size of a grid cell is 900 ft. Given
that the location updates arrive on the data-link every
0.5 s, a target can skip a grid cell and move to a cell
two discrete positions away only if traveling at speeds
exceeding 1, 800 ft/s � 1227 mph (or � 1975 km/h). This
is over 1.6 times the speed of sound. Although it is not
entirely safe to assume that these speeds are not encoun-
tered at civil airports, their exclusion from our model is
reasonable and helps simplify the analysis. Moreover, a
rough discretization also serves the purpose of mitigat-
ing the state-space explosion problem, as the number of
possible states becomes manageable. Figure 3 shows the

Fig. 3 Possible 2-D movements of a target (“free-motion” model)
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possible moves of a target in this second model (also in
a 2-D space, for clarity).

To achieve the non-deterministic choice, we model
the 3-D motion not via 27 concurrent and mutually
exclusive events, but rather via the composition of a
non-deterministic choice to decrease, not change, or in-
crease each coordinate. More precisely, the next position
is computed as the composite effect of firing three con-
current and independent events, non-deterministically
chosen from among a set of three mutually exclusive
options for each axis, for a total of just nine events. The
update of the coordinate xi and speed component vxi

for target i is modeled by the subnet shown in Fig. 4
(updates for the y and z coordinates are analogous, they
are triggered by the arrival tokens in places uy and uz,
respectively). Petri net places are drawn as circles, tran-
sitions as rectangles, and immediate transitions as thick
bars. Transitions inc_x and dec_x have associated guard
expressions, and arc cardinalities (other than the default
value 1) are shown on each arc. Note that #(a) indicates
the current number of tokens in place a, thus the effect
of the arc from place vx to transition update is to reset
the old value of vx in preparation for its new setting. The
three arrays of immediate transitions are needed to as-
sign a value to vxi: random positive (1 ≤ vxi ≤ maxspeed,
i.e., from maxspeed + 1 to 2maxspeed tokens), any value
(−maxspeed ≤ vxi ≤ maxspeed, i.e., from 0 to 2maxspeed
tokens), or random negative (−maxspeed ≤ vxi ≤ −1,
i.e., from 0 to maxspeed − 1 tokens).

Fig. 4 Subnet for updating the variables x and vx in each
submodel

Also, when a target enters the zone, its position is
nondeterministically chosen on the frontier of the mon-
itored volume, i.e., x ∈ {1, maxx}, y ∈ {1, maxy}, or z =
maxz (but not z = 1, since no entry is possible from
below ground). The entry speed parameters are also
chosen nondeterministically, but consistently with the
direction of entry. For example, a target cannot enter
from the left with a negative vx.

This second model might still include unrealistic tra-
jectories. Examples of typically abnormal behaviors
allowed in the model are: oscillating back and forth be-
tween two adjacent squares (when the corresponding
speed components alternate from positive to negative
and back) or staying forever in one square, even with a
positive speed. This is still acceptable in the verification
process as long as the model covers all realistic behav-
iors. If a property holds globally in the abstract model,
then it will also hold in the realistic model. However,
if a property does not hold globally, we must check the
corresponding counterexample generated by SmArT to
determine whether it represents a realistic scenario.

If a more thorough elimination of unwanted trajec-
tories is desired, a third alternative that forbids abrupt
variations in speed can be considered. In other words,
both the coordinates x, y, z and the speed components
vx, vy, vz can change by at most one in absolute value.
This further restriction can be achieved by allowing only
the increase, decrease, and no change of speed at each
timestep, together with a consistent update of the coor-
dinates: for example, the variable x cannot be decreasing
when the speed component vx is non-negative.

In comparison to the free-motion model, Fig. 5 shows
the possible next states (in 2-D space) for a target whose
speed components are vx = 3 and vy = 3 in the current
state. In this case, only four new locations are possible,
corresponding to the no change or increase in x and,
independently, y. The reduced number of choices is due
to the strictly positive value of the speed, which does
not allow any move in the negative axis direction. Only
when one speed component is 0 in the current state, the
target can move in both directions of the corresponding
axis, as seen in Fig. 6. In this model, at least two steps
are required to go from positive to negative speed (and
vice versa). This implies that “zigzagging” is not possi-
ble, a fact that could have a significant importance in the
analysis, as seen in Sect. 5.

