
Martin Leucker
Jaco van de Pol (Eds.)

Parallel and Distributed
Methods in verifiCation
4th International Workshop, PDMC 2005

Lisboa, Portugal, July 2005

Preliminary Proceedings

Sattelite workshop to ICALP 2005 – the 32nd Intl. Colloquium on Automata, Languages and Programming

PDMC’05

The final version will be published in Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Preface

These are the preliminary proceedings of the 4th International Workshop on
Parallel and Distributed Methods in Verification (PDMC 2005) held in Lis-
boa, Portugal, on July 10, 2005 as a satellite event to the 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005).

The primary mission was to present recent developments in this new re-
search domain and additionally building and strengthening the relationship
between people working in the area of parallel and distributed approaches to
the verification of large-scale systems.

The workshop program included an invited talk by Gerd Behrmann & Kim
G. Larsen on “Beyond Single Cluster Reachability Analysis”.

Besides regular papers, short presentations describing “work in progress”
were accepted to strengthen the workshop atmosphere. In total, 5 regular
papers and 4 short presentations have been accepted by the following program
committee:

Howard Barringer (Manchester Univ., UK), Lubos Brim (Masaryk Univ.,
Czech Republic), Gianpiero Cabodi (Torino, Italy), Jörg Denzinger (Alberta,
Canada), Wan Fokkink (Free University/CWI Amsterdam, NL), Hubert Gar-
avel (INRIA, France), Jürgen Giesl (RWTH Aachen, Germany) Orna Grum-
berg (Haifa, Israel), Boudewijn R. Haverkort (Univ. of Twente, NL), Marta
Kwiatkowska (Univ. of Birmingham, UK), Martin Leucker (TU Munich, Ger-
many) - Co-chair, Eric Mercer (Brigham Young Univ., USA), Jaco van de
Pol (CWI, Amsterdam, NL) - Co-Chair, Gerardo Schneider (Inria Rennes,
France), Willem Visser (NASA Ames Research Center, USA)

We would like to thank very much all members of the program committee
for nice cooperation and for detailed reports and comments.

These proceedings are preliminary and are intended as a working material
for the workshop participants. The final workshop proceedings will be pub-
lished as a volume of Electronic Notes in Computer Science and will include
the regular papers only.

Lisboa, July 10, 2005 Martin Leucker and Jaco van de Pol

Table of Contents

Invited Talk

Beyond Single Cluster Reachability Analysis
Gerd Behrmann & Kim G. Larsen . 6

Regular Papers

How to Order Vertices for Distributed LTL Model-Checking Based on Accept-
ing Predecessors

L. Brim, I. Černá, P. Moravec, J. Šimša . 7

Distribution, Approximation and Probabilistic Model Checking
G. Guirado, T. Herault, R. Lassaigne, S. Peyronnet 22

Under-approximation heuristics for Grid-based BMC
S. Iyer, J. Jain, D. Sahoo, E. A. Emerson . 34

Distributed Symbolic Bounded Property Checking
P. K. Nalla, R. J. Weiss, P. Peranandam, J. Ruf, T. Kropf, W. Rosen-

stiel . 49

A Pattern Recognition Approach for Speculative Firing Prediction in Dis-
tributed Saturation State-Space Generation

Ming-Ying Chung, Gianfranco Ciardo . 65

Short Papers

DISTRIBUTOR and BCG MERGE: Tools for Distributed Explicit State Space
Generation

H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Jou-
bert, I. Smarandache-Sturm, and G. Stragier . 80

DiVine - The Distributed Verification Environment
J. Barnat, L. Brim, I. Černá, P. Šimeček . 89

DivSPIN - A SPIN compatible distributed model checker
M. Leucker, M. Weber, V. Forejt, J. Barnat . 95

A New Reachability Algorithm for Symmetric Multi-processor Architecture
D. Sahoo, J. Jain, S. K. Iyer, D. L. Dill . 101

iii

Beyond Single Cluster Reachability Analysis

Gerd Behrmann

Department of Computer Science, Aalborg University

Kim G. Larsen

Department of Computer Science, Aalborg University

Abstract

Enumerative distributed reachability analysis based on a simple partitioning of the
state space has become a well known technique implemented in numerous model
checking tools. The timed automata model checker UPPAAL is no exception to
this rule, and for over 5 years a distributed version of UPPAAL has been used to
analyse large timed automata models. In this talk we address two fundamental
issues with the current approach.

Memory usage and CPU usage is tightly coupled. In particular, this limits the
freedom to utilize non-homogeneous setups such as mixed clusters or clusters of
clusters (e.g. connected by GRID infrastructure). Our proposed solution also solves
the load instability we first observed in early versions of distributed UPPAAL and
that has since been observed in other distributed model checkers.

Distributed reachability analysis is tightly coupled with breadth first search of the
state space. For this reason, extending the algorithm from pure reachability analysis
to LTL or TCTL model checking is difficult, as current on-the-fly approaches for
timed automata are based on a depth-first search. We present an idea that allows
any fixed point computation, including LTL or TCTL model checking, to be easily
distributed.

Preprint submitted to Elsevier Preprint 13 June 20056

PDMC 2005 Preliminary Version

How to Order Vertices for Distributed LTL
Model-Checking Based on Accepting

Predecessors

L. Brim 1, I. Černá 2, P. Moravec, J. Šimša

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

Distributed automata-based LTL model-checking relies on algorithms for finding
accepting cycles in a Büchi automaton. The approach to distributed accepting cy-
cle detection as presented in [9] is based on maximal accepting predecessors. The
ordering of accepting states (hence the maximality) is one of the main factors affect-
ing the overall complexity of model-checking as an imperfect ordering can enforce
numerous re-explorations of the automaton. This paper addresses the problem of
finding an optimal ordering, proves its hardness, and gives several heuristics for find-
ing an optimal ordering in the distributed environment. We compare the heuristics
both theoretically and experimentally to find out which of these work well.

1 Introduction

Over the past decade, many techniques using distributed and/or parallel pro-
cessing have been developed to combat the computational complexity of ver-
ification problems. They cover reachability analysis [3,14,17,21], verification
of branching time logics [4,5,7,8,12,15], linear time logics [1,2,10], equivalence
checking [6,18], and other verification problems.

In this paper we concentrate on the technique of maximal accepting pre-
decessor for LTL model-checking as presented in [9]. We show how this tech-
nique can be extended and optimised to speed-up LTL model-checking in a
distributed environment.

The maximal accepting predecessors (MAP) algorithm comes out from
the automata approach which reduces the LTL model-checking problem to
the emptiness problem for Büchi automata. A Büchi automaton accepts a

1 Research supported by the Grant Agency of Czech Republic grant No. 201/03/0509
2 Research supported by the Academy of Sciences of Czech Republic grant No.
1ET408050503

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Brim, Černá, Moravec and Šimša

non-empty language if and only if there is a reachable accepting cycle in the
Büchi automaton graph.

Reachability is a graph exploration technique that can be efficiently par-
allelised. The MAP algorithm exploits reachability for cycle detection in the
distributed environment. The algorithm is derived from the observation that
all vertices on a cycle have the same set of predecessors. To avoid computing
sets of all predecessors the algorithm assigns to every vertex a single repre-
sentative predecessor. Another core idea of the algorithm is to make use of
vertex ordering to determine suitable representatives. Namely, supposing the
vertices of the graph are ordered, the representative is the maximal accepting
predecessor of the vertex (or null value if there is none). A sufficient condition
for a graph to contain an accepting cycle is that there is an accepting vertex
with itself as the maximal accepting predecessor. Unfortunately, this is not
a necessary condition as there can exist an accepting cycle with “its” maxi-
mal accepting predecessor lying outside of it. For this reason the algorithm
systematically re-classifies those accepting vertices which do not lie on any
cycle as non-accepting and re-computes the maximal accepting predecessors.
The overall complexity of the MAP algorithm is mainly derived from both
computing the representatives and the number of iterations in which vertices
are re-classified and the representatives are re-computed. It turns out that
the vertex ordering is of crucial importance for improving the performance of
the algorithm.

In [9] a few basic vertex orderings have been considered, a systematic ex-
position of vertex orderings and its impact on the algorithm effectiveness has
been left open. In this paper we investigate the influence of the vertex ordering
in detail. First of all, we introduce the notion of an optimal ordering as the
ordering for which the MAP algorithm terminates in the very first iteration,
i.e. without re-classifying the representatives. The optimal ordering can be
computed for example by depth-first search traversal of the graph. However,
as we prove, the problem itself is P-complete and its efficient distributed so-
lution is not at hand (Section 3). Therefore, we formulate several heuristics
to resolve the ordering problem in a distributed environment and investigate
their theoretical properties (Section 4). All heuristics went through a detailed
experimental evaluation (Section 5) giving a deeper insight into their practical
usability in the distributed verification.

2 Maximal Accepting Predecessors

In this section, we recapitulate the main idea of the MAP algorithm as pre-
sented in [9], concentrating on the impact of vertex ordering on the complexity
of the algorithm.

The MAP algorithm follows the automata-based approach to LTL model-
checking [22]. The verification problem is reduced to the emptiness prob-
lem for Büchi automata and is represented as a graph problem. Let A =

28

Brim, Černá, Moravec and Šimša

(Σ, S, δ, s, Acc) be a Büchi automaton where Σ is an input alphabet, S is a
finite set of states, δ : S × Σ → 2S is a transition relation, s is an initial
state and Acc ⊆ S is a set of accepting states. The automaton A can be
identified with a directed graph GA = (V, E, s,A), called an automaton graph,
where V ⊆ S is a set of vertices corresponding to all reachable states of the
automaton A, E = {(u, v) | u, v ∈ V and v ∈ δ(u, a) for some a ∈ Σ}, s ∈ V
is a distinguished initial vertex corresponding to the initial state of A and A is
a distinguished set of accepting vertices corresponding to reachable accepting
states of A.

Definition 2.1 Let G = (V, E, s,A) be an automaton graph. The reacha-
bility relation ;

+⊆ V × V is defined as u ;
+ v iff there is a directed path

〈u0, u1, . . . , uk〉 in G where u0 = u, uk = v and k > 0.

A directed path 〈u0, u1, . . . , uk〉 forms a cycle if u0 = uk and the path
contains at least one edge. A cycle is accepting if at least one vertex on the
path 〈u0, u1, . . . , uk〉 belongs to the set of accepting vertices A.

A Büchi automaton recognises a non-empty language iff its automaton
graph contains an accepting cycle. The MAP algorithm detects accepting
cycles by maximal accepting predecessors. It assumes a linear ordering ≺ on
the set V of vertices. The ordering is extended to the set V ∪{null} (null /∈ V)
by setting null ≺ v for all v ∈ V .

Definition 2.2 Let G = (V, E, s,A) be an automaton graph. A maximal
accepting predecessor function of the graph G, mapG : V → (V ∪ {null}), is
defined as

mapG(v) =

{

max{u ∈ A | u ;
+ v} if {u ∈ A | u ;

+ v} 6= ∅

null otherwise

If there is a vertex v ∈ V with mapG(v) = v, the algorithm reports an
accepting cycle. However, it can happen that the graph contains an accepting
cycle and for all v ∈ V the inequality mapG(v) 6= v holds. As all vertices on a
cycle must have the same maximal accepting predecessor, this can only happen
if this predecessor lies outside the cycle. Such a vertex can be removed from the
set of accepting vertices without violating the existence of an accepting cycle in
the graph. This idea is formalised in the notion of a deleting transformation.
Whenever the deleting transformation is applied to an automaton graph G
with mapG(v) 6= v for all v ∈ V , it shrinks the set of accepting vertices by
deleting the vertices which evidently do not lie on any cycle.

Definition 2.3 Let G = (V, E, s,A) be an automaton graph and mapG its
maximal accepting predecessor function. A deleting transformation is defined
as del(G) = (V, E, s,A), where A = A \ {u ∈ A | mapG(u) ≺ u}).

Note that the application of the deleting transformation can result in a
different map function but it preserves the property “the graph contains an
accepting cycle”. The MAP algorithm alternately computes the map function

39

Brim, Černá, Moravec and Šimša

1

4

3

2

Fig. 1. Deleting transformation

and applies the deleting transformation till an accepting cycle is discovered or
the set of accepting states is empty.

MAP Algorithm

while A 6= ∅ do

compute mapG;
if (∃u ∈ A : mapG(u) = u)

then return CYCLE
else G = del(G);
fi

od

return NO CYCLE

In our original algorithm [9] the deleting transformation has been defined
using the set {u ∈ A | ∃v ∈ V.mapG(v) = u} of accepting vertices to be
removed. The new formulation of the deleting transformation used here is
more appropriate in the context of optimising vertex ordering as it generally
removes more vertices. E.g. consider the graph on Figure 2 with two accepting
vertices 2 and 4 and the vertex ordering given by their numbers. The algorithm
terminates in two iterations under the original definition (in the first iteration
the vertex 4 is deleted, in the second one the vertex 2 is deleted) while it
needs only one iteration to terminate under the new definition (both accepting
vertices are deleted at once as mapG(2) = null ≺ 2 and mapG(4) = null ≺
4). The correctness of the modified algorithm can be easily proved following
similar arguments as given in [9].

3 Optimal Vertex Ordering for the MAP Algorithm

The time complexity of the distributed MAP algorithm is O(a2 · m), where
a is the number of accepting vertices and m is the number of edges in the
automaton graph. Here the factor a·m comes from the computation of the map
function and the factor a relates to the number of iterations, i.e., computations
of the del function. In order to optimise the complexity one aims to decrease
the number of iterations by choosing an appropriate vertex ordering. A natural
way how to order the vertices is to use the enumeration order as it is computed
in the enumerative on-the-fly model-checking. In [9], each vertex was identified
with a vector of three numbers – the workstation identifier, the row number
in the hash table, and the column number in the row. The ordering of vertices

410

Brim, Černá, Moravec and Šimša

was given by the lexicographical ordering of these triples. In this section, we
define the notion of an optimal ordering and prove that the optimal ordering
problem is P-complete.

Let ≺ be a linear ordering on vertices used by the algorithm MAP and
iter≺ be the number of iterations of the main cycle till the algorithm MAP
terminates.

Definition 3.1 An ordering ≺ is optimal iff iter≺ = 1.

The optimality of an ordering is tightly related to a reachability relation
on the set of accepting vertices.

Definition 3.2 An ordering ≺ respects reachability iff for all u, v ∈ A, when-
ever (u ;

+ v ∧ v 6;+ u) then u ≺ v.

Lemma 3.3 If an ordering ≺ respects reachability then it is optimal.

Proof. We prove that non-optimal ordering does not respect reachability.

Suppose the ordering≺ is not optimal and there is an accepting cycle in the
graph G. The algorithm does not detect an accepting cycle in the first iteration
if for all accepting vertices u the value mapG(u) 6= u. Let v be the maximal
accepting vertex lying on a cycle. Then v ≺ mapG(v), mapG(v) ;

+ v, and
v 6;+ mapG(v). Therefore ≺ does not respect reachability.

If there is no accepting cycle in the graph, then there is an accepting vertex
v which is not re-classified as non-accepting after the first iteration of the MAP
algorithm. It means that v ≺ mapG(v) and mapG(v) ;

+ v. From acyclicity
we have v 6;+ mapG(v), which implies that ≺ does not respect reachability.

Lemma 3.4 For every automaton graph there is an optimal ordering. More-
over, an optimal ordering can be computed in time O(a ·m).

Proof. We give algorithm which computes an optimal ordering. As a first
step, the algorithm computes the reachability relation R = {(u, v) | u, v ∈
A, u ;

+ v}. This computation can be done for example by running a
reachability procedure from all accepting vertices separately which takes time
O(a ·m).

Now, if the graph does not contain any accepting cycle, then for u, v ∈ A
we put u ≺ v if and only if (u, v) ∈ R. Other pairs of vertices are ordered
arbitrarily. If the graph contains an accepting cycle, then there is a vertex u
with (u, u) ∈ R. Let v ≺ u for every accepting vertex v, v 6= u. Other pairs
of vertices are again ordered arbitrarily.

Notice, that a graph can have several optimal orderings, as the ordering of
non-accepting vertices and of accepting vertices, which are mutually unreach-
able, is not important.

The question is whether an optimal ordering can be computed more effi-
ciently in the distributed environment. We provide a strong evidence that the
computation of an optimal ordering cannot be significantly speeded up by the

511

Brim, Černá, Moravec and Šimša

use of any reasonable number of parallel processors. Namely, we prove that
the optimal ordering problem is P-complete and thus inherently sequential. A
problem is P-complete if it belongs to P and every language L ∈ P is log-space
reducible to the problem (see [13] for details on P-completeness).

The optimal ordering problem is to decide for a given automaton graph
and two accepting vertices u, v whether u precedes v in every optimal ordering
of graph vertices. Lemma 3.4 shows that the optimal ordering problem is in
P. We prove P-hardness by reduction from the NAND circuit value problem.

A NAND boolean circuit is a sequence B = (B0, . . . , Bn) where B0 =
1 and Bi = ¬(Bi1 ∨ Bi2), i1, i2 < i. Let value(B0) = true, value(Bi) =
¬(value(Bi1) ∨ value(Bi2)), and value(B) = value(Bn). The NAND circuit
value (NANDCV) problem is to decide for a given NAND boolean circuit B
whether value(B) = true. Ladner [16] shows that the NANDCV problem is
P-complete.

Theorem 3.5 The optimal ordering problem is P-hard.

Proof. By log-space reduction of the NANDCV problem to the optimal or-
dering problem. Let B = (B0, . . . , Bn) be a NAND boolean circuit. We
construct an automaton graph G and identify its two vertices u, v in such a
way that u precedes v in every optimal ordering of graph vertices if and only
if value(B) = true.

First, for each Bi we construct a graph Gi inductively. The graph G0 =
({T0, I0, F0}, {(T0, I0), (I0, F0), (F0, I0)}) is depicted in Figure 2a). Let Bi =
¬(Bi1 ∨Bi2). Then Gi contains as its subgraphs Gi1 and Gi2 , new vertices Ti,
Ii, Fi, and new edges as depicted in Figure 2b).

a) graph G0 b) graph Gi

I0

T0 F0

Fi Ti2 Ii2

Ti

Ti1 Ii1

Fi1Fi2

Ii

Gi1Gi2

Fig. 2. Construction of the automaton graph

We prove that for all i = 0, . . . , n the graph Gi has specific reachability
properties. Namely,

if value(Bi) = true then Ti ;
+ Ii ;

+ Fi, Fi ;
+ Ii, Ii 6;

+ Ti, and Fi 6;
+ Ti,

if value(Bi) = false then Fi ;
+ Ii ;

+ Ti, Ti ;
+ Ii, Ii 6;

+ Fi, and Ti 6;
+ Fi.

612

Brim, Černá, Moravec and Šimša

The assertion can be proved by induction on i. For i = 0, value(B0) = true
and the assertion can be easily checked following Figure 2a).

For the induction step let us suppose value(Bi) = true. Then value(Bi1) =
value(Bi2) = false and by induction hypothesis there are paths from Ii1 to Ti1

and from Ii2 to Ti2 . These paths together with edges (Ti, Ii), (Ii, Ii1), (Ti1 , Ii2),
and (Ti2 , Fi) form a path from Ti to Fi in Gi. On the other hand, as there is
no path from Ii1 to Fi1 in Gi1 neither from Ii2 to Fi2 in Gi2 , there is no path
both from Ii and Fi to Ti in Gi.

The case value(Bi) = false divides into three subcases depending on val-
ues of value(Bi1) and value(Bi2), all subcases are handled analogously to the
previous case.

To finish the proof of P-hardness of the optimal ordering problem, let us
reduce the NAND boolean circuit B to the automaton graph G containing as
its subgraph Gn, a new initial vertex S and edges from S to all vertices in
Gn. Vertices Tn and Fn are accepting. From properties of Gn we have that
if value(B) = true then Tn ;

+ Fn ∧ Fn 6;
+ Tn and if value(B) = false then

Fn ;
+ Tn ∧ Tn 6;

+ Fn. We claim that value(B) = true iff in every optimal
ordering Tn precedes Fn. Clearly, if value(B) = true and Fn preceded Tn,
then map(Tn) = null , map(Fn) = Tn, and the MAP algorithm would need
two iterations to complete the cycle detection. For the opposite implication,
if value(B) = false, then ordering in which Fn precedes Tn is optimal as
map(Fn) = null and map(Tn) = Fn. To conclude the proof we observe that
the construction of the graph G can be done in space logarithmic with respect
to the circuit size.

4 Heuristics for vertex ordering

As the optimal ordering problem is P-complete, we cannot expect the compu-
tation of an optimal ordering in the distributed environment to be significantly
more efficient than in the sequential setting. Therefore we aim for non-optimal
orderings. In this section, we describe several heuristics for computing a vertex
ordering. All but one are easily computable in the distributed environment.
For all orderings we indicate how “far” is the computed ordering from the
optimal one. We elaborate a quantitative measure that characterizes the dis-
tance.

Definition 4.1 Let ≺ be an ordering and γ = 〈u1, . . . , un〉 be a path in G.
Then (ui1, . . . , uik) is a reverse subsequence of the sequence (u1, . . . , un) if
ui1, . . . , uik are accepting vertices and uik ≺ . . . ≺ ui2 ≺ ui1. The maximal
length of a reverse subsequence of the path γ is the index of the path γ,
index≺(γ).

Index of a vertex u is defined as index≺(u) = max{index≺(γ) | γ is a path
from the initial vertex to the vertex u in G}.

Index of an automaton graph G is defined as index≺(G) = max{index≺(u) |
u is a vertex in G}.

713

Brim, Černá, Moravec and Šimša

To illustrate the definition, let γ = 〈4, 2, 3, 5, 1〉 be the path depicted on
Figure 3 and 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5. Then (4, 2), (4, 3), (4, 3, 1), and (3, 1) are
reverse subsequences of the sequence (4, 2, 3, 5, 1). On the other hand, the
sequences (4, 2, 3, 1) and (5, 1) are not reverse subsequences of γ. Index of the
path γ is 3.

54 2 3 1

Fig. 3. Path with reverse subsequence (4, 3, 1)

Theorem 4.2 For a graph G and a vertex ordering ≺, iter≺ = index≺(G).

Proof. To prove the inequality index≺(G) ≤ iter≺ let us assume there is a
vertex u with index≺(u) > iter≺. Let σ = (u1, . . . uk) be a reverse subsequence
of a path from s to u with |σ| = index≺(u). Then at least two vertices ui, uj

(i < j) have to be deleted from A during the same deleting transformation.
But ui ;

+ uj, uj ≺ ui and therefore uj ≺ map(uj). This contradicts the
definition of the deleting transformation.

For the opposite inequality index≺(G) ≥ iter≺, let u be a vertex and
γ = 〈s, . . . u〉 be a path such that index≺(γ) = index≺(u) = index≺(G) = k.
Let σ = (u1, u2, . . . uk) be the reverse subsequence of the maximal length of the
path γ. By induction on the index i we prove that the vertex ui is removed
from the set of accepting vertices during the ith iteration of the algorithm
MAP.

For i = 1 the assertion follows from the maximality of γ. For the induction
step assume that the vertex ui−1 was removed during the (i− 1)th iteration.
If ui is not removed from the set of accepting vertices during the ith iteration
then there is a vertex vi ∈ A with s ;

+ vi ;
+ ui and ui ≺ vi (i.e. in the ith

iteration ui ≺ map(ui)). The vertex vi is re-classified as non-accepting not
sooner than during the ith iteration and we can repeat similar arguments for
the vertex vi. As a result we have vertices ui ≺ vi ≺ vi−1 ≺ . . . v1 with s ;

+

v1 ;
+ . . . vi ;

+ ui. Hence (v1, v2, . . . vi, ui, . . . uk) is a reverse subsequence
with k + 1 vertices of a path from s to u. This contradicts the maximality of
γ and σ.

Now we define several vertex orderings which are based on different ways
of graph traversal. All but the first one are envisaged to be appropriate for
the distribution.

Definition 4.3 Let G be an automaton graph.

≺DFS : Suppose the graph G is traversed by depth first search (DFS). We
define u ≺DFS v iff the vertex u is backtracked by DFS later than the
vertex v (i.e., ≺DFS is the reverse of DFS-postorder).

≺BFS : Suppose the graph G is traversed by breadth first search (BFS). We
define u ≺BFS v iff the vertex u is visited by BFS before the vertex v.

814

Brim, Černá, Moravec and Šimša

≺BFSpreds : Suppose the graph G is traversed by BFS. Let G′ be the breadth
first search tree. Let visit(u) = (acc preds, BFSnr), where acc preds is the
number of accepting predecessors of the vertex u in G′ and BFSnr is the
time when the vertex u is visited by BFS. We define u ≺BFSpreds v iff visit(u)
is lexicographically smaller than visit(v).