We implemented both versions, with free or restricted
movement between adjacent cells, in SmArT.

B. Status definitions. In the second phase of the exe-
cution loop, the status variable of each aircraft is deter-
ministically updated using the other state information.
In our model, the status values are:
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Fig. 5 Possible movements from a state satisfying vx = 3, vy = 3
(“restricted” model)

Fig. 6 Possible movements from a state satisfying vx = 1, vy = 0
(“restricted” model)

out: not in the monitored zone
≡ (x = 0) ∧ (y = 0) ∧ (z = 0)

taxi: on the ground, either at low speed or not with a
runway heading
≡ (z = 1)

∧
((|vx| ≤ TS ∧ |vy| ≤ TS) ∨ (vx 
= 0))

takeoff : on the ground, with a runway heading, accel-
erating
≡ (z = 1) ∧ (|vy| > TS) ∧ (vx = 0) ∧ (ay ≥ 0)

rollout: on the ground, with a runway heading, decel-
erating
≡ (z = 1) ∧ (|vy| > TS) ∧ (vx = 0) ∧ (ay < 0)

climbout: airborne, with a runway heading, strictly pos-
itive vertical speed
≡ (z > 1) ∧ (vx = 0) ∧ (vz > 0)

land: airborne, with a runway heading, negative verti-
cal speed
≡ (z > 1) ∧ (vx = 0) ∧ (vz ≤ 0)

flythru: airborne, not in climbout or land mode
≡ (z > 1) ∧ (vx 
= 0)

The predicates z = 1 and z > 1 used above also imply
x > 0 and y > 0, by the way we designed the non-mon-
itored zone to be represented by a single cell, not by a
rim of states. Also, the acceleration ay, needed to discern
between takeoff and rollout status, does not need to be
modeled directly, since its value is computed on the spot
based on the variation of the variable vy.

The partial model constructed so far can be used as
a building block for further analysis, since it captures
the free movement of targets in 3-D space (phase one
of RSM) and the target status assignments (phase two
of RSM). This model exhibits strong event locality, i.e.,
each event depends and affects only a few levels; this is
an essential property exploited by the saturation algo-
rithm we employ. To evaluate its complexity, we col-
lected measurements of the state spaces generated for
different input parameters of this core model: number
of targets, n, grid size maxx, maxy, and maxz, and speed
thresholds, maxspeed. The state-space size, runtime, and
memory consumption are listed in Table 1. The results
show that the state space can be generated for multiple
targets, a fairly large size of grid, and multiple thresholds
of speed, in a few minutes using under 100 MB.

C. Setting the alarm. The third and most important
phase of the RSM algorithm is setting the alarm flag
for every target. In pseudo-code, this corresponds to a
single variable assignment statement: set the (boolean)
value of each alarmi based on different combinations
of the current values of the other variables, as listed in
the operational state matrix of Table 2. We can either
model the third phase directly, by adding transitions to
the Petri net, or define queries that use a combination
of status and position variables to determine whether
the alarm would have been set correctly. We choose the
former approach.

Modeling this rather complex assignment statement
in a Petri net is difficult because of two factors. First,
predicates such as “distance is closing” or “in the takeoff
path” potentially involve geometry and linear equations
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Table 1 State-space generation results for our model, for 1, 2, 3, or 4 targets and as a function of maxx × maxy × maxz and maxspeed

grid size Number of states in the model SS gen. time (s) SS gen. memory (MB)

maxspeed 1 tar. 2 tar. 3 tar. 4 tar. 1 tar. 2 tar. 3 tar. 4 tar. 1 tar. 2 tar. 3 tar. 4 tar.