The difference between ≺BFSpreds and ≺BFS is shown in Figure 4. In both
graphs the successors of the initial vertex are proceeded from left to right. For
the left hand side graph iter≺BFSpreds

= 2 and iter≺BFS
= 1 (since a ≺BFS b,

but b ≺BFSpreds a) while for the right hand side graph iter≺BFSpreds
= 1 and

iter≺BFS
= 2 (since d ≺BFSpreds c, but c ≺BFS d).

cb da

Fig. 4. Comparison of ≺BFSpreds and ≺BFS

For the next ordering suppose the graph G is divided into subgraphs G1,
G2,. . . , Gn. Further suppose G is traversed by a modified depth first search
(cDFS) which differs from DFS in traversing cross edges (edges with vertices
from distinct subgraphs). For each subgraph, cDFS maintains a queue of
vertices from which it starts a local DFS. A local DFS traverses only the re-
spective subgraph. When a cross edge is encountered, its endpoint is enqueued
to the respective queue and the search backtracks. cDFS is initiated with a
local DFS from an initial vertex and terminates when no local DFS is running
and all queues are empty. A straightforward way to distribute the computa-
tion of cDFS is to place subgraphs G1, G2,. . . , Gn on different computers and
run local DFSs in parallel.

≺cDFS : Suppose the graph G is traversed by cDFS. For u ∈ Gi, v ∈ Gj we
define u ≺cDFS v iff i < j or (i = j and u is backtracked later than v).

Lemma 4.4 ≺DFS is an optimal ordering, i.e., index≺DFS
(G) = 1.

Proof. According to Lemma 3.3 it suffices to prove that ≺DFS respects the
reachability relation. Let u, v ∈ A, u ;

+ v and v 6;+ u. If u is visited by DFS
before v, then u is backtracked after all its successors and therefore u ≺DFS v.
If u is visited later than v, then v must have been backtracked before u was
reached, because there is no path from v to u. Hence u ≺DFS v. The optimality
of ≺DFS corresponds with P-completeness of the DFS problem [20].

Lemma 4.5 For each ≺ ∈ {≺BFS ,≺BFSpreds ,≺cDFS} there is an automaton
graph G such that index≺(G) = |A|.

915

Brim, Černá, Moravec and Šimša

Proof. Graph certificating the upper bound for ≺BFS and ≺BFSpreds is de-
picted in Figure 5a) (successors of the initial vertex are traversed from left to
right, a0 ≺BFS a1 ≺BFS . . . am and a0 ≺BFSpreds a1 ≺BFSpreds . . . am) and for
≺cDFS in Figure 5b) (successors of the initial vertex are traversed bottom up,
d ≺cDFS c ≺cDFS b).

2 1

c

d

b

b) upper bound for ≺cDFSa) upper bounds for ≺BFS and ≺BFSpreds

a1 ama0

Fig. 5. Upper bounds

5 Experiments

We have implemented variants of the MAP algorithm using vertex orderings
described in the previous section. The experiments have been performed on
a network of ten Intel Pentium 4 2.6 GHz workstations with 1 GB of RAM
each interconnected with a 100Mbps Fast Ethernet and using tools provided
by our own distributed verification environment DiVinE [11].

Name Vertices Acc. Vertices Error

Elevator10 1 891372 307692 NO

LookUpProc8 2 1954569 1458848 NO

PublicSubscribe 1 2051215 204612 NO

Rether10 4 11325003 5649118 NO

Rether08 2 2898644 850689 YES

PLCshedule600 1 5096287 3827319 YES

Lifts4 1 998570 331596 NO

Phils14L 3 7193116 2410147 NO

TrainGate8 2 17572372 11668232 YES

Peterson3Err 1 1135804 796734 YES

Table 1
Summary of graphs

1016

Brim, Černá, Moravec and Šimša

TrainGate8 2 2 4 6 8 10

≺RND Time 89 69 45 24 10

Iter. 1 1 1 1 1

≺BFS Time 116 67 34 23 16

Iter. 1 1 1 1 1

≺BFSpreds Time 77 65 26 20 14

Iter. 1 1 1 1 1

≺cDFS Time – – 1417 855 744

Iter. – – 1 1 1

PLCshedule600 1 2 4 6 8 10

≺RND Time 9 109 45 62 13

Iter. 1 1 1 1 1

≺BFS Time 7 9 3 14 18

Iter. 1 1 1 1 1

≺BFSpreds Time 3 3 2 3 3

Iter. 1 1 1 1 1

≺cDFS Time – 820 588 450 242

Iter. – 1 1 1 1

Peterson3Err 1 2 4 6 8 10

≺RND Time 81 127 52 70 65

Iter. 1 1 1 1 1

≺BFS Time 167 387 246 216 165

Iter. 1 1 1 1 1

≺BFSpreds Time 116 213 114 98 72

Iter. 1 1 1 1 1

≺cDFS Time 141 162 219 129 114

Iter. 1 1 1 1 1

Rether08 2 2 4 6 8 10

≺RND Time 86 70 32 40 31

Iter. 1 1 1 1 1

≺BFS Time 465 285 146 158 93

Iter. 1 1 1 1 1

≺BFSpreds Time 342 136 88 131 95

Iter. 1 1 1 1 1

≺cDFS Time 465 281 232 186 129

Iter. 1 1 1 1 1

Table 2
Experimental results: Graphs containing accepting cycles

In order to examine the performance of the algorithm, we performed an
extensive experimental evaluation using graphs representing various verifica-
tion problems. The graphs are identified in Table 1 along with their most
important characteristics – the number of reachable vertices and the number
of reachable accepting vertices. The column Error indicates the presence or
absence of an accepting cycle in the graph. Most of the graphs could not be
stored on a single computer.

We compared vertex orderings ≺BFS , ≺BFSpreds , and ≺cDFS . Moreover,
there are several natural vertex orderings derived from the random hash func-
tion used for storing states (see [9] for more details). We used the best one
from [9], denoted ≺RND , as a “benchmark” for the comparison with newly
presented orderings.

Detailed results of all experiments are reported in Tables 2 and 3. For
every graph and every ordering we performed experiments on various numbers
of workstations. For each setup we give the number of iterations performed
by the algorithm and its run time in seconds. The run time represents an
average taken from several runs. The sign ’–’ means that the setup resulted

1117

Brim, Černá, Moravec and Šimša

Elevator10 1 2 4 6 8 10

≺RND Time 295 193 167 153 119

Iter. 14 14 14 14 14

≺BFS Time 296 265 346 382 208

Iter. 5 7 8 10 8

≺BFSpreds Time 159 130 119 117 90

Iter. 3 4 4 4 4

≺cDFS Time 841 530 637 294 294

Iter. 33 48 49 33 48

PublicSubscribe 1 2 4 6 8 10

≺RND Time 152 92 67 66 50

Iter. 8 8 8 8 8

≺BFS Time 159 97 72 56 52

Iter. 4 6 6 6 6

≺BFSpreds Time 152 91 67 64 52

Iter. 3 3 3 3 3

≺cDFS Time 336 195 285 195 142

Iter. 7 8 8 8 8

Lifts4 1 2 4 6 8 10

≺RND Time 225 112 76 67 60

Iter. 12 10 8 8 10

≺BFS Time 227 121 91 73 60

Iter. 3 4 4 4 3

≺BFSpreds Time 299 242 190 121 105

Iter. 4 4 5 5 4

≺cDFS Time 397 225 360 216 151

Iter. 11 21 26 26 28

Lup8 2 2 4 6 8 10

≺RND Time 714 678 266 245 196

Iter. 12 12 12 12 12

≺BFS Time 1640 866 547 508 365

Iter. 5 7 9 8 9

≺BFSpreds Time 427 293 185 167 129

Iter. 3 3 3 3 3

≺cDFS Time 1780 1038 1354 995 690

Iter. 34 41 38 48 45

Phils14L 3 2 4 6 8 10

≺RND Time 2718 1983 2220 3269 2709

Iter. 11 11 11 11 11

≺BFS Time 3444 2606 4812 1935 2813

Iter. 4 4 9 6 8

≺BFSpreds Time 3430 1735 2597 1427 1226

Iter. 3 3 3 3 3

≺cDFS Time - 6237 6304 5635 5121

Iter. - 13 12 12 14

Rether10 4 2 4 6 8 10

≺RND Time – – – 1130 722

Iter. – – – 20 20

≺BFS Time – – – 1390 945

Iter. – – – 10 11

≺BFSpreds Time – – – 594 406

Iter. – – – 4 5

≺cDFS Time – – – 5692 15278

Iter. – – – 165 171

Table 3
Experimental results: Graphs without accepting cycles

in a computation which does not finish due to memory limitations.

In the case of graphs with an accepting cycle, all computations performed
only one iteration. In other words, an optimal ordering was found immediately.
Although this may seem strange from a theoretical point of view, there is some
experimental evidence for this. The number of iterations is bounded by the
quotient graph height. The quotient graph of G = (V, E) is a graph (W, H),

1218

Brim, Černá, Moravec and Šimša

such that W is the set of strongly connected components of G and (C1, C2) ∈ H
if and only if C1 6= C2 and there exist r ∈ C1, s ∈ C2 such that (r, s) ∈ E. The
height of the quotient graph is the length of the longest path in the quotient
graph. As argued in [19], the quotient graph height is for model checking
graphs typically low and thus the MAP algorithm tends to have only a few
iterations. In the presence of an accepting cycle, the number of iterations is
typically just one.

Furthermore, in some cases you can notice that a computation on fewer
workstations takes less time than a computation on more workstations. These
irregularities are caused by the hash function used for partitioning and are
not related to the algorithm’s behaviour.

Yet another observation drawn from the experiments is that in some cases
the number of iterations necessary to finish the computation is quite different
under different orderings, but the resulting times are very close. This is caused
by the uneven number of re-explorations during one iteration. However, lower
number of iterations generally results in a faster computation.

As for the orderings, though ≺BFS and ≺BFSpreds are both based on the
BFS traversal, ≺BFSpreds outperformed ≺BFS in most experiments. In fact,
our experiments suggest the ≺BFSpreds ordering to be the best one among the
compared orderings.

The ≺cDFS ordering can be considered from the theoretical point of view
as a promising one, as it tries to mimic the optimal ≺DFS ordering. However,
it fails to scale well. The high number of iterations is caused by the direct
influence of graph distribution on vertex ordering and by the high number
of cross edges in the distributed graph. Due to these reasons is the positive
impact of distribution dampened.

The random ordering ≺RND can be classified as a “better average”. It
is interesting to note that despite its randomness it sometimes outperforms
orderings which have been designed to employ specific graph features.

Finally, for the ≺BFS , ≺BFSpreds and ≺RND orderings the algorithm works
on-the-fly as it simultaneously computes the map function and performs cycle
detection. The experiments clearly demonstrated that in the presence of an
accepting cycle, the algorithm was able to detect it during the first iteration.
Thus it was not necessary to generate the whole graph. For graphs without
accepting cycles the number of workstations had typically small impact on the
number of iterations (except for the ordering ≺cDFS).

6 Conclusions

The paper complements the distributed LTL model-checking algorithm MAP
arising out from the maximal accepting predecessors concept. First, we prove
that for every graph there is an optimal ordering of graph vertices for which
the MAP algorithm terminates in one iteration. The optimal ordering can be
computed in time linear to the size of the graph, however the problem itself

1319

Brim, Černá, Moravec and Šimša

is P-complete and thus hard to parallelise. Therefore we provide and evaluate
several heuristics computing a vertex ordering on-the-fly and such that they
are easy to incorporate into the distributed MAP algorithm.

Conclusions both from theoretical and experimental evaluation are that
none of the heuristics outperforms the others. On average, the most reliable
heuristic is ≺BFSpreds (based on breadth first search) followed by ≺RND based
on (random) hashing.

The presented approach to the optimisation of the time complexity of the
MAP algorithms aims at decreasing the number of iterations of the algorithm.
An alternative direction is to optimise the computation of the map function
in each iteration. This computation is based on the relaxation of graph edges
(in the same way as in the Belmann-Ford algorithm) and we do not find this
too promising.

References

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL
Model-Checking. In Automated Software Engineering (ASE’03), pages 106–
115. IEEE Computer Society Press, 2003.

[2] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL Model-Checking in SPIN.
In SPIN Workshop on Model Checking of Software (SPIN’01), volume 2057 of
LNCS, pages 200–216. Springer, 2001.

[3] G. Behrmann. Distributed Reachability Analysis in Timed Automata. Software
Tools for Technology Transfer, 7(1):19–30, 2005.

[4] A. Bell and B. R. Haverkort. Sequential and Distributed Model Checking
of Petri Net Specifications. In Parallel and Distributed Model-Checking
(PDMC’02), volume 68.4 of ENTCS. Elsevier, 2002.

[5] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable Distributed
On-the-Fly Symbolic Model Checking. In Formal Methods in Computer-Aided
Design (FMCAD 2000), volume 1954 of LNCS, pages 390–404. Springer, 2000.

[6] S. Blom and S. Orzan. Distributed state space minimization. In Formal
Methods for Industrial Critical Systems (FMICS’03), volume 80 of ENTCS.
Elsevier, 2003.

[7] B. Bollig, M. Leucker, and M. Weber. Parallel Model Checking for the
Alternation Free µ-Calculus. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), volume 2031 of LNCS, pages 543–558.
Springer, 2001.

[8] B. Bollig, M. Leucker, and M. Weber. Local Parallel Model Checking for
the Alternation-Free mu-Calculus. In SPIN Workshop on Model checking of
Software (SPIN’02), volume 2318 of LNCS, pages 128–147. Springer, 2002.

1420

Brim, Černá, Moravec and Šimša

[9] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Better
than Back Edges in Distributed LTL Model-Checking. In Formal Methods in
Computer-Aided Design (FMCAD’04), volume 3312 of LNCS, pages 352–366.
Springer, 2004.

[10] I. Černá and R. Pelánek. Distributed Explicit Fair Cycle Detection. In SPIN
Workshop on Model Checking of Software (SPIN’03), volume 2648 of LNCS,
pages 49–73. Springer, 2003.

[11] DiVinE – Distributed Verification Environment. http://anna.fi.muni.cz/divine.

[12] H. Garavel, R. Mateescu, and I. M. Smarandache. Parallel State Space
Construction for Model-Checking. In SPIN Workshop on Model Checking of
Software (SPIN’01), volume 2057 of LNCS, pages 200–216. Springer, 2001.

[13] R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, 1995.

[14] B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the Efficient Sequential
and Distributed Generation of Very Large Markov Chains from Stochastic Petri
Nets. In Petri Nets and Performance Models (PNPM’99), pages 12–21. IEEE
Computer Society Press, 1999.

[15] T. Heyman, O. Grumberg, and A. Schuster. A Work-Efficient Distributed
Algorithm for Reachability Analysis. In Computer Aided Verification
(CAV’03), volume 2725 of LNCS, pages 54–66. Springer, 2003.

[16] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, 1975.

[17] F. Lerda and R. Sisto. Distributed-Memory Model Checking with SPIN. In
SPIN Workshop on Model Checking of Software (SPIN’99), volume 1680 of
LNCS, pages 22–39. Springer, 1999.

[18] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis,
Free University of Amsterdam, 2004.

[19] R. Pelánek. Typical structural properties of state spaces. In SPIN Workshop
on Model Checking of Software (SPIN’04), volume 2989 of LNCS, pages 5–22.
Springer, 2004.

[20] J. H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, 1985.

[21] U. Stern and D. L. Dill. Parallelizing the Murϕ Verifier. In Computer Aided
Verification (CAV’97), volume 1254 of LNCS, pages 256–267. Springer, 1997.

[22] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic
Program Verification. In Logic in Computer Science (LICS’86), pages 332–344.
IEEE Computer Society Press, 1986.

1521

PDMC 2005 Preliminary Version

Distribution, Approximation and Probabilistic
Model Checking

Guillaume Guirado

EPITA Research and Development Laboratory (LRDE)

Thomas Herault

LRI, University Paris South-XI

Richard Lassaigne

Equipe de Logique Mathématique, UMR 7056 CNRS, University Paris VII

Sylvain Peyronnet

EPITA Research and Development Laboratory (LRDE)
syp@lrde.epita.fr

Abstract

APMC is a model checker dedicated to the quantitative verification of fully proba-
bilistic systems against LTL formulas. Using a Monte-Carlo method in order to ef-
ficiently approximate the verification of probabilistic specifications, it could be used
naturally in a distributed framework. We present here the tool and its distribution
scheme, together with extensive performance evaluation, showing the scalability of
the method, even on clusters containing 500+ heterogeneous workstations.

1 Introduction

Probabilistic model checking is an algorithmic method that aims to auto-
matically verify that quantitative properties hold in probabilistic systems.
The main drawback of the method is the so-called state space explosion phe-
nomenon, that is the fact that workstations run out of memory while verifying
large probabilistic systems. A common direction of research to address this
problem is to design distributed model checking algorithms in order to handle
larger systems. Most of these methods are about the distribution of the state
space on several machines.

In the last couple of years, we showed that a completely different approach
can be used in order to save space while verifying large systems. Indeed, we

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Guirado, Herault, Lassaigne, Peyronnet

proposed to use approximation to eliminate the space complexity of probabilis-
tic model checking. The idea of using approximation becomes more and more
popular and is now used by several research groups [16,4]. Our approach [5] is
more precisely based on the sampling of execution paths of the probabilistic
system. This method is, by construction, massively parallel. Indeed, one can
distribute the computation on a large cluster of machines in the following way:
each machine generates execution paths and verifies the specification on each
of these paths, then sends the obtained results to a master. After a certain
time of computation, the master has received enough results to conclude on
the (approximate) validity of the quantitative property to be checked.

In this paper, we explain in detail the method we developed and we analyze
the performances of our methodology on very large clusters of heterogeneous
machines (up to 500 machines). All the experiments were done using APMC
(Approximate probabilistic Model Checker), which is the tool that implements
our method.

The paper starts with a short review of the related work. Then, in section
3, we give the theoretical foundations of APMC and explain its architecture
and implementation. Last, we present in section 4 the results of extensive
experiments on various case studies and sets of machines. These experiments
show the scalability of the approach.

2 Related Work

In the last few years, distributed model checking has gained a renewal of
interest, due to the emergence of easily available “computing farms”, that is
very large sets of machines usable for computation. There is now a challenge
of using such clusters in every domain of computer science. Several methods
have been developed in order to speed up the model checking and/or avoid
the state space explosion phenomenon.

One of the first ideas in the use of parallelization was to distribute the
construction of the state-space (see for example [13,3]). Basically this is done
using a partition of the set of the reachable states by way of a hashing function,
this partition induces a natural parallelization.

Concerning the manipulation of the state space, an other way of research is
to improve the size of the transitions systems that can be handled by the model
checker. Out of core methods were designed to do this [10,9], particularly for
probabilistic systems (that is Markov models).

The main convenience of these techniques is their potential to integrate
within classical model checkers, such as the state of the art probabilistic model
checker, PRISM [11].

A lot of others methods have been developed and discussed [7], but none of
them distribute the whole process of the verification in a massively distributed
way (e.g. hundreds of machines).

The method we designed for the distributed and approximate verification

223

Guirado, Herault, Lassaigne, Peyronnet

of probabilistic systems is completely different since it is naturally a parallel
method (due to the use of a Monte-Carlo sampling technique). There already
exists other sampling techniques for the verification of probabilistic systems
[16,4]. The method of [16] uses the framework of hypothesis testing while [4]
uses also a Monte-Carlo method. These two methods have also the potential
of being parallelized, but, to our knowledge, it wasn’t done by now.

3 Approximate Probabilistic Model Checking

3.1 Theoretical Foundations

The APMC approach [5] uses an efficient Monte-Carlo method to approximate
satisfaction probabilities of monotone properties over fully probabilistic tran-
sitions systems. Properties to be checked are expressed in Linear Temporal
Logic (LTL).

3.1.1 APMC method

LTL formulas are built over a set of atomic propositions labeling states.

Definition 3.1 A fully probabilistic transition system (PTS or DTMC for
Discrete Time Markov Chain) is a tuple M = (S, s, P) where S is a set of
states, s is the initial state, and P is a transition probability function i.e. for
all s ∈ S,

∑

t∈S
P (s, t) = 1.

We denote by Path(s) the set of paths whose first state is s. The length of
a path π is the number of states in the path and is denoted by |π|, this length
can be infinite. The probability measure Prob over the set Path(s) is defined
in a classical way [8]. We denote by Prob[φ] the measure of the set of paths
{π | π(0) = s and M, π |= φ} (see [15]). Let Pathk(s) be the set of all paths
of length k > 0 starting at s in a PTS. The probability of an LTL formula φ
on Pathk(s) is the measure of paths satisfying φ in Pathk(s) and is denoted
by Probk[φ].

Definition 3.2 An LTL formula φ is monotone if and only if for all k > 0,
for all paths π of length k, M, π |= φ =⇒ M, π+ |= φ, where π+ is any path
of which π is a prefix.

A basic property of monotone formulas is the following one: if φ is a
monotone formula, 0 < b ≤ 1 and if there exists some k ∈ N

∗ such that
Probk[φ] ≥ b, then Prob[φ] ≥ b.

In order to verify some probabilistic specification Prob[φ] ≥ b, we choose
a first value of k = O(log|S|), then we approximate the probability Probk[φ]
and test if the result is greater than b. If Probk[φ] ≥ b is true, then the
monotonicity of the property guarantees that Prob[φ] ≥ b is true. Otherwise,
we increment the value of k and approximate again Probk[φ]. We iterate this
procedure within a certain bound which, in many cases, is logarithmic in the

324

Guirado, Herault, Lassaigne, Peyronnet

number of states. In the worst case, this bound is strongly related to the
rapid mixing rate of the underlying Markov chain [12]. If the results of all
tests Probk[ψ] ≥ b are negative, then we can conclude that Prob[ψ] 6≥ b. If we
are interested only with probabilistic time bounded properties, as here, we can
set k to the maximum time bound in subformulas of the specification. In the
following, we describe how to approximate efficiently the probability Probk[φ].

3.1.2 Randomized approximation scheme

In order to estimate the probabilities of monotone properties with a simple
randomized algorithm, we generate random paths in the probabilistic space
underlying the DTMC structure of depth k and compute a random variable
A/N which estimates Probk[ψ]. To verify a statement Probk[ψ] ≥ b, we test
whether A/N > b − ε. Our decision is correct with confidence (1 − δ) after
a number of samples polynomial in 1

ε
and log 1

δ
. The main advantage is that,

in order to design a path generator, we need only a succinct representation
of the transition graph, that is a succinct description in an input language,
which is the same as in PRISM (Reactive Modules [1]). Our approximation
problem is defined by giving as input x a succinct representation of a DTMC,
a formula and a positive integer k. The succinct representation is used to
generate a set of execution paths of length k. A randomized approximation
scheme is a randomized algorithm which computes with high confidence a
good approximation of the probability measure µ(x) of the set of execution
paths satisfying the formula φ.

Definition 3.3 A fully polynomial randomized approximation scheme (FPRAS)
for a probability problem is a randomized algorithm A that takes an input x,
two real numbers 0 < ε, δ < 1 and produces a value A(x, ε, δ) such that:

Prob
[

|A(x, ε, δ)− µ(x)| ≤ ε
]

≥ 1− δ.

The running time of A is polynomial in |x|, 1

ε
and log 1

δ
.

The probability is taken over the random choices of the algorithm. We call
ε the approximation parameter and δ the confidence parameter. The APMC
approximation algorithm consists in generating O(1

ε2 . log 1

δ
) paths, verifying

the formula φ on each path and computing the fraction of satisfying paths,
that is an ε-approximation of Probk[φ].

Theorem 3.4 The APMC approximation algorithm is a fully randomized ap-

proximation scheme for the probability p = Probk[φ] of an LTL formula φ if

p ∈]0, 1[.

This result is obtained by using Chernoff-Hoeffding bounds [6] on the tail of
the distribution of a sum of independent random variables. The time complex-
ity of the algorithm is polynomial in log(1/δ) and 1/ε. The space complexity
is linear in the length of execution paths.

425

Guirado, Herault, Lassaigne, Peyronnet

APMC
compiler

Properties

Model

APMC
deployment

ssh available
machines list

Generator and Verificator
Instance

Generator and Verificator
Instance

Approximation of
the probability of the
property on the model

Distributed AdHoc
Generation and Verification

Code

Fig. 1. APMC components

3.2 Architecture of APMC

APMC architecture is twofold, as described in figure 1. The first component,
the APMC Compiler, produces an ad-hoc verifier including a sample gener-
ator and a checker for a given model (described in Reactive Modules) and a
given property (LTL). The second module, the APMC Deployer, takes this
verifier and the set of available computing resources, deploys the verifier on
this set of computers and collects the result, which is the approximated value
of satisfaction probability of the formula on the model.

The technique used to approximate this value assumes the verification of
the formula on a large set of independent samples of bounded length. We
use the independence property of the samples to distribute the generation and
verification of samples.

The deployment is performed following a spanning tree of bounded arity.
Each node of the tree runs on a single computing resource, and spawns children
up to the bound on other available resources. While its parent still accepts
results from it, and until the number of collected samples is greater than
the requested number if it is the root, it generates a sample and verifies the
property on it. At each verification, the counters of false and true samples are
updated. Regularly (that is on a fixed timeout), each node sends its counters
of false and true samples to its parent, and resets them (except for the root,
which awaits the end of the computation to produce these numbers). When
a node receives these counters from one of its children, it aggregates these
numbers as if it produced the verification (see figure 2).