3×5×3 2 1.0×1013 3.4×1019 1.1×1026 3.5×1032 2.01 2.93 3.93 4.91 2.00 3.00 4.00 4.99
5×10×5 2 4.1×1014 8.4×1021 1.7×1029 3.5×1036 5.52 8.27 11.19 13.91 7.21 10.81 14.41 18.01

10×10×10 2 7.6×1015 6.6×1023 5.8×1031 5.0×1039 13.62 20.58 27.50 34.42 20.86 31.29 41.72 52.15
3×5×3 5 2.7×1014 4.4×1021 7.2×1028 1.2×1036 4.41 6.51 8.77 10.98 4.22 6.33 8.44 10.55

5×10×5 5 8.3×1015 7.6×1023 6.9×1031 6.3×1039 12.91 19.07 25.42 32.05 15.48 23.21 30.95 38.69
10×10×10 5 1.4×1017 5.0×1025 1.8×1034 6.7×1042 28.45 42.84 57.25 71.75 39.73 59.59 79.45 99.31

Table 2 Operational state matrix for setting the alarm

Target

Ownship taxi takeoff climbout land rollout flythru

taxi — a∧f a∧f a∧f a∧c∧f —
takeoff a∧f d∨e d∨e d∨e a∨d b∧c
climbout a∧f d∨e d∨e d∨e d∨e b∧c
land a∧f d∨e d∨e d∨e a∨d b∧c
rollout a∧c∧f a∨d a∨d a∨d d∨e b∧c
flythru — b∧c b∧c b∧c b∧c —

a: Distance closing
b: In takeoff/landing path
c: Distance less than min. sep.
d: Takeoff/landing in same direction, less than min. sep.
e: Takeoff/landing in opposite direction, closing
f : Taxi/stationary on or near runway

and are difficult to express in a discretized model. How-
ever, certain factors help make our task easier: the
designers kept the concepts simple and trigonometry
can be circumvented on a case by case basis. For exam-
ple, “distance to target i is closing” should normally
be evaluated by comparing the value of the expression√

(x0 − xi)2 + (y0 − yi)2 + (z0 − zi)2 in the current and
previous states. This could further imply that the previ-
ous location of each target should be stored in a set of
auxiliary variables, say oldxi, oldyi, oldzi, further increas-
ing the state space. However, this can be avoided by
exploiting the information derived from each aircraft’s
status. For example, if ownship is taxiing and target i is
taking off, we know that z0 = 1, vx0, vy0 ≤ TS, zi = 1,
vxi = 0, |vyi| > TS, and vz0 = vzi = 0, i.e., the target
is on the ground, lined up with the runway and moving
faster than the taxi speed limit. For the distance to be
closing, it is enough for ownship to be in front of the tar-
get, depending on which direction this is moving. Hence,
in this situation, the predicate can be expressed as

a ≡ (vyi > 0 ∧ y0 > yi) ∨ (vyi < 0 ∧ y0 < yi).

We can similarly express the other predicates as follows:

b ∧ c ≡ (vy0 >0 ∧ y0 ≤yi ≤y0 + 1 ∧ |x0−xi|≤ 1 ∧ zi ≤2)

∨(vy0 <0 ∧ y0 − 1≤yi ≤y0 ∧ |x0−xi|≤ 1 ∧ zi ≤2)

d ≡ vy0 · vyi > 0 ∧ |x0 − xi| ≤ 1 ∧ |y0 − yi| ≤ 1

e ≡ (vy0 > 0 ∧ vyi < 0 ∧ yi ≥ y0) ∨
(vy0 < 0 ∧ vyi > 0 ∧ yi ≤ y0)

f ≡ 1 < xi < maxx,

where the above example formulae are derived for the
following pairs of states, respectively: b ∧ c for takeoff-
flythru, d and e for takeoff-takeoff.

The roughness of the discretization can also help sim-
plify the model. If maxx = 3 (which is a reasonable
assumption given that there is usually no room for two
aircraft on the runway side-by-side, anyway), then xi = 2
for any aircraft taking off or landing. In this case, the
predicate |x0 −xi| ≤ 1 is equivalent to 1 ≤ x0 ≤ 3, which
is always true when ownship is not out.