This deployment technique is assumed to be scalable, since the number
and amount of data of all communications concerning a given node depends
only on the arity bound of the tree. The tree topology was chosen to reduce
the starting time, which is proportional to the depth of the tree, hence loga-
rithmic in the number of computing resources. It also provides a logarithmic
latency to aggregate the results from all nodes in the root. A drawback of this
method is that the system may over generate and verify some samples (which
does not preclude the validity of the final result, but may provide a better
approximation than requested), up until the root claims that enough samples
have been generated, and the tree is destroyed. This diffusion is also linear in
the height of the tree and proportional to the communication timeout.

As for the parallelization, the technique provides a simple solution for
fault tolerance: since each generation and verification is independent from

526

Guirado, Herault, Lassaigne, Peyronnet

Fig. 2. APMC deployment scheme

the others, some of these verifications may be lost without consequences on
the quality of the result. Thus, if a computing node crashes, its children will
presume that the computation is finished and will stop running; its parent
detects it and simply spawns a new subtree. All the workers of the subtree
rooted at the crashed process are assumed lost and free to use again.

3.3 Implementation

The APMC software consists of three independent components: the parser,
the core library and the deployment tool. This design provides the possibility
to include the engine (core library) in many model checkers, like we are doing
with the integration into the PRISM tool [11].

The parser is a simple lex/yacc program which parses a sub-language of
the PRISM language (Reactive Modules [1]), and a simple language for LTL
formulas. It then calls the core APMC library to produce an internal succinct
representation of the model (linear in the size of the Reactive Modules file),
and of the properties (linear in the size of the property file).

The library then produces the ad-hoc generator and verifier as ANSI C code
(the generator/verifier is a standalone program deployed by the Deployer).
APMC implements three strategies to generate the code of this program with
respect to the synchronizations of the Reactive Modules: the first one (called
sync at compile-time) pre-computes all the combinations of rules, thus build-
ing the synchronized succinct model representation, where each rule is not
synchronized. This is the most efficient strategy with respect to time, but it
is the most memory consuming strategy. At runtime, the generator simply
evaluates each guard on the current configuration, building the set of fireable
rules. A rule is chosen randomly between these fireable rules and the action
is triggered to compute the next configuration. The second strategy (sync at

run-time) is provided to handle larger, highly synchronized, models. There,
the evaluation of the guards is done together with the computation of synchro-

627

Guirado, Herault, Lassaigne, Peyronnet

nizations, which is thus done at each simulation step, spending more time to
compute the set of fireable rules, but using much less memory. This strategy is
used only when the model induces a lot of synchronization and the generated
code prohibits efficient compilation. The last strategy is an improvement of
the first one: for some models, at each step, most of the rules are fireable.
When this is the case, instead of first computing the fireable rules (thus eval-
uating each guard on the configuration), a rule is chosen uniformly, and if its
guard is true, its action is triggered. If its guard is false, another rule is chosen
randomly.

The main loop of the code produced by the library consists of generating a
path (i.e. a set of configurations) of given length, and evaluating the property
(linear time formula) on each path. The number of iterations of this loop is a
parameter to the program.

The last component of the APMC software is the deployment tool. This
tool takes the code produced by the library, compiles it on different archi-
tectures and deploys the programs on a set of computing nodes following a
regular spanning tree of bounded arity. The program executed on the nodes
includes two parts: an I/O part, and a computing part. The computing part
is generated by the core library, while the I/O part is generic. This I/O part
implements the spanning tree. It handles the connections with the children
and with the parent of the node. Parent connection is handled through the
standard output. Messages are sent regularly to the parent, according to the
algorithm described in the architecture section. When this file descriptor is
closed, the computation is stopped and the program exits. Children connec-
tions are handled using a double pipe with an ssh (or rsh) command. The
deployment tool comes with a set of shell scripts passed to the ssh command.
These scripts download and compile for the new spawned computing node the
generated code, split the list of available resources between the children and
launch recursively the compiled program on the node. This technique does
not presume the existence of NFS, or other file sharing system. Currently,
we assume that each node provides a remote shell service (ssh or rsh), and
the autotools, Make and a C compiler. Current work in progress will assume
only the C compiler and will reduce the amount of needed compilations by
factorizing the compilations for each kind of architecture, instead of doing a
compilation on each machine.

4 Performance Evaluation

The experimental platform consists of 500 Athlon 3000+ workstations with
1Gb of RAM, running under NetBSD 1.6.1, 100Mb ethernet network. The
remote shell program used is OpenSSH, with public key authentication. The
compiler on each worker is gcc-2.95.3, with the -03 option.

All the measurements are done on the dining philosopher problem, check-
ing a double accessibility property. The dining philosopher problem [14], being

728

Guirado, Herault, Lassaigne, Peyronnet

13
30

0,3
s

66
62

,7s

33
67

,2s

16
91

,7s

86
4,2

s

47
5,1

s

25
7,9

s

16
8,6

s

12
8,8

s

1 2 4 8 16 32 64 128 256
Number of machines

10
e2

10
e3

10
e4

T
im

e
(s

)

(a) Time against the number of workers

(1
33

00
,3

s)

(6
66

2,
7s

)

(3
36

7,
2s

)

(1
69

1,
7s

)

(8
64

,2
s)

(4
75

,1
s)

(2
57

,9
s)

(1
68

,6
s)

(1
28

,8
s)

1 2 4 8 16 32 64 128 256
Number (x) of machines

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R
el

at
iv

e
Sl

ow
do

w
n

(b) Relative slowdown

Fig. 3. Time of model checking for the randomized dining philosophers problem

well studied, allows us to separate between the phenomenons due to the tool
and those due to the model itself. Since this model does not include syn-
chronizations, we conducted all experiments using the most efficient strategy,
“sync at compile-time”.

The first set of figures (figure 3) describes the acceleration in time due to
the parallelization. To obtain these results, we ran APMC on the 160 dining
philosopher problem [14], on an increasing number of workers following the
binary tree deployment described in section 3.2. For all these experiments, we
set ε = 10−2, δ = 10−10 (that is a generation of 940,000 paths by experiment),
which are common values for these parameters, and k = 200. On the curves
are represented the mean value of a set of 80 measures by point.

The first figure 3(a) shows the total execution time as function of the num-
ber of workers on a double logarithmic scale. One can see that, as expected,
the execution time decreases quickly as the number of workers increases. The
figure also shows a slowdown in the linear acceleration when having more than
64 workers.

The next figure 3(b) focuses on this phenomenon. The x axis represents
the number of workers, and the y axis the relative slowdown given by the
formula yx = t1/(x × tx) where tx is the time measured in figure 3(a) for
the given x. With this measure, the value 1.0 represents perfect scalability,
whereas smaller values demonstrate a lower use of the whole system.

One can see that when using more than 32 workers, the relative slowdown
is higher than 10% on this example. The deployment phase is time consuming,
and starting at 32 workers, the deployment duration is not negligible compared
to the computation time. This accumulated time consumption is exponential
in the depth of the tree (that is linear in the number of workers), nonetheless
each worker waits at most for a logarithmic time before beginning its execution,
which explains why adding workers is an improvement up to the amount where
the computation ends before launching the last workers.

829

Guirado, Herault, Lassaigne, Peyronnet

46
0s

12
3s

10
6s

93
,7s
92

,6s
90

,1s
91

,5s
89

,7s
88

,5s
87

,8s
83

,5s

1 2 3 4 5 6 7 8 9 10 20
Arity of the tree

0

100

200

300

400

500

T
im

e
(s

)

Fig. 4. Time of model checking according to the arity of the deployment tree

0 50 100 150
Number of philosophers

0

100

200

300

400

T
im

e
(s

)

Fig. 5. Time of model checking against the number of philosophers

Figure 4 shows the time needed to verify the model with the same pa-
rameters as in figure 3 on a cluster of 256 workers, as function of the arity
of the deployment tree. Obviously, except the case of arity 1 (a string of
workers), increasing the arity of the tree does not improve significantly the
performances of the deployment system. On the other hand, increasing the
arity does not hinder the performances, so as the figure 3 teaches us, when
the relative slowdown becomes too large, it makes sense to increase the arity
in order to decrease the depth of the tree.

The last figure 5 presents the time needed to verify the 3 to 130 dining
philosopher problems. All verifications were done on paths of length 200. 32
workers were used to verify 940,000 paths. The aim of this experiment is to
evaluate the generation of the code. Indeed, since all verifications use the same
path length and the same number of paths, the time differences are only due
to the quality of the generated code.

One can see that the curve is in three linear parts. The main loop of the
code consists in iterating over all the guards of the model (which are functions

930

Guirado, Herault, Lassaigne, Peyronnet

of the program). The number of guards increases linearly with the number
of philosophers. So it is natural that the time needed to iterate over all the
guards is linear in the number of philosophers. It is less expected that the
curve presents three different slopes. Since the generated code occupies up
to 256Kb more resident memory for the 130 philosophers problem than for
the 3 philosopher problem, we suspect that this is due to CPU code cache
invalidations.

As a validation of APMC as a cycle stealing verification tool, we conducted
another experiment including all the available computers of the EPITA school
of computer science. We verified the 160 dining philosophers problem on a
platform of 500 computers used by other applications at the same time. We
conducted two experiments: the first where 940,000 paths were generated, the
other one with 9,400,000. The first experiment took 99 seconds, the second
one 446 seconds.

It is interesting to note that, although the amount of computation needed
in the second experiment was ten times higher than for the first, the time
needed to complete it was only 4.5 times higher. It is due to the fact that for
the first experiment, the system does not have enough time to take advantage
of the full platform.

5 Discussion

Traditionally, model checking is a highly expensive computational activity.
The main drawback of the method is the memory needed to finalize the veri-
fication of large systems. “Classical” distributed model checking aims to lower
the memory cost by distributing the state space. Using approximation tech-
niques, we can trade the memory cost with simple computations on a large
number of system executions paths. This is the point where we can massively
distribute the process, by partitioning the sample into sets that are indepen-
dently processed.

Using this method, we can verify very large systems using a constant
amount of memory (when the length k is fixed). The power of computation
usable for the verification is limited only by the number of available computers.

However, experiments show that for each system, there is a critical number
of machines after which the time needed for the verification may not decrease
significantly. This is due to the non negligible cost of the deployment scheme,
which is a function of the depth of the tree. Other experiments showed that
increasing the arity of the deployment tree may reduce the depth with small
performance cost. There is a trade-off between the depth of the tree and its
arity. With a high depth, there will not be any communication bottleneck for
the nodes of the tree, while with a high arity, the communication load on each
node will be higher. Nonetheless, since the amount of communication is low,
one can choose a reasonable arity without losses of performances.

1031

Guirado, Herault, Lassaigne, Peyronnet

APMC is also interesting from an economic point of view. Since APMC
runs in background using few memory, it can run on classical desktop ma-
chines (implementing cycle stealing techniques), thus avoiding the cost of an
expensive cluster of dedicated workstations.

References

[1] R. Alur and T. Henzinger. Reactive modules. in Proc. of the 11th Annual
IEEE Symposium on Logic In Computer Science (LICS), IEEE Computer
Society Press, pp 207-218. 1996.

[2] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable
distributed on-the-fly symbolic model checking. In Formal Methods in
Computer-Aided Design, Third International Conference, (FMCAD’00),
volume 1954 of LNCS, pp 390–404, 2000.

[3] H. Garavel, R. Mateescu and I. Smarandache. Parallel state space
construction for model-checking. Proceedings of the 8th International SPIN
Workshop on Model Checking of Software SPIN’2001 (Toronto, Canada),
volume 2057 of LNCS, pages 217–234, 2001.

[4] R. Grosu and S. A. Smolka. Monte Carlo Model Checking. Proceedings
of 11th Tool and Algorithms for the Construction and Analysis of Systems
(TACAS 2005). pp 271–286, LNCS 3440. 2005.

[5] T. Herault, R. Lassaigne, F. Magniette and S. Peyronnet. Approximate
Probabilistic Model Checking. Proceedings of Fifth International
VMCAI’04, pp 73-84, LNCS 2937, January 2004.

[6] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13-30, 1963.

[7] C. P. Inggs and H. Barringer. On the parallelisation of model checking.
Proceedings of the 2nd Workshop on Automated Verification of Critical
Systems (AVOCS’02). Technical report, University of Birmingham, April
2002.

[8] J. Kemeny, J. Snell and A. Knapp. Denumerable markov chains. Springer-
Verlag, 1976.

[9] W. J. Knottenbelt and P. G. Harrison. Distributed disk-based solution
techniques for large Markov models. Proc. of NSMC’99, 3rd International
Workshop on the Numerical Solution of Markov Chains, September 1999.

[10] M. Kwiatkowska, R. Mehmood, G. Norman and D. Parker. Symbolic Out-
of-Core Solution Method for Markov Model. Proc. Workshop on Parallel
and Distributed Model Checking (PDMC’02), volume 68.4 of ENTCS,
August 2002

1132

Guirado, Herault, Lassaigne, Peyronnet

[11] M. Kwiatkowska, G. Norman and D. Parker. PRISM: Probabilistic
Symbolic Model Checker. Proc. 12th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS’02),
pp 200–204, LNCS 2324, 2002.

[12] L. Lovasz and P. Winkler. Exact mixing time in an unknown markov chain.
Electronic journal of combinatorics, 1995.

[13] D. M. Nicol and G. Ciardo. Automated Parallelization of Discrete State-
Space Generation. J. Parallel Distrib. Comput., 47(2):153-167, 1997.

[14] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols.
Distributed Computing, pages 1:53–72, 1986.

[15] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. Proc. 26th Annual Symposium on Foundations of Computer
Science,pp 327–338. 1985.

[16] H. L. S. Younes and R. G. Simmons. Probabilistic Verication of Discrete
Event Systems using Acceptance Sampling. Proc. of the 14th International
Conference on Computer Aided Verification, LNCS, 2404:223–235. 2002.

1233

PDMC 2005 Preliminary Version

Under-approximation heuristics for Grid-based
BMC

Subramanian Iyer

Department of Computer Sciences, University of Texas at Austin
Austin, Texas, USA

Jawahar Jain

Fujitsu Laboratories of America, Inc.
Sunnyvale, California, USA

Debashis Sahoo

Department of Electrical Engineering, Stanford University
Stanford, California, USA

E. Allen Emerson 1

Department of Computer Sciences, University of Texas at Austin
Austin, Texas, USA

Abstract

In this paper, we consider the effect of BDD-based under-approximation on a hybrid ap-
proach using BDDs and SAT-BMC for error detection on a computing grid. We experimen-
tally study effect of under-approximation approaches on a non-traditional parallelization of
BMC based on state space partitioning. This parallelization is accomplished by executing
multiple instances of BMC independently from different seed states, that are selected from
the reachable states in different partitions. Such states are spread out across the state
space and can potentially be deep. Since all processors work independently of each other,
this scheme is suitable for bug hunting using a grid-like network. Our experimental re-
sults demonstrate improvement over existing approaches, and we show that the method can
effectively utilize a large grid network.

Key words: BDD, SAT, Bounded Model Checking, Parallel Computing,
Grid Computing

1 Prof. Emerson thanks the NSF for support via grants CCR-009-8141 and CCR-020-5483.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Iyer, et.al.

1 Introduction

Formal verification, especially error detection, is rapidly increasing in importance
with the rising complexity of designs. The main constraint in verification is the total
amount of resources available, time as well as memory.

Most attempts at verification only use a single processor. Recently, various at-
tempts have been made to use parallel and distributed methods for verification. All
these approaches assume the presence of a dedicated network of workstations to per-
form verification tasks.

As “personal computers” gain in computing capacity, the concept of computation
grids is gaining acceptance [11]. Here, a grid is a network of machines that are not
dedicated to a specific computational use, but may only be available some of the time.
This is a unique environment where massive parallelism is possible by using otherwise
idle CPU cycles from a large number of computers. Such processors may even be in
geographically diverse locations.

The issues in a grid-computing environment are quite different from those in ded-
icated parallel computing environments. We consider two key issues. Firstly, the
availability of the processors is not guaranteed. So any algorithm that uses such a
framework has to be able to withstand receiving either no results or only partial re-
sults from certain computations. Secondly, since the computational network is not
dedicated at all times to a single task, any task scheduled on a grid has to use very
little network bandwidth. As far as possible, computations on different nodes need to
be independent of each other, with very few dependencies.

Under such circumstances, algorithms need to be carefully devised in order to
scale to grid-based parallel networks. Our work specifically targets the issue of how
to effectively use a grid for formal verification. For failing properties that are not very
deep, Bounded Model Checking (BMC) is now the de facto standard. For proving
the property correct or for finding deep bugs, a different method, typically a BDD
based approach, is generally the choice, and works well if image computation can be
performed efficiently. Since one typically does not know a priori whether a property
is erroneous or not, and if erroneous, whether it is deep, both methods have to be run
on every property. We detail a practical and efficient grid based approach to error
detection that is designed to automatically handle deep as well as shallow bugs.

Current Approaches to Error Detection

Satisfiability based Bounded Model Checking (SAT-BMC) is able to explore the state
space of larger designs by bounding the depth of exploration and successively increas-
ing this bound [8]. Due to notable improvements in the art of satisfiability-testing,
SAT-BMC is now routinely applied to detect errors during property verification for
many industrial designs [9,4,3,1].

SAT based BMC approaches are the preferred method for detecting error states
that are not very deep. However, these techniques can become quite expensive when
many time-frames are required to be analyzed. BDD based approaches work better
for those “deep cases” as long as the image BDDs remain moderately small. These

2
35

Iyer, et.al.

I

POBDD

BMC

ds2

ds1

ds3

ds

db

ds4

Fig. 1. Seeding multiple SAT-BMC runs from POBDD reachability

observations have been validated in a recently reported industrial case study [1]. Thus
the class of problems that require many steps of image analysis to detect the error,
but where BDD sizes grow large, remains an attractive research target.

Since such techniques, running on a single CPU have clear limitations due to the
limited computing power of their execution environment, researchers have suggested
distributed approach towards BDD based model checking as well as parallel SAT
solvers [10,13]. However these methods remain inadequate as they essentially analyze
the state space from a breadth-first search point of view. The BDD based approaches
also require communication between different processors in form of large BDDs which
precludes these methods from using large parallel computing environments.

Our approach: Grid-BMC

Our approach to locating errors is to create a method that finds various candidate
deep reachable states which are then used as seeds for running many instances of
SAT-BMC in parallel to explore the state space adjacent to such seeds. Starting
from such potentially deep seed states, multiple BMC runs may be able to reach
further deep states and locate errors that are otherwise not locatable by existing
methods. Partitioned BDDs (POBDDs) [21] have a great potential for compactness,
as studied in the literature [6,24]. At the same time, as we shall see later, they
are very sensitive to even minor changes in parameter settings. From our empirical
observations, we suggest an approach that is able to systematically examine multiple
POBDD representations constructed and analyzed independently on different nodes of
a grid. This leads to multiple traversals of states in orders, often significantly differing
from the standard BFS exploration and is found to greatly benefit the process of error
detection.

Figure 1 shows this pictorially using two partitions and four instances of SAT.
The triangles represent a search using SAT, and the ellipses denote successive image
computations using BDDs. Notice that from the initial states, BMC can only proceed
to depth ds effectively. Instead, in the proposed approach, BDDs go to a depth db,
and many instances of SAT are seeded until then, which may be effective to differing
depths ds1, ds2 . . . dsn. Consequently, this can reach errors that are otherwise difficult
to catch.

3
36

Iyer, et.al.

In this paper, we study the effect of varying the coarseness of this under-approximation
used to locate states using BDD-based reachability.

2 Related Work

This work lies at the cross-roads of two bodies of work, namely hybrid techniques
for smart simulation or efficient bug-finding and recent early efforts for performing
verification in a parallel framework. The techniques discussed in this paper have
a nature of an hybrid approach using multiple engines. Thus, they can easily use
improvements in the individual technologies such as SAT or ATPG engines [23,20], or
BMC formulation [8]. Thus, a detailed comparison with such techniques is orthogonal
to the objective of our paper and is not further detailed.

Grid-BMC in the context of other hybrid or parallel approaches

This work differs from other hybrid approaches in two key aspects. Firstly, simulation
forms the search backbone of many of the above methods. In the case of hard, deep
bugs, a simulation based approach may not be able to access interesting regions of
the search space. Secondly, our hybrid approach is formulated with the specific aim
of being able to generate multiple state traversals that, when considered together,
can potentially cover the entire state space, and may be performed independently in
parallel.

In [29] a pre-image computation from the target states is used to provide an
enlarged target for simulation. The SIVA tool [12] performs best first search in a
simulation environment, augmented with BDDs and SAT, with the hamming distance
between the current and target state as the guiding cost function. The approach of [19]
uses interleaved runs of simulation, test generation, BDD-based symbolic simulation
and SAT-based BMC to maximize the state coverage over a set of interesting signals.

In contrast to the above “bug hunting” approaches another class of techniques
employ a combination of formal engines mainly for the purpose of verifying properties
(possibly bounded depth properties). For example, [7,15] use BDD-based reachability
analysis and [16] compute CNF clauses through BDD functional analysis to prune the
search space of SAT-based BMC, [22] structurally partition the property check into
parts solved by SAT and BDDs and [17] employ a combination of symbolic trajectory
evaluation and SAT/BDD based model checking.

The previous discussion is in the context of a single processor framework. Typi-
cal hybrid approaches do not naturally lend themselves to parallel exploration. Our
approach executes, in parallel, multiple independent BMC instances to concurrently
explore different regions of the state space. This is a non-traditional parallelization of
SAT-BMC.

Several other methods have been proposed to do parallel verification. Stern and
Dill [26] parallelize an explicit model checker. In [27], parallelized BDDs are used for
reachability analysis. Verification using parallel reachability analysis has been studied
in [14,18,28]. Our work is different from other distributed model checking approaches
which are geared towards completeness rather than bug hunting. Most techniques such

4
37

Iyer, et.al.

as [18] are to a large extent only parallelizing the breadth-first traversal. Thus their
limitations to reach deep states remains a severe handicap. Further, these techniques
require message passing between different processors in form of large BDDs. That
can severely limit how large a grid can be effectively employed. A method proposed
in [13] distribute the SAT-based BMC over a network of heterogeneous workstations.
Their algorithm performs distributed BCP to solve a large SAT problem. Similarly,
in [10] a parallel multi-threaded SAT solver is discussed.

3 The Grid Framework

We used the grid middle-ware CyberGrip [2], developed at Fujitsu Labs Limited,
Japan, to manage the computing resources on grid. Figure 2 shows the overall ar-

Fig. 2. Architecture of CyberGrip Fig. 3. Execution of a job on the Grid

chitecture of CyberGrip. CyberGrip operates on a central UNIX or Linux server and
consists of three components: Organic Job Controller (OJC), Grid Resource Man-
ager (GRM), and Site Resource Manager (SRM). The interaction between various
components of CyberGrip in executing a job on the grid is depicted in Figure 3.

OJC, shown in Fig 4, controls how the jobs submitted by the user are executed.
GRM determines the optimum computing resources for the jobs transferred from OJC.
SRM monitors the status of the computing resources and manages the communication
between them. There is one SRM for each computing resource, and the SRM for
a Windows PC is called the Grid Mediator for Windows (GMW) manager. Each
computing resource must have middle-ware to communicate with its SRM and execute
jobs. When the computing resource is a Solaris or Linux machine, a general batch
system, for example, Condor, can be used as the middle-ware.

CyberGrip can realize an environment in which the user can submit jobs to vir-
tualized computing resources consisting of not only Solaris and Linux machines but

5
38

Iyer, et.al.

Fig. 4. Basic structure of Organic Job Controller (OJC)

also Windows machines for office use via the Web portal of a central server. The user
can do this without being aware of the performance and other characteristics of the
individual computers.

OJC also has a dynamic job control function shown in Fig 5. This function works

Fig. 5. Dynamic Job Control

when the number of jobs to be executed cannot be decided statically at initial job entry
and the number of jobs to be executed varies dynamically. Conventionally, because
it was difficult to automatically perform dynamic job control, operators usually took

6
39

Iyer, et.al.

one of two approaches: 1. execute all the jobs that have been submitted without
considering which ones need to be executed or 2. individually decide whether to
execute each job based on the execution results of the previously executed job. Both
these approaches are very inefficient. By automating these decisions, therefore, OJC
significantly increases the efficiency of job execution. This is critical for our usage of
the grid – once an error is detected, we want all nodes on the grid to cease working
on the problem.