Kronecker consistency requirements. A second chal-
lenge in modeling the third phase is that the Kronecker
consistency requirements force us to split events into
multiple finer–grain events. For example, the predicate
“target i is in takeoff/landing path of ownship” can be
expressed as:

(xi =x0) ∧ (((vy0 >0) ∧ (yi >y0)) ∨ ((vy0 <0)

∧ (yi <y0))) .

However, since variables yi and y0 are described by
different local states of the model, each term involving
the two must be split to satisfy Kronecker consistency,
by domain enumeration:
∨

1≤Cy≤maxy
((xi =x0) ∧ ((vy0 >0 ∧ yi =Cy ∧ Cy >y0)∨

(vy0 <0 ∧ yi =Cy ∧ Cy <y0)))

The same procedure must be applied to x0 and xi, by
further splitting terms:

∨
1≤Cx≤maxx

∨
1≤Cy≤maxy

((xi =Cx)∧(x0 =Cx)∧(vy0 >0)∧(yi =Cy)∧(Cy >y0)) ∨
((xi =Cx)∧(x0 =Cx)∧(vy0 <0)∧(yi =Cy)∧(Cy <y0))
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This generates 2 · maxx · maxy events from a single orig-
inal event, one for each term of the disjunction. The
split events require over 2,000 lines of additional SmArT
code, compared to just 500 lines needed to model the
first two phases. At the end of this process, the most sig-
nificant change in the model was a severe loss of event
locality, leading to a slowdown in generation time and,
most importantly, a much higher memory consumption.
The peak MDD size increased to over 1,000 times larger
than the final, causing the SmArT model checker to run
out of memory for large parameters, including multiple
targets. However, we were still able to build the state
space for one target and a medium size of the grid, within
1 GB of memory and in less than 5 min. This was enough
to expose several potential problems with the decision
procedure of the protocol. Table 3 shows the state-space
measurements on this final SmArT model with just one
target. Missing entries in the table correspond to param-
eter choices that required excessive runtime or memory.

To compare our saturation technique with other exist-
ing methods, we tried using the symbolic model checker
NuSMV [11] and the explicit model checker SPIN [19]
on equivalent models of RSM. However, neither tool
was able to construct the state-space successfully.
NuSMV runs out of memory even before starting the
generation, as the BDD encoding of the transition rela-
tion is too large, while SPIN explores a very small
fraction of the state-space (less than 1/106, even when
using partial order reduction) to be able to expose any
problem. We need to mention here that other tech-
niques, such as compositional state-space minimization
(CADP/CWB) [15] or probabilistic model checking
(PRISM) [21], have also been successfully used to ana-
lyze large state-spaces, but time contraints prevented
their analysis in this project.

Table 3 Results from state-space generation on the complete
model

maxspeed

grid size 2 3 4 5

State-space generation time (s)
3 × 5 × 4 75.92 105.17 179.28 252.25
3 × 7 × 4 195.54 324.65 604.23 805.95

3 × 10 × 5 995.18 2,212.24 4,668.55 7,348.27
5 × 10 × 7 48257.3 – – –

Memory consumption (MB)
3 × 5 × 4 11.19 21.20 32.58 49.39
3 × 7 × 4 18.27 36.02 56.91 87.25

3 × 10 × 5 42.59 83.53 138.56 218.85
5 × 10 × 7 246.22 – – –

5 Model checking RSM

Model checking is concerned with verifying temporal
logic properties of discrete-state systems evolving in
time.

SmArT implements the branching time Computation
Tree Logic (CTL) [12], widely used in practice due to its
simple yet expressive syntax. In CTL, operators occur in
pairs: the path quantifier, either A (on all future paths)
or E (there exists a path), is followed by the tense oper-
ator, one of X (next), F (future, finally), G (globally,
generally), and U (until). Their semantics is informally
shown in Fig. 7, where system states are depicted as the
nodes of the trees and arcs represent transitions between
states, so that a node precedes in temporal order the
nodes it can reach. In each case, the root node is labeled
with a CTL formula it satisfies.