4 Under-approximation based Grid-BMC

As discussed earlier, our paper specifically targets the problems where deep-states
have to be explored and current BDDs and BMC methods may be inadequate. BMC
based on SAT has a limitation on how deep a state it can explore as it is based
on explicitly unrolling multiple time frames, equal in number to the length of the
suspected error path. BDDs calculate successive image computations for reachability
and can go deep, provided, the size of the transition relation is manageable and the
successive images are small in size. Unfortunately, such images often get large, at a
very small depth, and BDDs are unable to make further progress. Even if BDDs do
not exhibit dramatic blowup in size, the computed image sets grow in size steadily,
until they are so large that the calculations need impractically long time. Thus, for
smaller depths SAT may be able to proceed further as it does not store sets of states,
instead merely computes paths. We suggest a method for exploring deep states in the
following.

4.1 Key Idea: Under-approximation for Grid-BMC

In this section, we describe the under-approximation heuristics that are used to per-
form deep state space traversal. Under-approximation is performed at two different
places – firstly, during reachability analysis and secondly, while selecting initial states
for SAT-based BMC.

Find Deep States: We perform a traversal of the state space by partitioning the
transition relation, as well as the computed sets of states so that the BDDs and asso-
ciated calculations remain tractable. When the BDD sizes are no longer manageable,
we perform successive under-approximations. At each step of image computation,
we use a subset of the actual set of states. Such massive under-approximation may
result in successive traversal not always leading to a deeper state. The quality of this
approximation can be further improved, esp. with input from designer, for instance
by using guided traversal [25,5]. Under-approximation allows some control over the
size of BDDs, which can otherwise exhibit dramatic blow-ups. We find that the above
simple approach is quite effective and study it in detail in this paper.

Parallel Seed SAT: In order to determine the initial seed states for SAT, a large
number of partitions are explored very rapidly with under-approximation, and the
resulting deep states are written out at regular intervals, as CNF clauses. Currently,
we create a new seed after a fixed number image computations, say, after every 5
images. In order to do this, a snapshot of the reachable states is taken and a subset

7
40

Iyer, et.al.

of those states is used to seed the SAT solver. It is critical to pick a small number of
states and not all states, otherwise the SAT solver can choke as it gets a very large
number of clauses. The SAT solver instance executes a BMC-like algorithm from the
seed thus obtained. By making multiple BMC runs, starting from various points along
the state traversal, we can ensure that at least a subset of the BMC executions start
from a deep state. These may then explore regions that could not be explored using
traditional SAT-BMC approaches. Since all BMC runs can be made in parallel so this
leads to a non-traditional method of parallelizing BMC.

Typically we execute SAT-BMC to a small depth that can be computed in a matter
of minutes using zchaff SAT solver. Note that it is critical to run these SAT instances
separately rather than run a single instance of SAT from their union. The reason is
that seed states from different portions of the state space may be very dissimilar and
if they are combined together in generating the clauses for SAT, the effectiveness of
the SAT solver may reduce drastically.

Degree of Approximation: Each partition can be considered as an automatic
selection of “direction” with respect to exploration of states. Reachability with
partitioning localizes the Breadth First Search along such directions. The under-
approximation in this exploration is performed simply by picking a few random states
from the set of new states found during each image computation. The size of BDDs
generated is reduced by this using under-approximation albeit at the cost of loss of
information. Keeping BDD sizes small in this manner allows for deeper exploration in
selected “directions” and can be used to provide many different initial states to seed
subsequent BMC runs. If any particular local BFS traversal leads it in a direction
which corresponds to a bug in the design then a BMC started from corresponding
seed can prove to be far more efficient then classical BMC started from the original
initial state. Notice that there is a trade-off between going deep versus exploring all
directions.

4.2 Approximation and Usage of Grid

There is a clear tradeoff between the degree of approximation and number of CPUs
required. If many states are selected as a seed state, then effectively it corresponds to
simultaneously searching in many directions with BMC. However, the corresponding
BMC run may become slower. To solve this dilemma we propose the following method.
The grid-BMC starts by dividing the grid into multiple sub-grids. One sub-grid uses
severe under approximation to go very deep. The others run POBDDs and BMC
with varying degrees of approximation. Then we monitor for either of the following
condition to arise: (a) Though a more complex seed is used, the BMC runtime is
not adversely effected; (b) Though a less complex seed is used, the number of nodes
in the grid are rapidly used up. In such cases, the algorithm automatically switches
to using the larger number of min-terms as seed for BMC on the main sub-grid.
Otherwise, we continue to use the less complex seeds with fewer min-terms. In order
to switch between approximation levels, the runs with a higher approximation are
canceled and the corresponding nodes on the grid are freed for the runs that use lower
approximation (more number of min-terms used as seed for BMC as well as frontier

8
41

Iyer, et.al.

for POBDD image calculation).

We divide the grid amongst BMC runs with different under-approximations. The
question is how to dynamically decide which sub-grid is showing sub-optimal behavior
so that its given run may be cancelled and the corresponding CPUs freed up. The
quality of a run can be indicated by the following three resources consumed. A
disproportionately large value for either resource in any of the sub-grids should lead
to the run being aborted, and the nodes in that sub-grid being freed up.

(a) POBDD time: If in one of the sub-grids the BDD size (resp. time) starts
increasing significantly as compared to the BDD size (time) in other sub-grid, then it
indicates a run that is being hampered by suboptimal variable order or quantification
schedule and should be aborted. Hence the time for each step of image computation
acts as a good filter for the sub-optimal runs.

(b) Ratio of BMC time/time-frame: At times it is seen that the BMC runs from
some seeds start consuming a disproportionately large time and become impractically
slow. This generally happens when the number of states used as the initial seed state
become very large. A ratio of the average runtime/time-frame can be maintained, and
when in one of the grid this number is significantly exceeded then the corresponding
run on the sub-grid is aborted.

(c) Number of CPUs used - Under extreme conditions, this should be used as
another measure for tagging the runs on a given sub-grid to be sub-optimal. For
greater under-approximation (fewer states in seed), usage of a larger number of CPUs
decreases its attractiveness. This is because when initial seed state set is smaller, each
BMC run is starting from the end of traversal in a very narrow direction. Hence, the
use of a large number of CPUs potentially indicates a large number of unsuccessful
BMC runs, which in turn implies that the starting seed states are not a good choice
and are perhaps not in the area corresponding to the error.

4.3 Outline of Grid-BMC Algorithm

Divide Grid: Create multiple sub-grids to dynamically determine a good approxima-
tion threshold in order to detect whether an error exists. On each sub-grid, do the
following:

(i) Partition reach: Use state partitioning in reachability to get different and di-
vergent paths exploring state space.

(ii) Approx Partition reach: Target deep space traversals – from each frontier,
select an under-approximation of the newly reached states to do the next image com-
putation.

(iii) Generate seed: At regular intervals, whenever a threshold is crossed, store a
seed – a few reachable states.

(iv) Start Seeded SAT: From each seed, pass it as the initial state to a new instance
of the SAT solver.

(v) Run in Parallel: Run all instances of SAT-based BMC to a small depth, as
nodes become available on the grid.

(vi) Abort Sub Grid: If the BDD image time and SAT-BMC time for each time-

9
42

Iyer, et.al.

Run-times (sec) for BMC seeded from simulation
Num. Error 2k 4k 6k 8k 10k

Ckt latches Depth Sim BMC Sim BMC Sim BMC Sim BMC Sim BMC
b1 125 59 22 215 25 207 48 151 56 66 63 196
b2 70 85 18 117 21 105 32 96 45 110 55 118
b3 66 23 21 333 25 195 38 232 50 258 63 258
b4 66 59 27 2211 26 2747 60 2442 56 2239 63 2060
b5 170 36 653 1047 923 2067 1605 1561 1822 1735 2333 2493
b6 201 29 629 487 921 509 1258 396 1756 346 2423 313
b7 123 60 892 T/O 1305 T/O 2951 T/O 2694 T/O 3515 T/O
b8 169 23 105 T/O 122 T/O 193 T/O 361 T/O 476 T/O
b9 148 27 106 T/O 130 T/O 295 T/O 256 T/O 462 T/O

“T/O” is a timeout of 2 hrs

Table 1
Run-times for BMC seeded from simulation to various depths.

frame in this sub-grid are disproportionately larger than other sub-grids, then abort
runs on this sub-grid.

Termination condition: Allow BDD and SAT explorations to continue in parallel on
all sub-grids until error is found or timeout is reached.

5 Results

We now present experimental results that demonstrate the efficacy of our method.
The experiments are run on a grid of computers that included up to 100 independent
Xeon CPUs (ranging from 1.5 GHz to 2.3 GHz) running linux. As explained earlier, we
used an in-house grid middle-ware (CyberGrip) developed at Fujitsu Labs Limited,
Japan, for submitting and controlling jobs executed on the grid. Our program is
implemented on top of VIS-2.0 and used CUDD BDD package and zchaff as the SAT-
solver. The POBDD algorithm is run on a single processor but the CNF files generated
are transfered to different nodes on the grid where a BMC run is fired in parallel. We
were unable to exactly measure the time taken in transferring the files but in our
experience it is very small.

Benchmarks: We used 9 circuits and properties, b1, . . . b9 , that were obtained
during verification of a variety of industrial circuits. Several of these properties are
deep and pose some difficulty for SAT-BMC as well as for simulation based methods.
Thus they form a good benchmark for judging the efficacy of our approach.

5.1 Details of Experiments

Simulation: First we ran experiments based on random simulation, using the VIS-2.0
package. Simulation was done twice, first to 5,000 and then to 100,000 steps, but it is
unable to find a bug in any of the circuits in the benchmark. Then, we used simulation
to find deep states and seed BMC from there. This is similar to the approach of [19],

10
43

Iyer, et.al.

Num. Error Time (sec) Grid
Ckt latch Depth BDD POBDD BMC Sim Sim+ Grid-BMC (pickOne) #CPU

BMC Seed SAT Total used

b1 125 59 7 3.2 T/O NB 167 7 176 183 8
b2 70 85 3.4 2 T/O NB 115 97 26 123 40
b3 66 23 1.9 1.3 T/O NB 268 1 1 2 2
b4 66 59 1.9 1.3 T/O NB 3097 12 228 240 8
b5 170 36 T/O T/O T/O NB 2758 27 36 63 9
b6 201 29 3148 2857 T/O NB 1407 156 20 176 3
b7 123 60 258 976 T/O NB T/O 35 429 464 14
b8 169 23 T/O T/O T/O NB T/O 198 55 253 28
b9 148 27 T/O T/O T/O NB T/O 280 1580 1860 70

“T/O” is a timeout of 2 hrs, “NB” means no bug found.

Table 2
Comparison of the time taken in seconds by various approaches.

except that we use a different random seed for each simulation depth. For each circuit,
we run simulation, in steps of 1,000 from 2,000 to 10,000. When the depth is reached,
we pick the state reached at the end of the simulation and seed SAT from there. To
limit the amount of data, the results of this are shown in table 1 for depths 2k, 4k,
6k, 8k and 10k. We found that simulation, even when it seeds SAT at periodic depths
of every 1000 steps is unable to find any bug in any of the circuits in the benchmark.

Grid-BMC: Next, in table 2, we compare the following methods against each
other: BDD-based reachability (VIS-2.0 and CUDD); POBDD; BMC (using SAT-
solver zChaff); Random simulation to 5,000 steps; Simul to 5,000 steps + An appli-
cation of SAT solver. The methods are compared with a run of Grid-BMC, that has
a 10 minute initial phase for POBDD based seed generation, and 2 hours for SAT.
In the case of Grid BMC, there are many seed states, so the table shows how long
it took for POBDD based reachability to discover the “best” seed state and time for
the SAT-solver to find the bug from there. The final column shows how many CPUs
of the grid were actually used. We allow each method to run until a time out of 2
hours. The results for all the methods are shown in table 2. Grid-BMC uses severe
under-approximation by picking only one state in each image and for each seed. Note
that Grid-BMC is the only method that is able to find the error in b8 and b9.

5.2 Analysis

Our results show a strong evidence of a positive synergy between the two key ideas –
how to find initial states, possibly deep, and how to independently process multiple
seeds. Specifically, from table 2, we note that:

• Grid-BMC can often find errors significantly faster than BDDs or POBDDs alone.

• Grid-BMC finds errors on circuits where BMC runs out of time.

• BDD based seeding of SAT solvers works well, and is often more effective than seed-
ing using random simulation, which is widely accepted as one of the best strategies

11
44

Iyer, et.al.

pickTwo pickThree pickFive
Ckt Seed SAT Total #CPU Seed SAT Total #CPU Seed SAT Total #CPU
b1 18 395 413 16 185 551 736 4 47 302 349 14
b2 450 29 479 10 197 52 249 7 4 42 46 24
b3 1 3 4 2 1 5 6 3 7 2 9 8
b4 18 505 523 21 23 624 647 21 19 316 335 15
b5 252 83 335 9 241 78 319 5 26 80 106 24
b6 154 24 178 9 324 19 343 6 191 24 215 4
b7 333 623 956 23 43 489 532 3 95 716 811 28
b8 167 7 194 27 93 104 197 3 91 7 98 8
b9 88 745 833 21 342 234 576 87 270 218 488 89

Table 3
Effect on performance (time in seconds) by relaxing the severity of the approximation

pickTen pickTwenty pickFifty
Ckt Seed SAT Total #CPU Seed SAT Total #CPU Seed SAT Total #CPU
b1 223 406 629 28 19 756 775 27 155 546 701 14
b2 408 72 480 44 84 103 187 20 65 945 1010 18
b3 1 3 4 2 1 4 5 3 11 4 15 3
b4 8 362 370 9 6 447 453 5 48 613 661 7
b5 25 69 94 6 91 91 182 14 127 183 310 20
b6 150 23 173 6 155 27 182 4 157 44 201 4
b7 43 711 754 8 296 798 1094 26 176 1222 1398 10
b8 82 84 166 16 114 38 152 5 124 30 154 4
b9 145 698 843 28 175 1213 1388 28 11 2977 2988 34

Table 4
Effect on performance (time in seconds) by drastically relaxing the severity of the

approximation

for industrial designs.

• On every example, Grid-BMC is superior to BMC, random simulation and a com-
bination of the two; either in finding an error faster, or by finding an error that is
not otherwise found.

• On examples that are BDD-friendly, Grid-BMC performs better than the other
BMC techniques.

For some circuits such as b1, b2, b3 and b4 the error can be detected in the
POBDD phase itself. At the time the error was detected, no BMC run that had been
been fired had yet completed. Thus grid-BMC is not required for these entries, but
we show it so we can analyze the effect of approximation in further tables.

5.3 Effect of under-approximation

Table 3 shows the effect of relaxing the approximation, by picking more states at
each step (call this m). In our experimental runs, we varied m from 1 to 5 for each
circuit. Table 4 shows the effect of drastically relaxing the under-approximation, by

12
45

Iyer, et.al.

successively using 10, 20 and then 50 states at each step.

The above results can be viewed in the context of running two or more config-
urations (conceptually each can be conceived as a sub-grid) in parallel (say, m = 1
and m = 5). We suggest as approach to automatically decide the better configura-
tion. Our decision approach needs to monitor for each sub-grid, the corresponding
BDD image-time, and BMC-SAT time for each time-frame. If these runtimes become
disproportionately and significantly larger then the given configuration is displaying
sub-optimality. Note that as the under-approximation is relaxed, but the correspond-
ing BDD image-time, and BMC-SAT time for each time-frame do not proportionately
increase, then the more accurate approximation starts yielding faster error detection.
This is logically expected since when we relax the severity of approximation, the re-
sulting BMC can be deemed as searching simultaneously in multiple directions, and
thus a larger state space. The utility of such an approach is confirmed for almost all
cases by the experimental results presented here. For example, entry b9 requires 1860
seconds on the grid for m = 1. As m increases progressively from 1 to 5; the run-times
proportionally decrease by a factor of 4. Identical observations hold for circuit b8 too.

6 Analysis and Conclusions

Grid-BMC for error detection is practical and effective. It is computationally inex-
pensive in terms of overhead and an alternate way of parallelizing SAT-based BMC
– each of many processors can execute a BMC from a different set of initial states.
The only data that is passed over the network is at the very beginning, after that
no synchronization is required, until termination. Such parallelization has no inter-
dependence at all, and can therefore very effectively utilize a number of processors in
a large grid, without creating communication overhead between the processors. This
method also effectively exploits the advantage of symbolic BDD based search as well
as SAT as well as overcomes their respective limitations. For example, if there are a
large number of partitions or if certain partitions are difficult, performing cross-over
images between them can be difficult, and this may be the bottleneck in getting to the
error. This can be overcome by SAT based BMC, which is “locally complete” from
its originating point and does not compute sets of states. Although a very large grid
(1̃00 nodes) was available, in typical experiments only a small number of CPUs were
used. This suggests significant scope to improve the quality of results and possibility
to tackle larger problems with further research.

References

[1] Amla, N., R. Kurshan, K. McMillan and R. Medel, Experimental Analysis of Different
Techniques for Bounded Model Checking, in: TACAS, Lecture Notes in Computer
Science 2619 (2003), pp. 34–48.

[2] Asato, A. and Y. Kadooka, Grid Middleware for Effectively Utilizing Computing
Resources: CyberGRIP, in: Fujitsu Scientific and Technical Journal, 2004.

13
46

Iyer, et.al.

[3] Biere, A., E. Clarke, R. Raimi and Y. Zhu, Verifying safety properties of a PowerPC
microprocessor using symbolic model checking without BDDs, in: Proc. of Computer
Aided Verification, Lecture Notes in Computer Science 1633 (1999), pp. 60–71.

[4] Bjesse, P., T. Leonard and A. Mokkedem, Finding Bugs in an Alpha Microprocessor
Using Satisfiability Solvers, in: Proc. of Computer Aided Verification, Lecture Notes in
Computer Science 2102 (2001), pp. 454–464.

[5] Bloem, R., K. Ravi and F. Somenzi, Symbolic guided search for CTL model checking,
in: Proc. of the Design Automation Conf., 2000, pp. 29–34.

[6] Bollig, B. and I. Wegener, Partitioned BDDs vs. other BDD models, in: Proc. of the
Intl. Workshop on Logic Synthesis, 1997.

[7] Cabodi, G., S. Nocco and S. Quer, Improving SAT-based Bounded Model Checking by
Means of BDD-based Approximate Traversals, in: Proc. of the Design Automation and
Test in Europe, 2003, pp. 898–903.

[8] Clarke, E., A. Biere, R. Raimi and Y. Zhu, Bounded Model Checking Using Satisfiability
Solving, Formal Methods in System Design 19 (2001), pp. 7–34, kluwer Academic
Publishers.

[9] Copti, F., L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella and M. Y. Vardi,
Benefits of Bounded Model Checking in an Industrial Setting, in: Proc. of Computer
Aided Verification, 2001, pp. 436–453.

[10] Feldman, Y., N. Dershowitz and Z. Hanna, Parallel multithreaded satisfiability solver:
Design and implementation, in: Workshop on Parallel and Distributed Methods in
verifiCation, 2004.

[11] Foster, I. and C. Kesselman, “The GRID: Blueprint for a new Computing
Infrastructure.” Morgan Kaufmann, 2003.

[12] Ganai, M., A. Aziz and A. Kuehlmann, Enhancing Simulation with BDDs and ATPG,
in: Proc. of the 36th Design Automation Conference, 1999, pp. 385–390.

[13] Ganai, M. K., A. Gupta, Z. Yang and P. Ashar, Efficient Distributed SAT and SAT-
Based Distributed Bounded Model Checking, in: Proc. of CHARME, 2003, pp. 334–347.

[14] Garavel, H., R. Mateescu and I. Smarandache, Parallel state space construction for
model-checking, in: Proceedings of the 8th international SPIN workshop on Model
checking of software (2001), pp. 217–234.

[15] Gupta, A., M. Ganai, C. Wang, Z. Yang and P. Ashar, Abstraction and BDDs
Complement SAT-based BMC in DiVer, in: J. Warren A. Hunt and F. Somenzi, editors,
Proc. of the 15th Conf. on Computer-Aided Verification, Lecture Notes in Computer
Science 2725 (2003), pp. 206–209.

[16] Gupta, A., M. Ganai, C. Wang, Z. Yang and P. Ashar, Learning from BDDs in SAT-
based Bounded Model Checking, in: Proc. of the 40th Design Automation Conf., 2003,
pp. 824–829.

14
47

Iyer, et.al.

[17] Hazelhurst, S., O. Weissberg, G. Kamhi and L. Fix, A Hybrid Verification Approach
: Getting Deep into the Design, in: Proc. of the 39th Design Automation Conference,
2002, pp. 111–116.

[18] Heyman, T., D. Geist, O. Grumberg and A. Schuster, Achieving scalability in parallel
reachability analysis of very large circuits, in: O. Grumberg, editor, Proc. of Computer
Aided Verification, Lecture Notes in Computer Science 1855 (2000), pp. 20–35.

[19] Ho, P.-H., T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor and
J. Long, Smart Simulation Using Collaborative Formal and Simulation Engines, in:
Proc. of the IEEE/ACM International Conference on Computer-Aided Design, 2000,
pp. 120–126.

[20] Iyer, M. K., G. Parthasarathy and K.-T. Cheng, SATORI-A Fast Sequential SAT Engine
for Circuits, in: Proc. of the IEEE/ACM International Conference on Computer-Aided
Design, 2003, pp. 320–325.

[21] Jain, J., On analysis of boolean functions, Ph.D Dissertation, Dept. of Electrical and
Computer Engineering, The University of Texas at Austin (1993).

[22] Kuehlmann, A., V. Paruthi, F. Krohm and M. K. Ganai, Robust Boolean Reasoning for
Equivalence Checking and Functional Property Verification, IEEE Trans. on CAD 21

(2002), pp. 1377–1394.

[23] Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an
Efficient SAT Solver, in: Proc. of the 38th Design Automation Conf., 2001, pp. 530–535.

[24] Narayan, A., J. Jain, M. Fujita and A. Sangiovanni-Vincentelli, Partitioned-ROBDDs
- A Compact, Canonical and Efficiently Manipulable Representation for Boolean
Functions, in: Proc. of the Intl. Conf. on Computer-Aided Design, 1996, pp. 547–554.

[25] Ravi, K. and F. Somenzi, Hints to accelerate symbolic traversal., in: Proc. of CHARME,
1999, pp. 250–264.

[26] Stern, U. and D. L. Dill, Parallelizing the murphy verifier, in: Proc. of Computer Aided
Verification, Lecture Notes in Computer Science 1254 (1997), pp. 256–267.

[27] Stornetta, T. and F. Brewer, Implementation of an efficient parallel BDD package, in:
Proceedings of the 33rd annual conference on Design automation (1996), pp. 641–644.

[28] Yang, B. and D. R. O’Hallaron, Parallel breadth-first bdd construction, in: Proceedings of
the sixth ACM SIGPLAN symposium on Principles and practice of parallel programming
(1997), pp. 145–156.

[29] Yang, C. H. and D. Dill, Validation with Guided Search of the State Space, in: Proc. of
the 35th Design Automation Conference, 1998, pp. 599–604.

15
48

PDMC 2005 Preliminary Version

Distributed Symbolic Bounded Property
Checking1

Pradeep K. Nalla, Roland J. Weiss, Prakash Peranandam,
Jürgen Ruf, Thomas Kropf, Wolfgang Rosenstiel

Wilhelm-Schickard-Institut für Informatik
Universiẗat Tübingen

Sand 13, 72076 T̈ubingen, Germany

Abstract

In this paper we describe an algorithm for distributed, BDD-based bounded property
checking and its implementation in the verification toolSymC. The distributed algorithm
verifies larger models and returns results faster than the sequential version.

The core algorithm distributes partitions of the state set to computation nodes after reach-
ing a threshold size. The nodes proceed with image computation on the nodes asynchro-
nously. The main scalability problem of this scheme is the overlap of state set partitions.
We present static and dynamic overlap reduction techniques.

Key words: Verification, bounded model checking, property checking,
binary decision diagrams, parallelization.

1 Introduction

Although symbolic representations of state spaces [8] based on Binary Decision Di-
agrams (BDDs) [7] and bounded model checking (BMC) [3] have dramatically in-
creased the design sizes that can be handled by verification tools, research in model
checking techniques still concentrates on enabling fasterverification of larger mod-
els. Large designs cause memory overflow during explorationof the state space,
the dreaded state space explosion. There are several proposed solutions to deal with
the immense memory requirements of BDDs. One proposal is to partition BDDs
[30] into two or more pieces and handle them separately during further traversal.
The traversal of the partitions can be done sequentially [10] or in parallel [14].

In [28], a combination of on-the-fly [12] and bounded model checking is pre-
sented, which is implemented in the toolSymC. The checking algorithm traverses

1 This work has been funded in part by the German Research Council (DFG) within projects
GRASP and KOMFORT and by the BMBF and edacentrum within project FEST.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

the product automaton of model and property until it either detects a validation or
a violation of the property, or the explicit or implicit timebound is reached. Only
the frontier set is kept in memory, i.e. no fix-point iterations are performed. This
approach performs well for certain classes of models and properties, but the se-
quential version also faces memory exhaustion for large model, e.g. for some of the
ISCAS89 examples. This fact motivated the parallelization of the proof algorithm
which we present here.