Notation and formal definitions. The operational
state matrix in Table 2 lists the alarm setting criteria,
as given in the documentation of the RSM algorithm
[16]. Our study aims at exhaustively checking whether
this operational matrix is able to detect all incursion sce-
narios. A situation where two aircraft get too close to
each other (within the minimum separation distance of
900 feet) without the alarm variable having been set is
from now on called a missed alarm scenario. The follow-
ing predicates are used to describe properties of interest
(for sake of clarity, subscripts o and t refer to ownship
and target, respectively):

detect ≡ phaseo =detect ∧ phaset =detect
sep ≡ distance(o, t) > min. sep.

alarm ≡ alarmt = true
track ≡ statuso 
∈ {taxi,flythru} ∨ statust 
∈ {taxi,flythru}

We begin with asking the most simple safety property.

A safety property. “Is there a tracked state where
minimum separation is lost and the alarm is off ?”

– CTL syntax: EF(detect ∧ track ∧ ¬sep ∧ ¬alarm)

The omission of the predicate detect from the query
can lead to false positives since, if a target’s coordinates
are inspected in the middle of the radar updates or its
status is queried before it is modified accordingly, the
data can be inconsistent. Therefore, all queries should
be asked only at the right moment: when ownship exe-
cutes phase C of its algorithm.

A scenario that satisfies the query arises when the
condition “distance is closing” is not satisfied in the cur-
rent state. This is the case in the third snapshot of Fig. 8.
However, this might not correspond to an unwanted
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Fig. 7 The semantics of CTL
operators

EXp EFp EGp E[pUq]

AXp AFp AGp A[pUq]

p holds q holdsLEGEND: don’t care

LEGEND:

ownship position
target position

min. separation

Fig. 8 Scenario for the memory-less property (ground level)

behavior, since the alarm might have been set in a pre-
vious state, when the minimum separation was lost. The
value of the alarm variable also depends on whether the
alarm is “aged” or not for a few more cycles. Never-
theless, the situation is still of potential concern, even
with aging of the alarm, since the target can maintain a
constant distance (at less than minimum separation) for
longer than the duration of the aging, eventually result-
ing in a “bad state” in the round after the alarm expires.

The “memory-less” nature of the query influences the
result. We looked at the property in a particular snap-
shot of time, without considering the sequence of events
leading to the current state. To get a better understand-
ing of the system, we next investigate the states of the
system immediately after the minimum separation dis-
tance between two aircraft is lost.

Analysis of the transition that causes loss of separa-
tion. “Is there a state where minimum separation is lost
by transitioning to the current state while the alarm is
off ?”

– CTL: EF(detect∧track∧sep∧E[(¬detect) U (detect∧
track ∧ ¬sep ∧ ¬alarm)])

The nested EU operator in the query (instead of EX)
is due to the fact that several transitions are needed to
complete the update of the coordinates, 3, and of the
status, 1, and to set the alarm again, 1. A witness for this
query (see Fig. 9) has ownship in a landing or climbout
state, the target flying across the runway faster than own-
ship, moving within separation distance from the side at
an angle. The condition for setting an alarm in this cir-
cumstance is “distance less than minimum separation
and target in takeoff/landing path”. The second term is
not satisfied, hence no alarm is raised. Aircraft can actu-
ally collide (trajectories intersect in Fig. 9), while none
of the participants are ever warned.

The above scenario is the only one satisfying this
query, a fact attesting to the robustness of RSM. This
situation can be corrected by adding “distance less than

Fig. 9 Scenario 2, airborne: flythru target in conflict with landing
aircraft
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minimum separation” as part of the criterion for this
combination of states.

We included the predicate track in both states (before
and after the transition), as we are interested in scenarios
involving only takeoff and/or landing trajectories. How-
ever, this additional constraint could mask some other
undesired behaviors. Therefore, we next ask a more gen-
eral question.

A stronger safety property. “Is there a tracked state
where minimum separation is lost, reachable without
ever previously setting the alarm?”

– CTL: E[(¬alarm) U (detect∧track∧¬sep∧¬alarm)];

Several scenarios satisfy this query.