The paper is organized as follows. The next section discusses related work
and our contributions. Section3 summarizes symbolic bounded property checking,
followed by a description of the distributed algorithm. Then, we present our static
and dynamic methods for overlap reduction. Section6 gives experimental results.
Finally, we conclude and mention future work.

2 Related Work

2.1 Partitioning

Many approaches for decomposing Boolean functions represented as BDDs exist
in literature. For distributed verification [16,14] splitting algorithms aim at creat-
ing balanced partitions. However, similar approaches exist in sequential verifica-
tion methodologies [11,10]. The main distinguishing feature of these algorithms is
the employed cost function for selecting the splitting variable. The cost functions
typically take into account the achieved memory reduction,the amount of sharing
between the cofactors, and the memory balance of the cofactors. Also, the CUDD
package [31] contains various decomposition algorithms, producing both balanced
and unbalanced partitions. Furthermore, decomposition techniques allow repre-
senting the same function with multiple BDDs but requiring less memory [20,19].
The image computation algorithms have to be updated for these techniques. The
more complex operations are set off by the reduced peak memory requirements of
the BDDs [30]. As shown in [4], the reduction can even be exponential. Finally,
dense under-approximations [26,25] try to reduce the memory requirements of the
BDD but still capture a large percentage of the state space. These algorithms are of
minor interest for state set distribution as they result in unbalanced subsets.

None of the proposed heuristics consider subsequent state overlap. However,
similar efforts are undertaken for model checkers with an explicit state graph rep-
resentation [21,5]. They apply graph algorithms that heuristically try to findpar-
titions with few crossover transitions in order to reduce the communication effort
between processes. In [15], the authors investigate state space distribution in the
context of model checking Petri nets, also employing an explicit representation.
These approaches cannot be directly applied to symbolic representations.

2.2 Distributed model checking

The state space explosion problem in model checking has raised interest in handling
this problem by adjusting the algorithms for distributed environments recently. This

250

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

includes both explicit [32,5,17,6] and symbolic [14,16,2,13,18] model checking
methodologies.

The group at Haifa also works on the parallelization of BDD-based verification
algorithms. At the core, they createk slices of the current state set and distribute
these slices tok cluster machines. They use the slicing technology from [20], but
with an enhanced cost function for selecting slicing variables [16]. States are classi-
fied asownedandnon-owned. After every image computation step the non-owned
states are distributed to the owning nodes. In [16] load balancing is achieved by ad-
justing the slices if the initial balance is lost. In [14] they try to keep only as many
nodes busy as necessary by splitting and joining BDDs on demand. The exchange
of non-owned states after every step makes their algorithm mainly synchronous. In
[14,16] reachability is computed with fix-point iterations, in [2] regular expressions
are used to indicate illegal behavior andµ-calculus formulas are checked in [13].
Our approach checks time-bounded properties specified in PSL (Property Specifi-
cation Language) [1] or FLTL (Finite Linear Time Temporal Logic) [27] without
fixpoint iterations.

2.3 Contributions

Synchronous schemes for parallelizing BDD-based verification algorithms reduce
the potential speedup because processes are kept waiting for others to complete.
Up to now, no successful asynchronous BDD-based verificationalgorithms have
been proposed.

The main contribution of our approach is such an asynchronous distributed
algorithm. This algorithm becomes feasible only when the shared states due to
crossover transitions are reduced to avoid duplicate work.We present algorithms
for static and dynamic overlap reduction.

3 Sequential Symbolic Bounded Property Checking

The formal verification algorithms in [28,22] combine bounded property checking
and symbolic traversal. The temporal logic formulas are converted to special finite
state machines called Accept-Reject automata (AR-automata)[27]. AR-automata
allow finding violations or validations of properties on finite sequences, thus they
are well suited for bounded property checking. The checkingalgorithm manipu-
lates both the system description and the AR-automata represented as BDDs. In
order to avoid the construction of the complete transition relation, a set of conjunc-
tively partitioned transition relations is built, which isused for early quantification
[9]. The algorithms have been implemented in the toolSymC, whose general op-
eration is shown in Fig.1.

An iteration of the sequential verification algorithm worksin two steps. First,
the successor states of the AR-automata are computed and the termination condi-
tion is checked. If the termination condition is not satisfied, image computation is
performed on the system in the second step. During image computation the con-

351

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

Translation to

formal

representation

Translation to

AR-automata

Symbolic

execution

engine

System

description

Property

description

Accept / reject

properties

SymC

Wittness /

counterexample

Fig. 1. Overview ofSymC operation.

junction of all partitions is built on-the-fly to obtain the successor state set. Like
bounded model checking [3], this property checking algorithm does not traverse
the state space exhaustively but examines all reachable states within a given time
bound.

A central optimization technique for the algorithm is stateset splitting. When-
ever a threshold for the size of the BDD representing the current state set is reached,
the set is split into disjoint parts and the algorithm continues working on these sub-
sets in a divide-and-conquer manner.

The sequential verification algorithm continues with one ofthe subsets and
stacks the others. This can happen recursively. Traversal proceeds on the cur-
rent subset until the time bound is reached or the termination condition is satisfied.
Termination stops the verification with finding either a validation or a violation of
the property. Otherwise, the process is repeated for all stacked subsets. The termi-
nation condition differs if one checks the property on all paths, i.e. universal quan-
tification, or on one path, i.e. existential quantification.Informally, the sequential
termination condition is defined as follows:

Universal If one reject state is detected in the current state set, a violation of the
property is found. If all states in the current state set are accepting states, a
validation of the property is found. Otherwise, the property is still pending.

Existential If one accept state is detected in the current state set, a validation of
the property is found. If all states in the current state set are rejecting states, a
violation of the property is found. Otherwise, the propertyis still pending.

4 Parallelization of Bounded Property Checking

The distributed checking algorithm is composed of an initial sequential stage and
a subsequent parallel stage. First, the transition relation is created on allk com-
putation nodes and state space traversal proceeds sequentially on one node until a
threshold limit on the BDD size triggers state set distribution. The splitting intok
subsets is already performed in parallel and every node is responsible for getting its
own disjoint part of the whole state set. The nodes start state space traversal inde-
pendently on these subsets. The termination condition stays the same, however the
nodes have to communicate their local results in order to allow testing termination
conditions that depend on all states.

This simple scheme fails to provide significant speedups on many models be-
cause of crossover transitions. These transitions start ina state of the current subset
but lead to a state that is already present in one of the other state subsets. We call

452

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

// get subset i of k slices from state set S

getSubset(in: S, k, i; out: Si)

 Si := S

for j := 1 .. log2(k)

split(Si; g, h)

 // skip h on odd bit, skip g on even bit

if i % 2 = 1 then Si := g else Si := h

 i := i / 2 // get next bit

// split state set S into two slices g and h

split(in: S; out: g, h)

S

Srank = g

Srank = h

Srank = g

g

h

g

skip h

skip h

skip g

Fig. 2. Algorithm for state set distribution. The left hand side gives the distribution algo-
rithms, an example application is shown on the right hand side.

this phenomenon state set overlap, or just overlap. Of course, image computation
for overlapping states is performed redundantly. As image computation is one of
the key components of formal verification tools, redundancyof such a component
badly affects the time and memory requirements of the whole verification process.
Thus, optimizing the distributed algorithm concentrates on reducing the overlap
(see section5).

4.1 State set distribution

Splitting the state set intok parts for subsequent traversal in parallel is a costly
operation. Therefore, we already perform it in parallel. For simplicity we assume
thatk = 2n, n ∈ N. Basically, once the first node dumps its state set to disk, all
other nodes pick up the dumped set after notification. Then, each node splits the
set into two parts and depending on its rank, a number identifying every node, it
drops one part and continues splitting on the other part recursively until only its
own subset remains. The algorithm is illustrated in Fig.2.

4.2 State set overlap

After all nodes picked their state subsets, the nodes proceed with symbolic state
space traversal. A very important observation is that aftera few steps of traversal
state overlap between network nodes may emerge.

Definition 1 Let S be a set represented using a BDD. Then‖S‖ denotes the num-
ber of states inS, which is given by the number of maximal minterms of the BDD.

Definition 2 Let S be a nonempty set andS1, . . . , Sk ⊆ S with k ≥ 2. Then we
define the state overlapok ∈ [0, 1] of these partitions as:

ok =

∑k−1
i=1

∑k

j=i+1 ‖Si ∩ Sj‖

‖S‖
∑k−1

i=1 i
. (1)

The overlap is thus the normalized average of states in the pairwise intersection
of subset permutations. The sum in the denominator ranges from 1 tok−1 because
this yields the number of pairsSi, Sj with i < j. An overlap ofok = 0 corresponds

553

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

to disjoint partitions and an overlap ofok = 1 corresponds to partitions containing
the same states.

5 Overlap Reduction

Boolean functions represent all the state sets and the transition relation in sym-
bolic traversal. This representation can grow large if the sets to be represented are
big, corresponding directly to more memory requirements. The Boolean functions
are represented and manipulated using BDDs. The memory requirements|f | of
a Boolean functionf are defined as the number of its nodes. In order to reduce
the memory requirements one can partition a Boolean functioninto smaller parts,
whose union is the whole set.

Definition 3 Given a Boolean functionf : Bn → B, f is partitioned into two
functionsf1 andf2 on a variablev from the support set off with

f = f1 ∨ f2 wheref1 = v ∧ fv, f2 = v̄ ∧ fv̄. (2)

Thesplitting variablev defines the partitioning off into f1 andf2. This split-
ting can be implemented easily with BDD operations. BDDs are compressed de-
cision trees where common subtrees are joined. This causes significant sharing of
nodes in a function’s representation. Thus, splitting a function f into two func-
tions f1 andf2 with a poor choice ofv may not necessarily reduce the memory
requirements of the split functions and can result in|f1| ≈ |f2| ≈ |f |. In the fol-
lowing discourse, we identify a state set with its characteristic function represented
as BDD.

5.1 Static overlap reduction

Overlap originates from states in different sets having transitions to the same next
states. In order to minimize the overlap of splits, the selected splitting variable
v should not allow states that have common next states to be in different splits.
In other words,v should partition the states such that they have no common next
states. However, in reality such a partitioning is not possible, but one can put some
effort in selecting the splitting variablev to minimize overlap. For finding a good
splitting variable we statically analyze the design which is represented as finite state
machine (FSM).

Definition 4 A FSMA is a 4-tupleA = (S, Σ, T , I), whereS = {s1, . . . , sn} is a
finite set of states encoded by state variablese1, . . . , em, Σ is a finite input alphabet,
T ⊆ S ×Σ× S is a transition relation represented withT1, . . . , Tm partitions, and
I ⊆ S is the set of initial states.

The idea of selecting a good splitting variablev relies on the conjunctively
partitioned transition relationT [9]. For everyi ∈ 1, . . . ,m a partitionTi of the
transition relation corresponds to the truth value of next state variablee′i such that

654

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

S

S1 S2

Imagen(S1) Imagen(S2)

v v

n traversal

steps

S

S1 S2

Imagen(S1)=Imagen(S2)

v v

n traversal

steps

S

S1 S2

Imagen(S1) Imagen(S2)

v v

n traversal

steps

(a) Tv depends on v only (b) Tv depends on ei (c) Tv depends on ei

Fig. 3. Possible overlap of subsets aftern steps with dependencies on the splitting variable.

T =
∧m

i=1 Ti. We pickv from the set of state variablesE = {e1, . . . , em}. Fig.3 (a)
shows the best case where there is no overlap. This kind of situation is only possible
if v will stick to its truth value in all further steps, i.e. partition Tv (Ti with v = ei)
depends only onv. Though this is the ideal case, we hardly have such situations in
real designs. This means thatv might change its truth value in future steps as its par-
tition of the transition relation depends on more factors. The worst case of almost
complete overlap can occur ifTv depends on input variables disjunctively only, as
depicted by Fig.3 (b). The common case lies in between these two extremes and
happens whenv depends on inputs conjunctively with other combinations ofstate
variables, depicted in Fig.3 (c). The algorithmMinOverlappioneers in exploiting
static information of the partitioned transition relationT to find a good splitting
variablev.

In a pre-processing step, every state variable is assigned an influenceand the
variables are ordered decreasingly by their influence. The influence table maps
state variables to their influence. Later, the splitting variable selection algorithm
utilizes this information.

Definition 5 Let l1, l2 ∈ N be influence lookaheads. For a given FSMA, the
influenceΦl1,l2(e) ∈ [−1, 1] of a state variablee ∈ E, with |E| = m, is defined as

Φl1,l2(e) =
|D↑(e, l1)| − |D↓(e, l2)|

m
. (3)

SetD↑(e, l1) contains all state variables that get influenced bye in l1 steps, and
setD↓(e, l2) contains all state variables that influencee in l2 steps. These sets are
determined iteratively starting withl1 = 1 andl2 = 1. EachTi directly corresponds
to the truth value of the next state variablee′i, so we compute these sets by walking
all Ti andei. ForD↑(e, 1), we count the partitionsTi that containe, whereas for
D↓(e, 1) we count the state variables in the support ofTi.

The basic assumption of theMinOverlapalgorithm is that splitting on a variable
v with high influence will lead to fewer cross transitions between the resulting par-
titions, because the value ofΦl1,l2(v) next state variables depends onv. Of course,
there are other factors determining the values of these nextstate variables, weaken-
ing our assumption. Our algorithm works well if the partitioned transition relations
Ti depend on conjunctively connected variables only. It degrades if theTi depend

755

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

on disjunctively connected variables where at least one disjunct contains only input
variables. However, it is computationally expensive to analyze all Boolean connec-
tives of the clauses of everyTi.

The actualMinOverlapalgorithm picks a viable state variable for splitting. The
state variables are categorized based on their influence andput into different sets.
We start with the set containing variables with a high influence and check them
against a balancing condition. Alongside, we compute the cost of these variables
with the cost function from [16] that consists of a redundancy and a reduction factor.
If none of the examined variables satisfied the balancing condition, the variable
with minimal cost is selected. Fig.4 gives the pseudo code forMinOverlap.

1// S is the current state set
2// S1 and S2 are the resulting partitions
3// Φ is the influence table
4// δ is the memory balance factor
5// α is the weight for the cost function
6split(in: S, Φ, δ, α; out: S1, S2)
7bestCost := Φ.top()
8minCost := cost(S, bestCost, δ, α)
9while C = getCandidateSet(Φ) ∧ C 6= ∅
10for all w ∈ C
11if max(|Sw|, |Sw′ |) ≤ δ|S| then
12v := w; goto do split
13else
14thisCost := cost(S, v, α)
15if thisCost < minCost then
16minCost := thisCost; bestCost := w
17v := bestCost
18do split: S1 := Sv; S2 := Sv′

Fig. 4. State set splitting with theMinOverlapalgorithm.

5.2 Dynamic overlap reduction

Initially, the overlap between state sets of network nodes is reduced by applying
theMinOverlapalgorithm. However, in general the overlap may still pursueafter
a few steps of state space traversal. In order to further confine the overlap we
perform dynamic overlap reduction. This is a methodology where we allow overlap
to some extent and heuristically select a time frame to remove it periodically. We
perform overlap removal after state set distribution (see section4.1). This method
is iteratively performed either throughout the verification process or up ton times.
An extra node calledcoordinatororganizes the communication between the nodes
and performs dynamic removal of state overlap. The overlap removal algorithm for
each node works in three steps:

856

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

(i) Upon reaching a reduction time point2 the node dumps its current state set
onto the network drive and sends a message to the coordinator.

(ii) The coordinator removes the overlap of the node with respect to the already
visited state space by other nodes at this time point, and updates the history
of the visited state space. Then it informs the corresponding node to proceed
with the reduced state space by dumping the trimmed state set.

(iii) Finally, if all nodes passed a reduction time point, the coordinator removes the
state space history of that time point.

Fig. 5 delineates the usage of overlap reduction in the main computation loop
of the symbolic simulation algorithm in the parallel stage.We have to check the
termination condition locally, i.e. only in the current subset (line 10), and globally,
which requires communication with the other nodes (line 8).For example, in order
to show an universal validation, all nodes have to finish in accept states locally,
which can only be checked globally.

1// S is the set of initial states
2// t is the checking time bound
3// p is the period of steps at which overlap removal is performed
4// n is the overlap removal limit, 0 indicates continuous reduction
5simulate(in: S, t, p, n)
6reduction limit := 0; reduction step := 0
7if n > 0 then tillEnd := false else tillEnd := true
8while iteration < t
9checkTerminationConditionGlobally()
10S := imageAR(S) // Compute image of AR-automata.
11checkTerminationConditionLocally(S);
12S := imageT (S) // Compute image of the system.
13if (reduction limit < n) ∨ tillEnd then
14reduction step++
15if reduction step = p then
16S := removeOverlap(S)
17reduction step := 0; reduction limit++

Fig. 5. Main computation loop for state overlap removal.

The main advantage of our dynamic reduction method is that nodes do not have
to wait for slow nodes. After dumping their current state set, faster nodes can
continue to traverse the product automaton. Therefore, we achieve asynchronous
overlap removal between network nodes. Although nodes haveto wait for the co-
ordinator to update their state set, this time is not significant compared to the time
spent on image computation.

An interesting side effect of our asynchronous methodologyis the resulting
natural load balancing. The very last node that reaches a reduction time point

2 The state set distribution time point and the reduction period determine the reduction time points.

957

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

gets its overlap removed with respect to all other nodes. So this last node has
no states in common with the other nodes at this reduction step. Our experiments
state that usually the last node after overlap removal has the smallest subset. This in
turn means faster image computation enabling this node to reach the forthcoming
reduction time point faster. Hence, at that reduction time point this particular node
will arrive earlier than other nodes, and therefore continues with a larger state set.
This process alternates among the nodes accordingly depending on the weight of
image computation, resulting in natural load balancing between the network nodes.

For some models, the overlap is so high that the late nodes become empty after
overlap removal. This special situation is handled by stateset sharing with the
following node that reaches any reduction time point.

6 Experimental Results

We performed our experiments on the Kepler cluster at the University of Tuebin-
gen3 . This cluster contains 98 computing nodes, each consistingof dual 650 MHz
Pentium-III processors with 1 GB of shared memory (512 MB foreach processor).
We conducted our experiments on some of the circuits from theISCAS89 bench-
marks and a model of a holonic production system [29]. All experiments were per-
formed with dynamic variable ordering disabled in the BDD package. For circuits
from the ISCAS89 benchmarks we check for reachability of a state at high ham-
ming distance from the initial states (see equation4) along with properties from
[2]. In the holonic production system we check for consumptionof a workpiece
(see equation5). All properties are checked universally. The properties written in
FLTL look like this, whereb > 0 are explicit time bounds on the properties:

G[b] !(s1512.start & s1512.video & ... & s1512.I1733) (4)

F[b] OutBuffer.sconsume (5)

6.1 Static overlap reduction

In this part we concentrate on comparing the static overlap reduction heuristicMin-
Overlapto an altered version of the slicing heuristic from [16] labeledEqualDist,
and the variable disjunction decomposition algorithm fromthe CUDD package [31]
labeled asVarDisj. TheMinOverlapalgorithm is denoted by the influenceΦl1,l2

used for ordering the state variables. In these experiments, we use a balancing
condition ofmax(|f1|, |f2|) ≤

2
3
|f | for theMinOverlapalgorithm. The results are

shown in Fig.6.
Discussion:The preprocessing step of theMinOverlapalgorithm does not re-

quire a significant amount of time, in all experiments it consumed less than 1% of

3 http://kepler.sfb382-zdv.uni-tuebingen.de

1058

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

Design Split. alg. Recursion level : Splitting vars. Step : ok · 100 st vt

s1269 Φ1,1 1:32 1:31.5 0.11 214.13 (0.55)

#2 Φ1,0 1:32 1:31.5 0.11 217.5 (0.51)

37 EqualDist 1:0 1:58.6 0.36 236.7 (0.28)

5000 VarDisj 1:14 1:57.4 0.15 371.2 (0.25)

s1512 Φ5,1 1:96 5:64.8 / 10:89.3 0.15 3204.85 (4.52)

#2 Φ1,0 1:10 5:89.3 / 10:91.8 0.11 3330.31 (4.4)

57 EqualDist 1:10 5:89.3 / 10:91.8 0.87 3324.89 (3.72)

10000 VarDisj 1:10 5:89.3 / 10:91.8 0.38 3312.75 (3.75)

s1269 Φ1,1 1:32 / 2:34 / 3:36 1:9.1 0.68 69.9 (0.55)

#8 Φ1,0 1:32 / 2:34 / 3:40,36 1:9.1 0.68 69.43 (0.52)

37 EqualDist 1:0 / 2:42,6 / 3:12,8,40 1:12.7 0.55 58.8 (0.29)

5000 VarDisj 1:14 / 2:12 / 3:10,26 NA 0.26 58.4 (0.27)

s1512 Φ5,1 1:96 / 2:98 / 3:100,10 10:54.6 / 15:68.3 0.23 2891.7 (4.6)

#8 Φ1,0 1:10 / 2:12 / 3:14 10:76.4 / 15:94.2 0.15 2993.0 (4.4)

57 EqualDist 1:10 / 2:96,12 / 3:12,14,94 10:76.6 / 15:94.2 1.5 2988.9 (3.7)

10000 VarDisj 1:10 / 2:12,94,96 / 3:12,96,14 10:76.4 / 15:94.2 0.71 3029.2 (3.7)

nh2 Φ1,1 1:14 / 2:48,16 / 3:10,18,52 60:11.7 / 100:25.4 0.65 #481 (7.12)

#8 Φ1,0 1:14 / 2:54,16 / 3:48,18,10 60:12.2 / 100:26.6 0.51 #272 (7.0)

118 EqualDist 1:4 / 2:58,176, / 3:24,134,54,40 60:22.1 / 100:40.8 13.4 #151 (6.04)

50000 VarDisj 1:4 / 2:58,40 / 3:44,54,18,176 60:20.9 / 100:41.0 13.3 #145 (6.07)

Fig. 6. Comparison ofMinOverlapwith other heuristics. The first column lists the design,
followed by the number of processors used, the number of state variablesand the splitting
threshold. The second column indicates the splitting algorithm. The third column gives
at each splitting recursion level the indexes of the selected splitting variables. The CUDD
package identifies variables by index. Then the fourth column shows the overlap at different
iteration steps. The fifth and sixth columns list the average splitting timest, and the total
verification timevt (or a memory overflow is indicated by #, followed by the maximum
number of steps), respectively. The splitting time corresponds to the time spent in algorithm
split as described in figure4.

the verification time. For two processor, designs1269shows a significant reduc-
tion in overlap by selecting high influence variables and hence a gain in overall
verification time can be observed. BothMinOverlapandEqualDist picked high
influence variables, but onlyMinOverlapreduced the overlap significantly. This is
due to the influence lookahead condition explained in Section 5.1. The influence
stays positive forMinOverlapand becomes negative forEqualDistwith Φ1,1.

For eight processors, designs1269has low overlap with all splitting algorithms.
But the other two designs clearly show the benefit of applyingMinOverlap, both
for designs with huge and moderate overlap. Designs1512belongs to the category
with huge overlap after a few steps. However,MinOverlapwith a lookahead ofl1 =
5 is able to significantly delay the occurrence of overlap and reduce the verification
time. Nevertheless, this reveals that high influence variables can only help to reduce
the overlap for a few steps but cannot avoid it beyond a limit,making dynamic
removal techniques a must. The overlap in designnh2 increases much slower than

1159

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

in the other design, but its size leads to memory overflow. Again, MinOverlap is
able to reduce the overlap, even after 100 steps. This allowsthe nodes to go a lot
further without memory overflow.

6.2 Dynamic overlap reduction

First, we ran some of the larger designs in sequentialSymC with all relevant op-
timizations switched on. The sequential algorithm splits the state set repeatedly
upon reaching the threshold, whereas the parallel version does it only during state
set distribution. The results are available in Fig.7. For most of the designs the se-
quential algorithm cannot complete traversal due to memoryoverflow or time out
problems4 .

Design Threshold Φl1,l2 Time bound Peak node count vt

s4863 20000 Φ1,1 5 4.48 #2

s1512 50000 Φ2,1 100 3.80 *80

s1423p1 50000 Φ1,0 - 13.55 #11

s1423p3 50000 Φ1,0 12 14.27 *11

nh2 50000 Φ1,1 1000 2.30 663

Fig. 7. Results for fully optimized sequentialSymC. The first column lists the design
name. Column two gives the splitting threshold. The third column shows the influence
used forMinOverlapsplitting. The fourth and fifth columns list the time bound specified
in the property and maximum peak node count in millions, respectively. The last column
shows the overall verification time. #n or *n denote memory overflow or time out at step
n.

Fig. 8 shows the results of the distributed approach with dynamic overlap re-
moval using 32 processors dedicated to the checking algorithm and one processor
acting as the coordinator. In these experiments, dynamic overlap removal is applied
throughout the verification process repeatedly everyp steps.

Discussion:First of all, the parallel algorithm is able to finish all the problems
that the sequential approach was not able to handle due to space or time restrictions.