Example 1 As shown in Fig. 10, actors enter the mon-
itored area taxiing fast, not aligned to the runway, and
already at close distance to each other. Note that the
RIPS specifications explicitly ignore this situation, as
the algorithm is only active when ownship is taking off
or landing. However, once on the runway, say own-
ship changes direction and aligns itself to the runway.
Thereafter, it is categorized as takeoff (or climbout, if it
becomes airborne). The other aircraft stays within mini-
mum separation, but it does not close in: it can be either
behind ownship or, more dangerously, in front of it. No
alarm is raised because the criterion “distance is closing”
is, again, not satisfied. If the distance between aircraft at
entry is very small, there might not be enough time for
an escape maneuver, even if, later on, the alarm is set by
closing in.

Figure 10 shows an abstract trace that contradicts this
safety property. The trajectories are shown for a hori-
zontal section in the monitored zone at ground level. The
third snapshot illustrates the “bad state” of the system:

Fig. 10 Scenario 3 (ground level): taxiing target interferes with
ownship taking off

the two aircraft are within minimum separation distance,
but no alarm has been issued either for the current state
or any of the previous states in the scenario.

Example 2 An identical scenario exists for airborne states
that are not tracked (status flythru).

Example 3 Additional scenarios do not satisfy this safety
property, where events develop immediately after both
planes enter the monitored zone. The bad behavior in
these cases is caused by the fact that the previous po-
sition is unknown – coordinates (0, 0, 0) in our model –
for both planes, hence the distance cannot be closing in
the next state. If the airplanes enter the zone at posi-
tions very close to each other (e.g., both are trying to
land), the alarm will not be raised. However, this behav-
ior is exhibited only in our theoretical model, due to our
choice of modeling conventions, and not in the actual
implementation of the protocol on the RSM device.

Summarizing the common characteristics of the above
scenarios, we observe that the key factor is that both
aircraft are in the taxi or flythru status when minimum
separation is lost. The situation is not tracked, hence a
potentially bad occurrence is masked by a protocol spec-
ification. The predicate “distance closing” is not satisfied
and no alarm is issued, although the distance is less than
minimum separation.

To further extend our discussion, we look at possi-
ble continuations of the scenario after the bad state is
reached. If the distance is closing in the next state, a
warning will be issued and the “missed alarm” situation
will cease to exist. The only way for a malicious agent
to perpetuate the problem is shown in Fig. 11, which is

Fig. 11 Scenario 4 (ground level): target zigzags near the ownship
taking off
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an extension of Scenario 3. The target can stay within
minimum separation radius for a longer period of time
if it “zig-zags” in front of ownship and at each radar
update has the same distance to ownship. The target
has to zig-zag to maintain the distance, since following
a parallel path to ownship will cause RSM to consider
it as taking off. The alarm criterion for the new combi-
nation of operational states is “taking off in the same
direction and distance less than minimum separation”.
Therefore, an alarm will be issued as soon as the target
stops zig-zagging.

The case when the target is not an aircraft (vehicle,
service truck, etc.) adds an extra degree of freedom for
a malicious behavior of the target (see Scenario 5, in
Fig. 12). Initially, ground vehicles were always consid-
ered in taxi mode by the protocol, regardless of their
speed, heading, and physical coordinates. Therefore, as
in Scenario 4, the target may follow ownship at close
distance, and even continue chasing ownship after it is
lined up for takeoff and accelerating. No flag will be
raised for the same reasons as in Scenario 4.

For the most recent implementation of RSM, the
designers took into account our findings and eliminated
the special treatment given to ground vehicles. This ad-
dresses the situation in Scenario 5.

The situation in Scenario 4 is of less concern, since it
is extremely difficult to realize in practice, even inten-
tionally by a saboteur. At the same time, there is some
benefit in exposing it: the designer is aware of this low-
probability event. Also, by the fact that it is the only
remaining unwanted behavior in the system, it serves as
a validation for phase 3 of the RSM algorithm.

6 Conclusions and future work

Human effort vs. machine effort. The modeling and
analysis of RSM was conducted in a relatively short pe-
riod of time: 12 months. Up to three people worked in

Fig. 12 Scenario 5: aircraft vs. ground vehicle

various stages of the project, for an estimated total of
nine man months of work. Of this, approximately six
months were dedicated to modeling decisions, during
which three regular meetings with the design engineers
were scheduled. The final three man months were spent
with the verification per se: formulating queries, ana-
lyzing, and synthesizing the answers. The understanding
of RSM was facilitated by the the designers’ strive to
keep the specification and implementation as simple as
possible.

Overall, while the human effort was predominant
in all stages of the analysis, mostly due to the lack of
automation in the modeling process, the impact of effi-
cient model checking tools was crucial in completing the
study. At the same time, for a short-time collaboration
like this, it was only natural that the experience of the
modelers was often preferred to certain automated pro-
cesses, like automatic model extraction and automated
abstraction/refinement schemes.

Lessons learned. Several lessons were learned from
our analysis, first and foremost that formal verification
has an undeniable value. We presented the designers
with a list of important findings which were not exposed
during the testing activities involving real aircraft, al-
ready underway at different airport locations. The merit
of our technique is that, besides being considerably less
expensive than testing, it is exhaustive.

We were able to analyze all possible scenarios in our
model and found situations of potential concern that
happen with extremely low probability. These are almost
impossible to expose during either testing procedures,
which usually afford no more than a dozen test flights
a day, or simulation sessions. When compared to the
actual state space sizes of the order of 1013–1042 states,
this shows the need for exhaustive analysis.

The second outcome of our experiments was that,
after identifying the problems and suggesting modifica-
tions to the protocol to eliminate them, we have in-
creased the level of assurance of the design in what
concerns missed alarms. All the findings were related
to situations when only one aircraft is landing or taking
off and the other is not. The section of the decision ta-
ble dealing with both aircraft landing or taking off was
validated in the original form.

With respect to the dual analysis, of false alarms, this
is still on the list of future plans. From a practical point
of view, pilots are equally concerned with both types
of situations. Individual reports indicate that frequent
false alarms can become a distraction or, in the best
case, a nuisance factor in operating an airplane. It is
also the case that a system with too many false alarms
will tend to be switched off or ignored, thus rendering
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it useless. Therefore the occurrence rate of false alarms
has to be reduced, even though these are not as critical as
missed alarms, which should be completely eliminated.
The designers of the protocol had to come up with a
balanced solution trading the simplicity of very “loose”
requirements that raise too many alarms for the com-
plexity of “stricter” conditions that decrease the number
of false alarms, but make the analysis more difficult.

Another aspect not discussed here is fault tolerance.
We assumed that all scenarios happen in the absence
of communication faults, meaning that the radars and
data-links provide accurate and timely updates to all
participants. A natural extension of our analysis is to in-
clude faulty behaviors, of either benign nature (missed
or late updates) or malicious/Byzantine (inconsistent
data between participants). This type of analysis re-
quires the inclusion of probabilistic aspects in the model,
and will be the subject of further research. While our
work verifies the correct operation of RSM under no-
fault assumptions, the presence of faults on the data-link
may significantly impact the correct operation of the
algorithm. On the one hand, if all data is faulty, RSM
will be of no help whatsoever in avoiding incursions. On
the other hand, if no data is faulty, we have already dem-
onstrated the correctness of the algorithm. The task of
realistically modeling faulty data that falls in between
these extremes is a major challenge.

Finally, this case study has inspired ideas of theoreti-
cal nature that can result in improvements and extensions
to our technique. The observation that a single tempo-
ral logic query can have more than one counterexample
(thus correcting it alone will not entirely rid the system of
the error) suggests that generating and storing all coun-
terexamples is beneficial. This is not commonly done by
model checkers. Also, even though the Kronecker ma-
trix encoding of the transition relation has been found
to be more efficient than the traditional BDD encoding
in all our previous studies, this particular application has
revealed a situation when the need to satisfy the consis-
tency requirements could be detrimental, by producing
an excessive number of split events. A saturation ap-
proach that does not require the model to be Kronecker
consistent has been proposed in [25], but it can suffer
from poor performance due to excessively large local
state spaces; we are currently working on extending it
so that it is completely general, yet with an efficiency
approaching that of the Kronecker-consistent case.
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