Designss4863and s1512clearly show the advantage of both parallelization
and dynamic overlap removal, i.e. decreasingp reduces verification time. Also,
traversal of designnh2completes with a speedup of 2.8 compared to the sequential
version.

For designs1423we considered three propertiesp1, p2 andp3. Both p1 and
p2 are from [2] and pure LTL properties, hence there is no time bound specified
in the property. In comparison to [2], SymC finds errors in the designs signifi-
cantly faster, even taking different hardware configurations into account. However,
designs1423behaves unexpectedly as verification time increases with shorter dy-
namic overlap reduction periods. This effect is caused by the behavior of the BDDs
representing the state sets. Removing states from the sets actually increases their

4 Experiments were stopped after one hour.

1260

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

Design p (Φl1,l2) Time bound Seq. time (step) Peak node count vt

s4863 1 (Φ1,1) 5 1.67 (1) 8.39 587.73

20000 2 (Φ2,1) 5 1.69 (1) 10.52 613.32

s1512 2 (Φ2,1) 100 108.75 (33) 2.41 508.21

10000 3 (Φ3,1) 100 108.95 (33) 2.55 522.25

5 (Φ5,1) 100 106.53 (33) 2.83 643.61

s1423p1 1 (Φ1,1) - 75.70 (8) 13.20 748.5

50000 2 (Φ2,1) - 75.54 (8) 13.77 806.99

5 (Φ5,1) - 76.13 (8) 11.23 567.41

s1423p2 1 (Φ1,1) - 76.62 (8) 1.87 114.25

50000

s1423p3 1 (Φ1,1) 12 152.04 (9) 14.51 1322.22

50000 2 (Φ2,1) 12 151.84 (9) 13.18 1171.18

3 (Φ3,1) 12 153.18 (9) 7.68 791

nh2 50000 100 (Φ1,1) 1000 86.22 (132) 1.658 230.08

Fig. 8. Results of the distributed algorithm with dynamic overlap removal. The first column
indicates the design and the splitting threshold. The second column shows the timeperiod
p at which overlap reduction is performed and the influence used inMinOverlap. The third
column lists the time bound specified in the property. Column four lists the time taken by
the sequential part and the time step at which the parallel stage starts. Column five shows
the maximum peak node count of all the nodes in millions. The last column lists the overall
verification time.

BDD representation. This opens a new thread for heuristics when and how to apply
dynamic removal. We also investigate if dynamic variable reordering takes care of
this problem.

Fig.9 depicts the natural load balance graph for the circuits1512with reduction
period 2. Only four nodes are shown for clear visibility of the graph. The load
balancing effect can be seen very well when nodes 0 and 24 swaptheir arrival
order during execution.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

reduction time points

n
o
d
e
 a
rr
iv
a
l
o
rd
e
r

node 0

node 8

node 16

node 24

Fig. 9. Arrival order of nodes at reduction points showing load balancing between the
nodes.

Finally, measurements indicate that reading and writing BDDs to and from disk
does not contribute to the overall verification time significantly. Thus, network I/O
is not a bottleneck of the distributed algorithm.

1361

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

7 Conclusions and Future Work

This paper presents the parallelization of a BDD-based bounded property check-
ing algorithm. The two main contributions are a novel splitting algorithm taking
overlap reduction into account and a distributed on-the-flyalgorithm for asynchro-
nous state space traversal with dynamic overlap reduction resulting in natural load
balancing.

TheMinOverlapsplitting heuristic enhances current decomposition algorithms
by preprocessing the transition relation and using this information for ordering the
list of potential splitting variables. The experiments show that this preprocessing
step is able to actually reduce the overlap and the splittingtime. Furthermore,
MinOverlapalmost never degrades the splitting runtime or the resulting overlap
significantly.

Dynamic overlap reduction is an important technique in enabling verification
of larger designs and significantly improves the applicability of the distributed al-
gorithm. Reassigning idle nodes avoids wasted computation power. However, for
some designs overlap reduction can actually increase the BDDrepresentation of
sets with fewer states. This seems to be related to the characteristic that a fixed
BDD variable order is kept after the sequential stage. We experiment with differ-
ent variable orderings on computation nodes to handle thesecases. Furthermore,
we are extending our experiments to designs from the VIS suite and recent IBM
examples.

8 Acknowledgements

We want to thank the reviewers for their detailed comments that helped in enhanc-
ing the quality of this paper.

References

[1] Accellera, “Property Specification Language (PSL), Version 1.1,” (2004),
http://www.eda.org/vfv.

[2] Ben-David, S., T. Heyman, O. Grumberg and A. Schuster,Scalable distributed on-the-
fly symbolic model checking, International Journal on Software Tools for Technology
Transfer (STTT)4(4) (2003), pp. 496–504.

[3] Biere, A., A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu,Bounded model
checking, in: M. Zelkowitz, editor, Highly Dependable Software, Advances in
Computers58, Academic Press, 2003 .

[4] Bollig, B. and I. Wegener,Partitioned BDDs vs. other BDD models, in: ACM/IEEE
International Workshop on Logic Synthesis (IWLS), 1997.

[5] Braberman, V., A. Olivero and F. Schapachnik,Issues in distributed timed model
checking: Building Zeus, International Journal on Software Tools for Technology
Transfer (STTT)7(1) (2005), pp. 4 – 18.

1462

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

[6] Brim, L., I. Čerńa, P. Moravec and J.̌Simša,Distributed partial order reduction of
state spaces, in: Proceedings of PDMC 2004 [24].

[7] Bryant, R. E.,Symbolic boolean manipulation with ordered binary-decision diagrams,
ACM Computing Surveys24(3)(1992), pp. 293–318.

[8] Burch, J., E. Clarke, K. L. McMillan, D. Dill and L. Hwang,Symbolic Model
Checking:10

20 States and Beyond, Information and Computing98 (1992), pp. 142–
170.

[9] Burch, J. R., E. M. Clarke and D. E. Long,Representing circuits more efficiently in
symbolic model checking, in: 28th Conference on Design Automation(1991), pp. 403–
407.

[10] Cabodi, G., P. Camurati, L. Lavagno and S. Quer,Disjunctive partitioning and partial
iterative squaring: An effective approach for symbolic traversal of largecircuits, in:
34th Conference on Design Automation(1997), pp. 728–733.

[11] Cabodi, G., P. Camurati and S. Quer,Improved reachability analysis of large finite
state machines, in: Proceedings of ICCAD 1996 [23], pp. 354–360.

[12] Clarke, E. M., O. Grumberg and D. E. Peled, “Model Checking,” The MIT Press,
1999.

[13] Grumberg, O., T. Heyman and A. Schuster,Distributed symbolic model checking
for µ-calculus, in: G. Berry, H. Comon and A. Finkel, editors,Computer Aided
Verification, 13th International Conference, Lecture Notes in Computer Science2102
(2001), pp. 350–362.

[14] Grumberg, O., T. Heyman and A. Schuster,A work-efficient distributed algorithm for
reachability analysis, in: W. A. Hunt Jr. and F. Somenzi, editors,Computer Aided
Verification, 15th International Conference, Lecture Notes in Computer Science2725
(2003), pp. 54–66.

[15] Haverkort, B., A. Bell and H. Bohnenkamp,On the efficient sequential and distributed
generation of very large Markov chains from stochastic Petri nets, in: 8th International
Workshop on Petri Nets and Performance Models(1999).

[16] Heyman, T., D. Geist, O. Grumberg and A. Schuster,Achieving scalability in parallel
reachability analysis of very large circuits, in: E. A. Emerson and A. P. Sistla,
editors,Computer Aided Verification, 12th International Conference, Lecture Notes
in Computer Science1855(2000), pp. 20–35.

[17] Inggs, C. P. and H. Barringer,CTL* model checking on a shared-memory architecture,
in: Proceedings of PDMC 2004 [24].

[18] Lange, M. and H. W. Loidl,Parallel and symbolic model checking for fixpoint logic
with Chop, in: Proceedings of PDMC 2004 [24].

[19] McMillan, K. L., A conjunctively decomposed boolean representation for symbolic
model checking, in: R. Alur and T. A. Henzinger, editors,Computer Aided Verification,
8th International Conference, Lecture Notes in Computer Science1102 (1996), pp.
13–25.

1563

Nalla, Weiss, Peranandam, Ruf, Kropf, Rosenstiel

[20] Narayan, A., J. Jain, M. Fujita and A. L. Sangiovanni-Vincentelli,Partitioned
ROBDDs - a compact, canonical and efficiently manipulable representation for
boolean functions, in: Proceedings of ICCAD 1996 [23], pp. 547–554.

[21] Orzan, S., J. van de Pol and M. V. Espada,A state space distribution policy based on
abstract interpretation, in: Proceedings of PDMC 2004 [24].

[22] Peranandam, P. M., R. J. Weiss, J. Ruf, T. Kropf and W. Rosenstiel, Dynamic guiding
of bounded property checking, in: IEEE International High Level Design Validation
and Test Workshop 2004 (HLDVT 04), 2004.

[23] “Proceedings of ICCAD 1996,” ACM and IEEE Computer Society Press, 1996.

[24] “Proceedings of PDMC 2004,” Electronic Notes in Theoretical Computer Science,
Elsevier, 2004.

[25] Ravi, K., K. L. McMillan, T. R. Shiple and F. Somenzi,Approximation and
decomposition of binary decision diagrams, in: 35th Conference on Design
Automation(1998), pp. 445–450.

[26] Ravi, K. and F. Somenzi,High-density reachability analysis, in: 1995 IEEE/ACM
International Conference on CAD(1995), pp. 154–158.

[27] Ruf, J., D. W. Hoffmann, T. Kropf and W. Rosenstiel,Simulation-guided property
checking based on a multi-valued AR-automata, in: W. Nebel and A. Jerraya, editors,
Design, Automation and Test in Europe 2001(2001), pp. 742–748.

[28] Ruf, J., P. M. Peranandam, T. Kropf and W. Rosenstiel,Bounded property checking
with symbolic simulation, in: Forum on Specification and Design Languages 2003,
2003.

[29] Ruf, J., R. J. Weiss, T. Kropf and W. Rosenstiel,Modeling and formal verification
of production automation systems, in: E. et. al., editor,Integration of Software
Specification Techniques for Applications in Engineering, Lecture Notes in Computer
Science3147, Springer, 2004 pp. 541–566.

[30] Sahoo, D., S. K. Iyer, J. Jain, C. Stangier, A. Narayan, D. L. Dill and E. A. Emerson,A
partitioning methodology for BDD-based verification, in: A. J. Hu and A. K. Martin,
editors,Formal Methods in Computer-Aided Design, Fifth International Conference,
Lecture Notes in Computer Science3312(2004), pp. 399–413.

[31] Somenzi, F., CUDD: CU decision diagram package, release 2.4.0,
http://vlsi.colorado.edu/∼fabio/CUDD (2004).

[32] Stern, U. and D. L. Dill, Parallelizing the Murφ verifier, in: O. Grumberg,
editor,Computer Aided Verification, 9th International Conference, Lecture Notes in
Computer Science1254(1997), pp. 256–278.

1664

PDMC 2005 Preliminary Version

A Pattern Recognition Approach for
Speculative Firing Prediction in

Distributed Saturation State-Space Generation

Ming-Ying Chung 1 and Gianfranco Ciardo 2

University of California, Riverside, CA 92521

Abstract

The saturation strategy for symbolic state-space generation is particularly effective
for globally-asynchronous locally-synchronous systems. A distributed version of
saturation, SaturationNOW, uses the overall memory available on a network of
workstations to effectively spread the memory load, but its execution is essentially
sequential. To achieve true parallelism, we explore a speculative firing prediction,
where idle workstations work on predicted future event firing requests. A näıve
approach where all possible firings may be explored a priori, given enough idle
time, can result in excessive memory requirements. Thus, we introduce a history-
based approach for firing prediction that recognizes firing patterns and explores only
firings conforming to these patterns. Experiments show that our heuristic improves
the runtime and has a small memory overhead.

Keywords: state-space generation, decision diagrams, distributed systems, parallel
and distributed computing, speculative computing, pattern recognition

1 Introduction

Formal verification techniques such as model checking [10] are widely used in
industry for quality assurance, since they can be used to detect design errors
early in the lifecycle. An essential step is an exhaustive, and very memory-
intensive, state-space generation. Even though symbolic encodings like binary
decision diagrams (BDDs) [2] help cope with the state-space explosion, the
analysis of complex systems may still resort to the use of virtual memory.

Much research has then focused on parallel and distributed computing for
this application. [1,20,25] use a network of workstations (NOW) for explicit

? Work supported in part by the National Science Foundation (NSF) under Grants
No. 0219745 and No. 0203971.
1 Email:chung@cs.ucr.edu
2 Email:ciardo@cs.ucr.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Chung and Ciardo

state-space exploration or model checking. [16] parallelizes BDD manipulation
on a shared memory multiprocessor, while [21] uses distributed shared mem-
ory. [27] parallelizes BDD construction by sharing image computation among
processors during Shannon expansion on shared and distributed shared mem-
ory platforms. [11] finds parallelism in breadth-first BDD traversals. [13,17,26]
parallelize BDD manipulations by slicing image computation onto a NOW
where a master workstation balances the memory load.

In [4], we presented a distributed version of the saturation algorithm [6],
called SaturationNOW, to perform symbolic state-space generation on a NOW,
where execution is strictly sequential but utilizes the overall NOW memory.
As in [23], a level-based horizontal “slicing” scheme is employed to allocate
decision diagram nodes to workstations, so that no additional node or work
is created. In addition, we presented a heuristic that dynamically balances
the memory load to help cope with the changing peak memory requirement
of each workstation. However, the horizontal slicing scheme has two draw-
backs. First, while it can evenly distribute the decision diagram with minimal
time and space overhead, it does not facilitate parallelism (it corresponds
to a sequentialization of the workstations, where most computations require
a workstation to cooperate with its neighbors). Second, since a set of con-
tiguous decision diagram levels is assigned to each workstation, models with
few decision diagram levels impose a limit on the scalability of the approach.
While assigning a single level to multiple workstations solves this problem,
the cost of additional synchronizations would eliminate the major advantage
of our horizontal slicing scheme.

In this paper, we tackle the first drawback, i.e., we improve the runtime
of SaturationNOW, through the idea of using idle workstation time to spec-
ulatively fire events on decision diagram nodes, even if some of these event
firings may never be needed. In a näıve approach, unrestrained speculation
may cause an excessive increase in the memory consumption, to the point
of being counter-productive. However, a history-based approach to predict
which events should be fired based on past firing patterns is instead effective
at reducing the runtime with only a small memory overhead.

Our paper is organized as follows. Sect. 2 gives background on reachabil-
ity analysis, decision diagrams, Kronecker encoding, and saturation. Sect. 3
details our näıve and pattern recognition approaches to speculative firing pre-
diction. Sect. 4 shows experimental results. Sect. 5 briefly survey related
work, and Sect. 6 discusses future research directions.

2 Background

A discrete-state model is a triple (Ŝ, sinit,N), where Ŝ is the set of potential

states of the model, sinit ∈ Ŝ is the initial state, and N : Ŝ → 2Ŝ is the
next-state function specifying the states reachable from each state in a single
step. Since we target globally-asynchronous systems, we decompose N into a

2
66

Chung and Ciardo

disjunction of next-state functions [15]: N (i) =
⋃

e∈E Ne(i), where E is a finite
set of events and Ne is the next-state function associated with event e.

The reachable state space S ⊆ Ŝ is the smallest set containing sinit and
closed with respect toN : S = {sinit}∪N (sinit)∪N (N (sinit))∪· · · = N ∗(sinit),
where “∗” denotes reflexive and transitive closure and N (X) =

⋃
i∈X
N (i).

We assume a model composed of K submodels. Thus, a (global) state is a
K-tuple (iK , ..., i1), where ik is the local state of submodel k, K≥ k≥ 1, and

Ŝ = SK×· · ·×S1, the cross-product of K local state spaces. This allows us to
use techniques targeted at exploiting system structure, in particular, symbolic

techniques to store the state-space based on decision diagrams.

2.1 Symbolic encoding of the state space S and next-state function N

While not a requirement (the local state spaces Sk can be generated “on-the-
fly” by interleaving symbolic global state-space generation with explicit local
state-space generation [7]), we assume that each Sk is known a priori. We then
use the mappings ψk : Sk → {0, 1, ..., nk−1}, with nk = |Sk|, identify local state
ik with its index ik = ψk(ik), thus Sk with {0, 1, ..., nk−1}, and encode any set

X ⊆ Ŝ in a quasi-reduced ordered multiway decision diagram (MDD) over Ŝ.
Formally, an MDD is a directed acyclic edge-labeled multi-graph where:

• Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.

• There is a single root node r at level K.

• Level 0 can only contain the two terminal nodes Zero and One.

• A node p at level k > 0 has nk outgoing edges, labeled from 0 to nk−1. The
edge labeled by ik points to a node q at level k−1; we write p[ik] = q.

• Given nodes p and q at level k, if p[ik] = q[ik] for all ik ∈ Sk, then p = q.

The MDD encodes a set of states B(r), defined by the recursive formula:
B(p)=

⋃
ik∈Sk
{ik}×B(p[ik]) if p.lvl=k>1, B(p)={i1 : p[i1]=One} if p.lvl=1.

To adopt a Kronecker representation of N inspired by work on Markov
chains [3], we assume a Kronecker consistent model [5,6] where Ne is conjunc-
tively decomposed into K local next-state functions Nk,e, for K≥k≥1, satis-

fying ∀(iK ,..., i1)∈Ŝ,Ne(iK ,..., i1)=NK,e(iK)×···×N1,e(i1). By definingK ·|E|
matrices Nk,e ∈ {0, 1}

nk×nk , with Nk,e[ik, jk] = 1 ⇔ jk ∈ Nk,e(ik), we encode
Ne as a (boolean) Kronecker product: j ∈ Ne(i) ⇔

⊗
K≥k≥1 Nk,e[ik, jk] = 1,

where a state i is interpreted as a mixed-based index in Ŝ and “
⊗

” indicates
the Kronecker product of matrices. Note that the Nk,e matrices are extremely
sparse: for standard Petri nets, each row contains at most one nonzero entry.

2.2 Saturation-based iteration strategy

In addition to efficiently representing N , the Kronecker encoding allows us to
recognize and exploit event locality [5] and employ saturation [6]. We say that
event e is independent of level k if Nk,e = I, the identity matrix. Let Top(e)

3
67

Chung and Ciardo

x

y z

a

b

c

d

x

y z

a

b

c

d

x

y z

a

b

c

d

x

y z

a

b

c

d

b fires

b fires

c fires

c firesd fires

a fires

Fig. 1. The reachability graph.

and Bot(e) denote the highest and lowest levels for which Nk,e 6= I. A node p
at level k is said to be saturated if it is a fixed point with respect to all Ne such
that Top(e) ≤ k, i.e., B(p) = B(p) ∪ N≤k(B(p)), where N≤k =

⋃
e:Top(e)≤kNe.

To saturate node p once all its descendants have been saturated, we update it

in place so that it encodes also any state in Nk,e × · · · × N1,e(B(p)), for any
event e such that Top(e) = k. This can create new nodes at levels below k,
which are saturated immediately, prior to completing the saturation of p.

If we start with the MDD that encodes the initial state sinit and saturate
its nodes bottom up, the root r will encode S = N ∗(sinit) at the end, because:
(1)N ∗(sinit) ⊇ B(r) ⊇ {sinit}, since we only add states, and only through legal
event firings, and (2) B(r) ⊇ N≤K(B(r)) = N (B(r)), since r is saturated.

In other words, saturation consists of many “lightweight” nested “local”
fixed-point image computations, and is completely different from the tradi-
tional breath-first approach employing a single “heavyweight” global fixed-
point image computation. Results in [6,7,8] consistently show that saturation
greatly outperforms breath-first symbolic exploration by several orders of mag-
nitude in both memory and time, making it arguably the most efficient state-
space generation algorithm for globally-asynchronous locally-synchronous dis-
crete event systems. Thus, it makes sense to attempt its parallelization, while
parallelizing the less efficient breadth-first approaches would not offset the
enormous speedups and memory reductions of saturation.

2.3 An example of saturation

The reachability graph of a three-place Petri net is shown in Fig. 1. Each
global state is described by the local states for place x, y, and z, in that order,
and we index local states by the number of tokens in the corresponding place.
The reachability graph shows that three global states, (0,1,1), (0,0,2), and
(0,2,0), are reachable from the initial state (1,0,0). The Kronecker description
of the next-state function is shown in Fig. 2.

For instance, the matrix Ny,b of the Kronecker description indicates that
firing event b will decrease the number of tokens in place y, either from 2 to
1 or from 1 to 0. Then, the saturation-based state-space generation on this
model can be performed as follow (see Fig. 3).

4
68

Chung and Ciardo

a b c d

x 1 → 0 I I 0 → 1

y 0 → 1
1 → 0
2 → 1

0 → 1
1 → 2

1 → 0

z 0 → 1
0 → 1
1 → 2

2 → 1
1 → 0

1 → 0

Fig. 2. Kronecker description of the next-state function N .

0

0

<x>

<y>

<z>

1

0

0

<x>

<y>

<z>

1

0

0

<x>

<y>

<z>

1

0

0

<x>

<y>

<z>

0 1

1

1

0

0

<x>

<y>

<z>

0 1

1

1

0

0

<x>

<y>

<z>

0 1

0

1

1

2

0

0

<x>

<y>

<z>

0 1

0

1

1

2

0

0

<x>

<y>

<z>

0 1

0

1

1

2

2 0

0

<x>

<y>

<z>

0 1

0

1

1

2

2 0

0

<x>

<y>

<z>

0 1

0

1

1

2

2

1 2 3 4 5 6

7 8 9 10

Fig. 3. Saturation example (solid nodes are saturated, dashed nodes are not).

1 Initial configuration: Setup the initial global state (1,0,0).

2 Saturate node 0 at level z: No firing needs to be done, since there is
no event with Top(event) = z. The node is saturated by definition.

3 Saturate node 0 at level y: Top(b) = Top(c) = y, but neither b nor c
are enabled at both levels y and z, Therefore, no firing needs to be done,
and the node is thus saturated.

4 Saturate node 0 at level x: Top(a) = x and a is enabled for all levels,
thus event a must be fired on the node. Since, by firing event a, local state
1 is reachable from 0 for both levels y and z, two nodes, 1 at level y and

node 1 at level z, are created (not yet saturated), This also implies that a
new global state, (0,1,1), is discovered.

5 Saturate node 1 at level z: No firing needs to be done, since there is
no event with Top(event) = z. Again, the node is saturated by definition.

6 Saturate node 1 at level y: Top(b) = y and b is enabled for all levels,
thus event b must be fired on the node. Since, by firing event b, local state
0 is reached from 1 at level y and local state 2 is reached from 1 at level
z, node 1 at level y is extended to 01 and node 2 at level z is created.
This also implies that a new global state, (0,0,2), is discovered.

7 Saturate node 2 at level z: No firing needs to be done, since there is

5
69

Chung and Ciardo

no event with Top(event) = z. Again, the node is saturated by definition.

8 Saturate node 01 at level y: Top(c) = y and c is enabled for all levels,
thus event c must be fired on the node. Since, by firing event c, local state
2 is reachable from 1 at level y and local state 0 is reachable from 1 at level
z, node 01 at level y is extended to 012 and node 0 at level z, which
has been created and saturated previously, is referenced. This also implies
that a new global state, (0,2,0), is discovered.

9 Saturate node 012 at level y: Since all possible event firings have been
done, the node is saturated.

10 Saturate node 01 at level x: Since no event firing can find new global
states, the root node is then saturated.

2.4 Distributed version of saturation

[4] presents SaturationNOW, a message-passing algorithm that distributes the
state space on a NOW to study large models where a single workstation would
have to rely on virtual memory. On a NOW with W ≤ K workstations num-
bered from W down to 1, each workstation w has two neighbors : one “below”,
w − 1 (unless w = 1), and one “above”, w + 1 (unless w = W). Initially, we
evenly allocate the K MDD levels to the W workstations accordingly, by as-
signing the ownership of levels bw ·K/W c through b(w−1)·K/W c+1 to work-
station w. In each workstation w, local variables mytopw and mybotw indicate
the highest- and lowest-numbered levels it owns, respectively (mytopW = K,
mybot1 = 1 and mytopw ≥ mybotw for any w). We stress that, in this dis-
tributed saturation algorithm, we use a cluster to increase the amount of
available memory, not to achieve parallelism in the computation.

Each workstation w first generates the Kronecker matrices Nk,e for those
events and levels where Nk,e 6= I and mytopw ≥ k ≥ mybotw, without any
synchronization. This is a simplification made possible by the fact that these
matrices require little space and can be generated in isolation. Then, the
sequential saturation algorithm begins, except that, when workstation w > 1
would normally issue a recursive call to level mybotw − 1, it must instead send
a request to perform this operation in workstation w− 1 and wait for a reply.
The linear organization of the workstations suffices, since each workstation
only needs to communicate with its neighbors.

To cope with dynamic memory requirements, [4] uses a nested approach
to reassign MDD levels, i.e., changing the mybotw and mytopw−1 of two neigh-
bors. Since memory load balancing requests can propagate, each workstation
can effectively rely on the overall NOW memory, not just that in its neigh-
bors, without the need for global synchronization or broadcasting. With our
horizontal slicing scheme, even an optimal static allocation of levels to work-

stations could still be inferior to a good, but sub-optimal, dynamic approach.
This is because, the number of nodes at a given MDD level usually increases
and decreases dramatically during execution. Workstation w might be using

6
70

Chung and Ciardo

w=3

w=2

w=1

mytop =6

mybot =5

mytop =4

mybot =3

mytop =2

mybot =1

0 1 2 3 0 1 2 30 1 2 3

2 2 0 1 2 0 1 22

1 2 3 1 0 101 202 3 1 21 0 101 202 3

0 1 01 0 1 0 101 0 1 20 1 0 101 0 1 2

0 1 20 0 1 20 1 20 1 20 1 2 0 2 0 2

2 1 2 0 1 2 2 1 2 0 1 2 0 12 1 2 0 1 2 0 1

3

3

2

2

1

1

e3 e5

e8

e4

Fig. 4. Firing anticipation.

much less memory than w′ at some point in time, while the reverse might occur
later on. By dynamically reallocating levels between the two, such dynamic
peak requirements can be better accommodated. Of course, this reallocation
does not affect canonicity, since it preserves the MDD structure.

3 Speculative firing prediction

The distributed approach of [4] effectively partitions the memory load over
the workstations, but it is strictly sequential. We now explore the idea of an
idle workstation firing events e with Top(e)>k on saturated nodes p at level
k a priori, in the hope to reduce the time required to saturate nodes above p.

As explained in Sect. 2, an MDD node p at level k is saturated if any
event e with Top(e) = k has been fired exhaustively on p. However, events
e with Top(e) = l > k ≥ Bot(e) will still need to be fired on p, if there is
a path (il, ..., ik+1) from a node q at level l to p, such that e is “locally en-
abled”, i.e., Nl,e(il) 6= ∅, ...,Nk+1,e(ik+1) 6= ∅. To accelerate the time required
to saturate such hypothetical node q, our speculative prediction creates the
(possibly disconnected) MDD node p′ corresponding to the saturation of the
result of firing e on p, and caches the result. Later on, any firing of e on p will
immediately return the result p′ found in the cache. Fig. 4 shows speculative
firing prediction at work. In the middle, workstations 2 and 1 have predicted
and computed firings for e3 and e5 at level 4, e8 at level 3, and e4 at level 2
(hence the disconnected “dashed” nodes). On the right, the nodes resulting
from firing e3 or e8 are now connected, as they were actually needed and found
in the cache: speculative prediction was effective in this case.

We stress that the MDD remains canonical, although with additional dis-
connected nodes. Also, even if workstation w might know a priori that event
e satisfies Top(e) > mytopw = k ≥ Bot(e) ≥ mybotw, firing e on node p at
level k can nevertheless require computation in workstation w−1 below, since
the result p′ must be saturated, causing work to propagate at levels below
unless the cache can avoid it. In other words, as it is not known in advance
whether the saturation of an event firing can be computed locally, consecutive
idle workstations might need to perform speculative event firing together.

7
71

Chung and Ciardo

p rq p rq p rq
α β δ α β γ δ γ δ β δ α β γ δ γ α β γ δ α β γ δ α β γ δ

Fig. 5. History-based approach of firing prediction.

3.1 History-based approaches to speculative firing prediction

Since we do not know a priori whether event e will be fired on a node p at level k
during state-space generation, the most näıve speculative firing prediction lets
idle workstations exhaustively compute all possible firings starting “above”
each node p of the MDD for S, i.e., Eall(p) = {e : Top(e)>k≥Bot(e)}.

Obviously, this is effective only when |E| is small with respect to K, since,
then, exhausting all possible firings over few events is relatively inexpensive in
terms of time and space. However, for most models, this approach introduces
too many nodes that never become connected to the state-space MDD.

We now motivate a more informed prediction based on firing patterns. For
each node p at level k, let Epatt(p) be the set of events e that will be fired on
p after p has been saturated, thus, Top(e) > k and Epatt(p) ⊆ Eall(p). We can
then partition the nodes at level k according to their patterns, i.e., nodes p
and q are in the same class if and only if Epatt(p) = Epatt(q). Unfortunately,
Epatt(p) is only known a posteriori, but it should be observed that most models
exhibit clear firing patterns during saturation, i.e., most classes contain many
nodes and most patterns contain several events.

Our goal is to predict the pattern of a given node p based only on the
history of the events fired on p so far, Ehist(p) ⊆ Epatt(p). The key idea is that,
if ∅ ⊂ Ehist(p) ⊂ Ehist(q), we can speculate that the events in Ehist(q) \ Ehist(p)
will eventually need to be fired on p as well, i.e., that Epatt(p) = Epatt(q) at the
end. Fig. 5 shows an example where p, q, and r are saturated nodes at the same
MDD level. The middle of Fig. 5 shows the current event firing history of these
nodes at some point during runtime: Ehist(p) = {β, δ}, Ehist(q) = {α, β, γ, δ},
and Ehist(r) = {γ}. The left of Fig. 5 shows the actual event firing history
of these nodes after the state space is generated, i.e., their true patterns:
Epatt(p) = {α, β, δ}, Epatt(q) = {α, β, γ, δ}, and Epatt(r) = {γ, δ}. Applying
our history-based approach, instead, will result in the firings on the right of
Fig. 5: since Ehist(p) ⊂ Ehist(q) and Ehist(r) ⊂ Ehist(q), the workstation owning
this MDD level will fire β and γ on p and α, β, and δ on q in advance, if
it is idle. Thus, the useless firings of γ on p and of α and β on q will be
speculatively computed (these are highlighted with circles in Fig. 5).

Of course, we do not want to be too aggressive in our prediction. We might
have that Ehist(p) ⊂ Ehist(q) for several different nodes q whose histories have
few common elements in addition to Ehist(p). If, for each of these nodes q, we
fire each e in Ehist(q) \ Ehist(p) on p, many of these predicted firings may be

8
72

Chung and Ciardo

FirePredict (Requests : stack ,Class : array)

while Requests 6= ∅ do

(e, p)← Pop(Requests); • for each event firing has been done

Enqueue(e, Ehist(p)); • records event firing history

q ← Classp.lvl [e]; • the representative node for e

if Ehist(p) ⊃ Ehist(q) then • Ehist(p) is a better pattern

Classp.lvl [e]← p; • p becomes the new representative

fire e on q and cache the result;

else if Ehist(p) ⊂ Ehist(q) then • predicts event firings with the pattern

foreach e′ ∈ Ehist(q) \ Ehist(p) do

fire e′ on p and cache the result;

Fig. 6. Firing prediction algorithm.

useless, i.e., they may not be actually requested because e 6∈ Epatt(p). On the
other hand, any prediction based on history is guaranteed to be useful in the
rare case where the patterns of the nodes at level k are disjoint : i.e., if, for
any two nodes p and q, either Epatt(p) = Epatt(q) or Epatt(p) ∩ Epatt(q) = ∅.

3.2 An efficient implementation of our history-based approach

In addition to being useful, our heuristic also needs to be inexpensive in terms
of memory and time overhead. Our technique, then, uses only a subset of the
history and an efficient array-based method for prediction requiring O(1) time
per lookup and O(K ·|E|) memory overall. Each workstation w:

• stores only the c (e.g., 10) most recent elements of Ehist for its nodes.

• maintains a list Requestsw containing satisfied firing request (e, p).

• uses an array Classk of size {e : Top(e)>k≥Bot(e)} for each level k of the
MDD it owns. An element Classk[e] is a pointer to a node, initially null.

Normally, workstation w is in saturation mode: it computes the result of
firing requests (e, p) with Top(e) > p.lvl = k, and records (e, p) in Requestsw.
When w becomes idle, it turns to prediction mode: it removes an element
(e, p) from Requestsw, adds e to the (truncated) history Ehist(p), and examines
Classk(e). If Classk(e) = null, we set Classk(e) to p; if Classk(e) = q and
Ehist(p) ⊃ Ehist(q), we set Classk(e) to p, and we speculatively fire the events in
Ehist(p)\Ehist(q) on q; if Classk(e) = q and Ehist(p) ⊂ Ehist(q), we leave Classk(e)
unchanged and we speculatively fire the events in Ehist(q) \ Ehist(p) on p (see
Fig. 6). To minimize “real work” latency, a firing request from workstation
w + 1 switches w back to saturation mode, aborting any speculative firing
under way.

In other words, we use Classk(e) to predict which node has the “best his-
tory” among all nodes on which e has been fired so far, and use the history
of this node as our speculative firing guide for any node on which e is sub-
sequently fired. This heuristic may suffer from “inversions”: if Class k(e) = q
and Ehist(p) ⊃ Ehist(q) when e is fired on p, we set Classk(e) to p; later on,

9
73

Chung and Ciardo

further firings of q may result in Ehist(p) ⊂ Ehist(q), but Classk(e) will never
be set to q, since the firing of e on q is in the cache already and will never
be requested again. Nevertheless, this heuristic has minimal bookkeeping re-
quirements, especially in saturation mode, and fast lookup times; its memory
requirements are also low, since, the more workstations are idle, the faster
Requestsw is emptied, while Classk and the truncated history use less memory
than the nodes of the MDD in practice. Sect. 4 shows that this heuristic can
reduce runtime on large models. Finally, we observe that our approach can
be relaxed: if we fire e on p, Classk(e) = q, and Ehist(q) ∪ {f} ⊃ Ehist(p) but
f 6∈ Ehist(q), we can still decide to speculatively fire Ehist(q) \ Ehist(p) on p;
however, this aggressive approach often results in too many useless firings.

4 Experimental results

Our approach is implemented in SmArTN
ow [4], the MPICH-based distributed

version of our tool SmArT [9]. We evaluate its performance by using saturation
to generate the state space of following models.

• Slotted ring network protocol [22] models a protocol for local area networks
where N is the number of nodes within the networks (K = N , |Sk| = 10 for
all k, |E| = 3N).

• Flexible manufacturing system [18], models a manufacturing system with
three machines to process three different types of parts where N is the
number of each type of parts (K = 19, |Sk| = N + 1 for all k except
|S17| = 4, |S12| = 3, and |S7| = 2, |E| = 20).

• Round robin mutex protocol [12] models the round robin version of a mutual
exclusion algorithm where N is the number of processors involved (K =
N + 1, |Sk| = 10 for all k except |S1| = N + 1, |E| = 5N).

• Runway safety monitor [24] models an avionics system to monitor T targets
with S speeds on a X×Y ×Z runway (K = 5(T+1), |S5+5i| = 3, |S4+5i| = 14,
|S3+5i| = 1+X(10+6(S−1)), |S2+5i| = 1+Y (10+6(S−1)), |S1+5i| = 1+Z(10+
6(S−1)), for i = 0, ..., T , except |S4+5T | = 7, |E| = 49+T (56+(Y −2)(31+
(X − 2)(13 + 4Z)) + 3(X − 2)(1 + Y Z) + 2X + 5Y + 3Z)).

We run our implementation on this four models using a cluster of Pentium
IV 3GHz workstations, each with 512MB RAM, connected by Gigabit Eth-
ernet and running Red-Hat 9.0 Linux with MPI2 on TCP/IP. Table 1 shows
runtimes, total memory requirements for the W workstations, and maximum
memory requirements among the W workstations, for sequential SmArT (SEQ)
and the original SmArTN

ow (DISTR), and the percentage change w.r.t. DISTR
for the näıve (NAÏVE), and the history-based (HIST) speculative firing pre-
dictions; “d” means that dynamic memory load balancing is triggered, “s”
means that, in addition, memory swapping occurs.

Even though the first two models have different characteristics (slotted
ring has fixed-size nodes and numbers of levels K and events |E| linear in the

10
74

Chung and Ciardo

W Time (sec) Total Memory (MB) Max Memory (MB)

DISTR NAÏVE HIST DISTR NAÏVE HIST DISTR NAÏVE HIST

Slotted ring network protocol

N = 200 |S| = 8.38 · 10211 SEQ completes in 108sec using 284MB

2 119 −24% −13% 286 +3% +45% 197 +1% +53%

4 139 −27% −15% 286 +11% +51% 127 +61% +58%

8 182 −32% −24% 286 +129% +62% 69 +239% +62%

N = 300 |S| = 8.38 · 10211 SEQ does not complete in 5 hrs using 512MB

2 s552 s+5% s−5% 962 +25% +11% 562 +8% +7%

4 d490 > 5hrs d−16% 962 - +34% 352 - +12%

8 564 > 5hrs −39% 962 - +50% 252 - +23%

Flexible manufacturing system

N = 300 |S| = 3.64 · 1027 SEQ completes in 55sec using 241MB

2 79 −8% −8% 243 +12% +24% 121 +26% +52%

4 91 d+67 −9% 243 +102% +30% 119 +205% +50%

8 260 - −30% 243 - +42% 103 - +47%

N = 450 |S| = 6.90 · 1029 SEQ does not complete in 5 hrs using 512MB

2 s257 s+12% s−14% 826 +16% +5% 512 +15% +7%

4 d311 > 5hrs d−18% 826 - +33% 372 - +6%

8 959 > 5hrs −25% 826 - +61% 343 - +6%

Round robin mutex protocol

N = 800 |S| = 1.20 · 10196 SEQ completes in 27sec using 290MB

2 29 +37% +6% 293 +110% +85% 215 +52% +63%

4 36 +33% +8% 293 +348% +109% 130 +186% +65%

8 51 +33% +5% 293 +807% +148% 73 +433% +73%

N = 1100 |S| = 3.36 · 10334 SEQ does not complete in 5 hrs using 512MB

2 d65 s+62% s+18% 794 +46% +6% 379 +79% +30%

4 47 s+131% d+10% 794 +119% +38% 265 +104% +40%

8 56 d+164% +7% 794 +299% +50% 173 +126% +38%

Runway safety monitor

Z = 2 |S| = 1.51 · 1015 SEQ completes in 236sec using 314MB

2 731 > 10hrs −2% 332 - +39% 191 - +48%

4 938 > 10hrs −8% 332 - +88% 190 - +30%

8 1480 > 10hrs −22% 332 - +128% 173 - +13%

Z = 3 |S| = 5.07 · 1015 SEQ does not complete in 10 hrs using 512MB

2 s11280 > 10hrs s−1% 962 - +10% 595 - +16%

4 d9762 > 10hrs d−15% 962 - +31% 371 - +8%

8 d14101 > 10hrs d−17% 962 - +58% 359 - +6%

Table 1
Experimental results.

11
75

Chung and Ciardo

parameter N ; FMS has node size linear in N and fixed K and |E|), both show
that the pattern recognition approach improves the runtime of DISTR, more
so as the number of workstations W increases, up to 39%. Indeed, NAÏVE and
HIST are even faster than SEQ for slotted ring with N = 200 when W = 2.
Furthermore, with HIST, the firing prediction is quite effective: mostly, only
useful firing patterns are explored, resulting in a moderate increase in the
memory requirements.

However, NAÏVE works well only if there is plenty of available memory,
e.g., slotted ring with N = 200. Even then, though, increasing the number
of workstations W can be counter-productive, because this increases their
idle time, causing them to pursue an excess of speculative firings. This, in
turn, can overwhelm the caches and the node memory and trigger expensive
dynamic memory load balancing or even memory swapping, eventually slowing
down the computation to levels below those of DISTR, as is the case when
N = 300. Also, whenever W increases, the memory requirements for the
most loaded workstation should decrease, as additional workstations should
share the overall memory load. This holds for DISTR and HIST, but not for
NAÏVE. This is even more evident for FMS.

Round robin mutex is a worst-case example for our approach, as no useful
event firing pattern exists. We present it for fairness, but also to stress the
resilience of our HIST approach. While the memory and time of NAÏVE in-
crease dramatically because it explores many useless speculative firings, those
of HIST increase only slightly, showing that HIST, being unable to help due
to the lack of firing patterns, at least does not hurt much in terms of overhead.

Finally, the RSM, a real system being developed by National Aeronautics
and Space Administration (NASA) [24], has K = 15, too close to W for our
horizontal slicing scheme to work well. The results for SEQ are indeed much
better than for any of the distributed versions, but only when SEQ can run.
DISTR and HIST can still run for the second set of parameters, when SEQ
fails due to excessive memory requirements. In this case, our HIST heuristic
reduces the runtime with minimal additional memory overhead, confirming
that event firing patterns exist in realistic models.

5 Symbolic state-space generation over a NOW

Most parallel or distributed work on symbolic state-space generation employs
a vertical slicing scheme to parallelize BDD manipulations by decomposing
boolean functions in breath-first fashion and distributing the computation over
a NOW [14,17,26]. This allows the algorithm to overlap the image computa-
tion. However, if the slicing choice is poor, a substantial number of additional
nodes is created, and it is generally agreed that finding a good slicing is not
trivial [19]. Thus, some synchronization is required to minimize redundant
work, and this can reduce the scalability of this approach. [13] suggests to
employ a host processor to manage the job queue for load-balance purposes

12
76

Chung and Ciardo

1S

2S

3S

’’’S
’’S ’S

Fig. 7. Vertical slicing vs. horizontal slicing with firing prediction.

and to reduce the redundancy in the image computation by slicing according
to boolean functions that use an optimal choices of variables, in order to mini-
mize the peak number of decision diagram nodes required, thus the maximum
workload, among the workstations. However, no speedup is reported.

Instead, [4,23] partition the decision diagram horizontally onto a NOW, so
that each workstation exclusively owns a contiguous range of decision diagram
levels. Since the distributed image computation does not create any redun-
dant work at all, synchronization is avoided. Also, with a horizontal slicing
scheme. only peer-to-peer communication is required, so scalability is not an
issue anymore. Yet, there is a tradeoff in that, to maintain canonicity of the
distributed decision diagram, the distributed computation is sequentialized,
which implies that there is no easy opportunity for speedup.

In fact, our pattern recognition approach for event firing prediction at-
tacks this limitation while retaining the horizontal slicing scheme. However,
just like the redundant work introduced by vertical slicing, our approach in-
troduces some useless work. More precisely, even though the MDD remains
canonical, additional disconnected MDD nodes can be generated. Fig. 7 shows
the difference between these two approaches, where the solid boxes indicate
the state space and the shaded boxes indicate the useless MDDs. Certainly,
the vertical slicing approach can reorder the MDD variables to improve the
node distribution, but the variable reordering operation is expensive and re-
quires heavy synchronization. Instead, in our approach, each workstation can
clean up disconnected MDD nodes at runtime without requiring any synchro-
nization. Thus, our approach does not hurt the scalability, which is one of the
advantages of a horizontal slicing scheme.

Our approach does not achieve a clear speedup with respect to the best
sequential implementation. However, at least, it opens the possibility for
speeding up symbolic state-space generation on a NOW in conjunction with
a horizontal decision diagram slicing scheme.

6 Conclusions

We presented a pattern recognition approach to guide the speculative compu-
tation of event firings, and used it to improve the runtime of the distributed
saturation algorithm for state-space generation. Experiments show that rec-
ognizing event firing patterns at runtime during saturation is effective on some

13
77

Chung and Ciardo

models, including that of a realistic system being developed by NASA.

We envision several possible extensions. First, while our idea is imple-
mented for a saturation-style iteration, it is also applicable to the simpler
breadth-first iteration needed in (distributed) CTL model checking. Second,
having showed the potential of speculative firing prediction, we plan to explore
more sophisticated, but still low-overhead, heuristics that improve the useful-
ness of the predicted events, while being more aggressive in the prediction
when many workstation are idle. Finally, our heuristics should be augmented
to include information about the current memory consumption.

7 Acknowledgment

We wish to thank Radu Siminiceanu and Christian Shelton for discussions on
the anticipation approach and the referees for their helpful suggestion.

References

[1] A. Bell and B. Haverkort. Sequential and distributed model checking of Petri
nets. STTT, 7(1):43–60, 2005.

[2] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Comp., 35(8):677–691, 1986.

[3] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov
models. INFORMS J. Comp., 12(3):203–222, 2000.

[4] M.-Y. Chung and G. Ciardo. Saturation NOW. Proc. QEST, pp.272–281, 2004.

[5] G. Ciardo, G. Lüettgen, and R. Siminiceanu. Efficient symbolic state-space
construction for asynchronous systems. Proc. ICATPN, pp.103–122, 2000.

[6] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. Proc. TACAS, pp.328–342, 2001.

[7] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. Proc.
TACAS, pp.379–393, 2003.

[8] G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of
asynchronous systems. Proc. CAV, pp.40–53, 2003.

[9] G. Ciardo, R. Jones, A. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Performance Evaluation, to appear.

[10] E. Clarke, O. Grumberg, and D. Peled. Model checking. 1999.

[11] S. Gai, M. Rebaudengo, and M. Sonza Reorda. A data parallel algorithm for
boolean function manipulation. Proc. FMPSC, pp.28–36, 1995.

14
78

Chung and Ciardo

[12] S. Graf, B. Steffen, and G. Lüttgen. Compositional minimisation of finite state
systems using interface specification. Formal Asp. of Comp., 8(5):607–616, 1996.

[13] O. Grumberg, T. Heyman, and A. Schuster. A work-efficient distributed
algorithm for reachability analysis. Proc. CAV, pp.54–66, 2003.

[14] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in
Parallel Reachability Analysis of Very Large Circuits. Proc. CAV, pp.20–35,
2000

[15] J. Burch, E. Clarke, and D. Long. Symbolic model checking with partitioned
transition relations. Proc. VLSI, pp.49–58, 1991.

[16] S. Kimura and E. Clarke. A parallel algorithm for constructing binary decision
diagrams. Proc. ICCD, pp.220–223, 1990.

[17] K. Milvang-Jensen and A. Hu. BDDNOW : A parallel BDD package. Proc.
FMCAD, pp.501–507, 1998.

[18] A. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. Proc. ICATPN, pp.6–25, 1999.

[19] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-Vincentelli.
Reachability analysis using Partitioned-ROBDDs. Proc. ICCAD, pp.388–393,
1997.

[20] D. Nicol and G. Ciardo. Automated parallelization of discrete state-space
generation. J. Par. and Distr. Comp., 47:153–167, 1997.

[21] Y. Parasuram, E. Stabler, and S.-K. Chin. Parallel implementation of BDD
algorithm using a distributed shared memory. Proc. HICSS, pp.16–25, 1994.

[22] E. Pastor, O. Roig, J. Cortadella, and R. Badia Petri net analysis using boolean
manipulation. Proc. ICATPN, pp.416–435, 1994.

[23] R. Ranjan, J. Snaghavi, R. Brayton, and A. Sangiovanni-Vincentelli. Binary
decision diagrams on network of workstations. Proc. ICCD, pp.356–364, 1996.

[24] R. Siminiceanu and G. Ciardo. Formal verification of the NASA Runway Safety
Monitor. Proc. AVoCS, 2004.

[25] U. Stern and D. L. Dill. Parallelizing the Murφ verifier. Proc. CAV, pp.256–267,
1997.

[26] T. Stornetta and F. Brewer. Implementation of an efficient parallel BDD
package. Proc. DAC, pp.641–644, 1996.

[27] B. Yang and D. O’Hallaron. Parallel breadth-first BDD construction. Proc.
PPoPP, pp.145–156, 1997.

15
79

PDMC 2005 Preliminary Version

DISTRIBUTOR and BCG MERGE: Tools for
Distributed Explicit State Space Generation

Hubert Garavel 1, Radu Mateescu 2, Damien Bergamini,
Adrian Curic, Nicolas Descoubes, Christophe Joubert,

Irina Smarandache-Sturm, and Gilles Stragier

INRIA Rhône-Alpes / VASY, 655, av. de l’Europe
F-38330 Montbonnot St Martin, France

Abstract

This paper describes Distributor, a tool for generating state spaces in a distributed
manner using a set of machines connected by a network. Distributor was developed
within the Cadp verification toolbox using the generic Open/Cæsar environment
for on-the-fly graph exploration. It exhibits good speedups compared to sequential
tools, implements on-the-fly reductions of the state space, and provides graphical
features for monitoring the distributed state space generation in real time.

Key words: distributed reachability analysis, explicit state
verification, labelled transition system, model checking, state
space generation

1 Introduction

The verification of complex finite-state systems, whose underlying state spaces
may be prohibitively large, requires an important amount of memory and
computation time. A natural way of scaling up the capabilities of verification
tools is by exploiting the computing resources (memory and processors) of
massively parallel machines, such as clusters and grids.

We present here Distributor, a tool which constructs Labelled Transition
Systems (Ltss) in a distributed manner using several machines connected by a
network. Distributor implements a distributed reachability algorithm derived
from [2]. Each machine is responsible for generating and storing a part of the
Lts; upon termination of the distributed generation, all Lts parts generated
by the machines are combined together using the Bcg Merge tool in order to

1 Email: Hubert.Garavel@inria.fr
2 Email: Radu.Mateescu@inria.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Garavel et al

obtain the complete Lts. Additionally, Distributor can reduce the Lts on-the-
fly by applying τ -compression (elimination of cycles of τ -transitions, denoting
divergences of the internal behaviour of the system) or τ -confluence (a form
of partial order reduction [3] preserving branching equivalence).

The current version of Distributor assumes that all machines are homoge-
neous in terms of their processor and operating system. As regards commu-
nication between machines, Distributor does not make strong assumptions,
requiring only standard Tcp sockets and standard remote connection programs
(e.g., rsh/rcp, ssh/scp, etc.) to be available. In particular, Distributor does
not require the existence of a common file system (e.g., Nfs, Samba, etc.)
shared between machines. Distributor runs on several platforms (Windows,
MacOS, Linux, Solaris).

The machine on which Distributor is launched by the end-user is called
the local machine, all the other ones being called remote machines. To per-
form the state space generation, Distributor will launch distributed processes,
called instances. The list of machines and instances involved in the distributed
computation must be specified in a Grid Configuration File (Gcf), described in
Section 2. Typically, each instance executes on one remote machine, but there
can also be several instances per remote machine, as well as some instances
executing on the local machine.

The generated Lts is stored as a Partitioned Bcg Graph (Pbg), described
in Section 3, which can be subsequently converted into a single Bcg file using
the Bcg Merge tool. The overall architecture 3 of Distributor and Bcg Merge

is presented in Section 4, and the graphical features for monitoring the dis-
tributed Lts generation in real time are shown in Section 5. Finally, Section 6
concludes and indicates some directions for future work.

2 Grid configuration files

A Grid Configuration File (Gcf) specifies the list of instances to be launched
by Distributor, together with the various variables used for launching, con-
necting, and parameterizing instances on the (local) and remote machines.

Each instance corresponds to a pair (M, D), indicating that Distributor

will launch a distributed process executing on machine M and storing its
files in directory D (the working directory of the instance) located on some
filesystem of M . Instances may or may not be launched on the local machine,
depending on the constraints on grid usage. Indeed, clusters often distinguish

3 This paper presents versions 3.0 of Distributor and Bcg Merge. Versions 1.0 of
these tools were developed by I. Smarandache-Sturm along the lines of [2]. Version 2.0
of Distributor was developed by A. Curic and G. Stragier, who added the graphical
monitor, and version 2.0 of Bcg Merge was developed by R. Mateescu. Versions 3.0 of
Distributor (which implements a modified algorithm by C. Joubert) and Bcg Merge
were rewritten from scratch by N. Descoubes and revised by D. Bergamini and H. Garavel.
The manual pages of these tools [7,6] were written by H. Garavel and R. Mateescu.

281

Garavel et al

between one frontal node (i.e., the local machine) used to submit jobs to the
many computing nodes (i.e., the remote machines) that perform distributed
computations. Each instance is given a unique number greater or equal to
1. Numbers are assigned in the same order in which instances appear in the
Gcf file. Number 0 is reserved for the process corresponding to the execution
of Distributor on the local machine. Several instances may execute on the
same machine, provided that their working directories are different. Also, a
working directory may be either local to its machine, or shared between several
machines (using Nfs, Samba, etc.).

A Gcf file can also specify the value of (predefined) variables used to con-
trol the way instances are launched and communicate with each other. A Gcf

file contains a list of global directives (applicable to all instances) followed
by a list of directives specific to one (or several) particular instance(s). The
predefined variables correspond to the following instance parameters: the size
of communication buffers (for incoming/outgoing data), the pathname of the
directory in which Cadp is installed, the timeout allowed for establishing con-
nections, the pathname of the working directory, a list of files to be copied in
the working directory upon launching, the hash function used for partitioning
the state space among machines, the Tcp port used for communicating with
the instance, the commands used for copying files from the local to the remote
machines and for launching instances on remote machines, and the user login
name used for authentication when connecting to remote machines. All these
variables have default values, which can be overriden by directives in the Gcf

file. Also, to provide for last-minute changes, the contents of the Gcf file can
be extended and/or overriden by specifying directives on the command-line
upon launching Distributor.

In its simplest form, a Gcf file contains the list of remote machines to be
used (a single instance will be launched on each remote machine). A more
complex example of Gcf file involving all predefined variables is shown below.

buffer_size = 32768

cadp = /usr/local/cadp

connect_timeout = 10

directory = /home/vasy/distributor

files = graph-*.bcg

hash = 4

port = 8016

rcp = scp

rsh = ssh

user = inria

machine1.domain.org

machine2.domain.org

user = vasy

machine3.domain.org

directory = /users/inria/distributor

382

Garavel et al

Note that directive “user = vasy” applies to both machine1 and machine2.
A detailed decription of the Gcf file format is available in [7].

3 Partitioned BCG graphs

Binary Coded Graphs (Bcg) is a file format used by Cadp for storing Ltss in
compact, binary files. The Bcg format is equipped with a set of C libraries and
tools providing a wide range of functionalities (reading and writing, explor-
ing the transition relation, converting from/to other Lts formats, graphical
displaying, etc.). A collection of Bcg files is available on-line in the Vlts

benchmark suite [5], which aims at providing realistic examples of Ltss for
the assessment of verification and graph manipulation tools. Note that a Bcg

file provides an explicit representation of an Lts, containing all its states and
transitions. Therefore, the Bcg format is suitable for global verification, which
requires the Lts to be entirely constructed before verification.

The Partitioned Bcg Graph (Pbg) format implements the theoretical con-
cept of partitioned Lts defined in [2]. A Pbg file gathers a collection of Bcg

files, called “fragments” (one fragment per instance), which are stored either
on the local machine (in case of a shared filesystem like Nfs, Samba, etc.), or
on remote machines in the working directories associated to instances. An
example of Pbg file gathering 7 fragments is shown below.

PBG 1.0

PBG format by SENVA team -- http://www.inrialpes.fr/vasy/senva

created by Distributor (C) INRIA/VASY

(do not modify this file unless you know what you are doing)

grid: "vasy.gcf"[0]

states: partitioned

edges: incoming

initiator: 5

fragments: 7

1: states: 2667926 fragment: "fragment-1.bcg"[0] log: "1.log"[0]

2: states: 2233636 fragment: "fragment-2.bcg"[0] log: "2.log"[0]

3: states: 1919462 fragment: "fragment-3.bcg"[0] log: "3.log"[0]

4: states: 2653421 fragment: "fragment-4.bcg"[0] log: "4.log"[0]

5: states: 3326293 fragment: "fragment-5.bcg"[0] log: "5.log"[0]

6: states: 2970672 fragment: "fragment-6.bcg"[0] log: "6.log"[0]

7: states: 2666894 fragment: "fragment-7.bcg"[0] log: "7.log"[0]

Taken altogether, these fragments form a partition of an Lts, the states and
transitions of which are distributed among the various fragments as specified
in [2]. Note that, taken individually, each fragment is usually meaningless; in
particular, it may be a disconnected graph, which is never the case of a state
space generated from, e.g., a Lotos [4] specification. These fragments can be
recombined using the Bcg Merge tool [6], which also performs various actions,
such as state renumbering.

483

Garavel et al

4 Distributor and Bcg Merge

Alternatively to the explicit Lts representation in the form of Bcg files, the
Cadp toolbox also offers an implicit representation, implemented by the generic
Open/Cæsar environment [1] for on-the-fly exploration of Ltss. Open/Cæsar

specifies a language-independent Api for Ltss, which basically defines the
states, labels, and transitions of the Lts, equipped with functions for com-
parison, hashing, accessing the initial state, and computing the successors
of a given state. Open/Cæsar also provides C libraries containing a rich set
of primitives for Lts exploration (transition lists, stacks, tables, etc.). This
implicit representation is suitable for local (or on-the-fly) verification, which
allows the Lts to be constructed in a demand-driven way during verification.

Open/Cæsar-

program
source

compliant

Open/Cæsar

(remote)

references

spawns

machine N
(remote)
machine 1

(local)
machine 0lts.bcg

bcg merge

...

.gcf

.pbg

distributor.exe
(coordinator)

cc

graph module

compiler

distributor.exe
(instance 1)

fragmentN.bcg

distributor.exe
(instance N)

Open/Cæsar
expl. module

fragment1.bcg

libcaesar.a

libBCG.a

Fig. 1. Architecture of Distributor and Bcg Merge

Distributor was developed using Open/Cæsar, which makes it available
for any input language equipped with a compiler able to generate Ltss in

584

Garavel et al

compliance with the Api defined by Open/Cæsar. The tool (see Fig. 1) takes
as input an implicit Lts produced by an Open/Cæsar-compliant compiler and
a Gcf file, and produces as output a Pbg file gathering the Lts fragments
generated by the distributed execution of instances on the remote machines.

The instance numbered 0 corresponds to a coordinator process, which is
in charge of several activities: (a) initialization of the distributed computa-
tion (parsing the Gcf file, establishing the connections from the local to the
remote machines, launching the instances); (b) detection of normal termina-
tion, which occurs when all instances are idle and no messages are in transit;
(c) detection of urgent termination, which may be caused either by errors
during the execution of instances (e.g., failures of remote machines, memory
shortages, etc.), or explicitly required by the end-user; (d) monitoring the
progression of the distributed computation in real time.

After the distributed generation of the Pbg has finished, the entire Lts can
be obtained as a unique Bcg file by invoking the Bcg Merge tool.

5 Distributed graphical monitor

The distributed graphical monitor provides real time information about the
distributed generation of the Pbg encoding the Lts. The monitor is driven by
the coordinator, which periodically inspects the status of each instance. The
monitor window is organized into five panels (see Fig. 2), each one showing a
different view of the distributed computation.

The “Overview” panel in Fig. 2(a) gives, for each instance, the number
of explored states (the successors of which have been computed), the number
of remaining states (visited, but not explored yet), and the number of transi-
tions in the corresponding Bcg fragment. Also, the variation of the remaining
states is represented by means of a coloured box. A green (resp. orange) box
indicates that the number of remaining states is increasing (resp. decreasing).
A red box indicates that the instance has finished its computations; when all
instances have a red box and there are no more messages in transit, the dis-
tributed exploration algorithm terminates. The “Labels” panel in Fig. 2(b)
displays all different labels encountered when firing transitions during the state
space generation. The “Progress” panel in Fig. 2(c) shows, for each instance,
a progress bar indicating the number of states explored w.r.t. the states vis-
ited by that instance. The “Statistics” panel in Fig. 2(d) shows various global
data, such as the total (and average per instance) number of visited and re-
maining states, of transitions, of labels, etc. Finally, the “Resources” panel
in Fig. 2(e) estimates, for each instance, the corresponding memory and CPU
usage.

685

Garavel et al

(e)

(d)(c)

(a) (b)

Fig. 2. Panels of the distributed graphical monitor

6 Conclusion and future work

Distributor was experimented on various examples of communication proto-
cols and hardware devices [2], and on different computing platforms (clusters
of Pcs running Linux, networks of workstations running Solaris, etc.). For

786

Garavel et al

all examples, we observed quasi-linear speedups w.r.t. the Generator tool of
Cadp for sequential Lts generation.

We plan to continue our work along two directions. Using Distributor,
generating very large Ltss becomes easier and one is now confronted to the
limits inherent to standard 32-bit machines, especially when state numbers
become larger than 232 and/or when Bcg files become larger than 4 Gbytes.
Shifting to 64-bit machines should solve these issues and allow to overcome
the current size limitations.

The Bcg Merge tool is valuable as it allows (at least for small or medium-
sized models) to verify that the Ltss generated by Distributor are identical to
those generated on a single machine. For large models however, Bcg Merge

may be a bottleneck because of the aformentioned 4 Gbytes limit. For this
reason, we are now considering to perform verification directly on the Pbg

file itself, without invoking Bcg Merge first. We seek to develop a Pbg Open

tool that would connect the Pbg model to the Api defined by Open/Cæsar,
thus allowing the model checking and equivalence checking tools of Cadp to
be applied on Pbg models directly.

Acknowledgement

We are grateful to David Champelovier and Frédéric Lang for their valuable
help in porting Distributor and Bcg Merge on the Windows operating system.

References

[1] H. Garavel. Open/Cæsar: An Open Software Architecture for Verification,
Simulation, and Testing. In B. Steffen, editor, Proc. of the First International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’98 (Lisbon, Portugal), LNCS vol. 1384, pp. 68–84. Springer
Verlag, March 1998. Full version available as INRIA Research Report RR-3352.

[2] H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. In M. B. Dwyer, editor, Proc. of the 8th International SPIN
Workshop on Model Checking of Software SPIN’2001 (Toronto, Canada), LNCS
vol. 2057, pp. 217–234. Springer Verlag, May 2001. Revised version available as
INRIA Research Report RR-4341 (December 2001).

[3] J.F. Groote and J. van de Pol. State Space Reduction using Partial τ -confluence.
In M. Nielsen and B. Rovan, editors, Proc. of the 25th International Symposium
on Mathematical Foundations of Computer Science MFCS’2000 (Bratislava,
Slovakia), LNCS vol. 1893, pp. 383–393. Springer Verlag, August 2000. Also
available as CWI Technical Report SEN-R0008, Amsterdam, March 2000.

[4] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International

887

Garavel et al

Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, Genève, September 1989.

[5] Vasy. Vlts Benchmark Suite. http://www.inrialpes.fr/vasy/cadp/

resources/benchmark bcg.html, March 2003.

[6] Vasy. Bcg Merge Manual Page. http://www.inrialpes.fr/vasy/cadp/man/

bcg merge.html, December 2004.

[7] Vasy. Distributor Manual Page. http://www.inrialpes.fr/vasy/cadp/man/
distributor.html, December 2004.

988

PDMC 2005 Preliminary Version

DiVinE
The Distributed Verification Environment

J. Barnat 1, L. Brim 2, I. Černá 1, P. Šimeček 2

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

This paper presents basic concepts and the current state of a general distributed
verification environment (DiVinE). The environment is meant to support the devel-
opment of distributed enumerative model checking algorithms, to enable unified and
credible comparison of these algorithms, and to make the distributed verification
available for public use in a form of a distributed verification tool.

1 Introduction

In recent years, extensive research has been conducted in parallel and dis-
tributed model checking with the aim to push forward the frontiers of still
tractable systems [13,12,11,10,4,5]. Many parallel and distributed algorithms
have been developed and experimentally evaluated, mostly on a restricted set
of verification problems. A few of them have been incorporated into existing
verification tools. However, these distributed tools are still far from the stan-
dards met by sequential tools and in most cases their availability to the public
is limited.

Another important aspect related to parallel and distributed model check-
ing algorithms is that their performance analysis as published in original pa-
pers cannot serve for their credible comparison. This is primarily due to the
fact that the hardware, the input models, and other circumstances differ from
case to case making thus reported results incomparable. Most algorithms
were implemented as research prototypes only using various data structures
and different optimization techniques. As a consequence they simply cannot
be executed on the same set of inputs. In addition, it is impossible to assure
the same conditions when redoing the original experiments.

1 Research supported by the Academy of Sciences of Czech Republic grant No.
1ET408050503
2 Research supported by the Grant Agency of Czech Republic grant No. 201/03/0509

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Barnat, Brim, Černá and Šimeček

In order to produce a fair comparison, the algorithms must be re-implemented
on a common base and their behavior have to be re-examined on a common
set of inputs and under the same conditions. This comparative evaluation
can provide useful insight into their strengths and weaknesses leading to a
more informed way of how to choose an appropriate algorithm for a given
verification task.

In 2002 our group at the Faculty of informatics started the DiVinE project
with the aim to develop a distributed LTL model checking verification tool
and at the same time to provide a platform for development and comparison
of distributed enumerative model checking algorithms. The main goals of
DiVinE – Distributed Verification Environment can be summarized as follows:

(i) To use the environment as a platform for further development and experi-
mental evaluation of enumerative parallel and distributed model checking
algorithms.

(ii) To enable credible evaluation of existing enumerative algorithms with re-
gard to their performance and characteristics under controlled conditions.

(iii) To create a ready-to-use distributed LTL model checker.

In this short presentation we aim to announce the DiVinE project to
the PDMC community, introduce basic concepts and ideas used in DiVinE,
describe its architecture and give the current status of work.

2 DiVinE Project

The DiVinE project splits into two main parts: DiVinE ToolSet and
DiVinE Library. These parts address potential DiVinE users at two dif-
ferent levels: at the level of a tool user (DiVinE ToolSet) and at the level
of a tool developer (DiVinE Library). The overall structure of DiVinE is
depicted in Figure 1.

2.1 DiVinE ToolSet

The DiVinE ToolSet is made of a set of various model checking algorithms
(referred as tools) that are accessed uniformly via a graphical user interface.
An inseparable part of DiVinE ToolSet is a collection of verification prob-
lems and case studies, i.e. a collection of models and corresponding properties
to be verified. This problem set should also serve for benchmark testing and
evaluation. The native DiVinE specification language (DVE) has borrowed
its principles from well established and by the community generally accepted
description formalisms found in tools such as SPIN or UPPAAL. Each model
of the system is described as a network of finite state machines with guarded
transitions. The automata communicate either via shared memory (shared
variables) or through buffered communication channels.

290

Barnat, Brim, Černá and Šimeček

���� �������� ���� ��������	
	
	
		
	
	
	
�
�
�
��
�
�
��
� �
�
�
��
�
�
��
�
�� �
�
�
�
��
�
�
��
�
��
� �
�
�
��
�
�
��
��

DiVinE

Library

Cluster

GRID

Tool1 Tool2 Tool3

Output - Log Files

DiVinE

Tool

Set

User

ReporterState Gen.

Network

Algorithm

HW MonitorStorage

Model+Property

DiVinE Graphical Interface

Fig. 1. DiVinE architecture.

2.2 DiVinE Library

DiVinE Library is expected to be used by the researchers who intend to
design, implement and experimentally evaluate a distributed model checking
algorithm. The library is therefore designed to provide the potential program-
mer with a plethora of functions that are typically needed for the implemen-
tation. The programmer may thus focus on the core part of the algorithm
design. Furthermore, for the comparison of different algorithms it is crucial
to use the same level of implementation details.

As can be seen from Figure 1, DiVinE Library is divided into several
more or less independent modules.

State Generator is a module that provides functions needed for the state
space generation. These include primarily the function which computes the
initial state and the function which computes immediate successors of a given
state. In the case of LTL model checking, the module is responsible for com-
puting the synchronous product of system automaton and negative claim au-
tomaton, and identifying accepting states of the synchronous product. State
Generator supports the programmer by additional functionality, e.g. an inter-
face to access some structural properties of the model.

Storage module is responsible for storing states to the local memory. It
provides functions for inserting states to the set of visited states, testing mem-
bership of states in the set, and removing states from this set. In addition, the
module is capable of storing additional pieces of information, as the so called

391

Barnat, Brim, Černá and Šimeček

appendix, for every state stored in the set. The module is able to provide a
unique identifier for each stored state, hence, the algorithm can manipulate
states and access their appendixes using small identifiers instead of working
with large state vectors.

The purpose of HW Monitor and Reporter modules is to continuously
monitor running algorithm and to feed the algorithm with information about
hardware utilization as well as to produce logs describing the behavior of the
algorithm during its execution. The standard POSIX signal mechanism is
used to scan and log measured quantities every second.

Network module is the core module of the DiVinE Library part. This
module implements basic routines for communication in the distributed setting
such as send and receive primitives. In addition to the basic network primi-
tives, the module also implements mechanisms for message buffering, functions
for sending and receiving urgent messages, functions for partitioning the state
space, etc. As for high-level primitives, the module mainly provides functions
for synchronization. In particular, the module supports

(i) barrier synchronization which postpones computation on a computer un-
til all other computers enter the barrier (this synchronization has been
adopted from MPI standard),

(ii) termination detection which is a probe function returning true if all mes-
sages that have been sent have also been received and processed, and all
participating computers are idle, and returning false otherwise. Termi-
nation detection can be repeatedly used for synchronization of participat-
ing computers as well as for collecting global numbers of visited states,
sent and received messages, etc.

Other modules that are not depicted in Figure 1 include functions sup-
porting partial order reduction, time profiling, counterexample generation,
and property automaton decomposition.

3 Current State

The DiVinE project is being implemented in C++ employing MPI standard
for network communication. All the basic functions of DiVinE Library, i.e.
state generator, storage, HW monitor, reporter, and network modules, have
already been implemented. The current alpha version of the library is ready
for public use [9].

As concerns DiVinE ToolSet, we have already implemented distributed
state space generation algorithm and several distributed LTL model check-
ing algorithms [2,3,1,6]. The algorithms were tested on models specified in
native DiVinE language. DiVinE ToolSet also allows to perform guided
simulation of a model and check a model for unreachable code.

Both DiVinE Library and DiVinE ToolSet have been successfully
tested with mpich, LAM/MPI, and GridMPI/YAMPII implementations of the

492

Barnat, Brim, Černá and Šimeček

MPI standard. The source codes of the DiVinE project are freely available
under GNU General Public License.

4 Future Work

In the future, we would like to improve both the design and the implementation
of the library, develop an appropriate user interface, and improve existing
model checking algorithms as well as implement additional ones [7,8,6]. Our
nearest goal however is to release a stable version of the library and DiVinE

ToolSet.

Other future goals include design and implementation of functions support-
ing load balancing and caching of sent states. We would also like to extend
the database of DiVinE models.

We have started the DivSpin project in cooperation with the Research
Groups at RWTH Aachen and TU München. The goals of the project are
twofold. First, to enhance DiVinE by adding support for ProMeLa specifi-
cation language allowing DiVinE ToolSet to verify SPIN models. Second,
to build a web-accessed platform for distributed verification and provide users
with an access to appropriate hardware.

References

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL
Model-Checking. In 18th IEEE International Conference on Automated
Software Engineering (ASE’03), pages 106–115. IEEE Computer Society, Oct.
2003.

[2] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL Model-Checking in
SPIN. In Matthew B. Dwyer, editor, Proceedings of the 8th International SPIN
Workshop on Model Checking of Software (SPIN’01), volume 2057 of LNCS,
pages 200–216. Springer-Verlag, 2001.

[3] J. Barnat, L. Brim, and I. Černá. Property Driven Distribution of Nested
DFS. In Proceedinfs of the 3rd International Workshop on Verification and
Computational Logic (VCL’02 – held at the PLI 2002 Symposium), pages 1–10.
University of Southampton, UK, Technical Report DSSE-TR-2002-5 in DSSE,
2002.

[4] G. Behrmann. A performance study of distributed timed automata reachability
analysis. In Proc. Workshop on Parallel and Distributed Model Checking,
volume 68 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2002.

[5] L. Brim and J. Barnat. Distribution of explicit-state ltl model-checking.
In Thomas Arts and Wan Fokkink, editors, Electronic Notes in Theoretical
Computer Science, volume 80. Elsevier, 2003.

593

Barnat, Brim, Černá and Šimeček

[6] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are
better than back edges in distributed ltl model-checking. In Formal Methods in
Computer-Aided Design (FMCAD 2004), Austin, Texas, Proceedings, volume
3312 of Lecture Notes in Computer Science, pages 352–366. Springer, 2004.

[7] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking
based on negative cycle detection. In Ramesh Hariharan, Madhavan Mukund,
and V. Vinay, editors, Proceedings of Foundations of Software Technology and
Theoretical Computer Science (FST–TCS’01), volume 2245 of LNCS, pages
96–107. Springer-Verlag, 2001.

[8] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In
Thomas Ball and Sriram K. Rajamani, editors, Model Checking Software, 10th
International SPIN Workshop, volume 2648 of LNCS, pages 49–73. Springer-
Verlag, 2003.

[9] DiVinE – Distributed Verification Environment. http://anna.fi.muni.cz/divine.

[10] H. Garavel, R. Mateescu, and I.M Smarandache. Parallel State Space
Construction for Model-Checking. In Matthew B. Dwyer, editor, Proceedings
of the 8th International SPIN Workshop on Model Checking of Software
(SPIN’01), volume 2057 of LNCS, pages 200–216. Springer-Verlag, 2001.

[11] O. Grumberg, T. Heyman, and A. Schuster. Distributed symbolic model
checking for µ-calculus. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Proceedings of the 13th Conference on Computer-Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computertech Science, pages 350–
362. Springer-Verlag, July 2001.

[12] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with
SPIN. In Proceedings of the 5th International SPIN Workshop, volume 1680 of
Lecture Notes in Computer Science, pages 22–39. Springer, 1999.

[13] U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In O. Grumberg, editor,
Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS,
pages 256–267, Berlin, Germany, 1997. Springer.

694

PDMC 2005 Preliminary Version

DivSPIN

A SPIN compatible distributed model checker

– Work in progress –

M. Leucker a M. Weber b V. Forejt c J. Barnat c

a Institut für Informatik, Technical University of Munich, Germany

Martin.Leucker@in.tum.de

b Lehrstuhl für Informatik II, RWTH Aachen University, Germany

michaelw@i2.informatik.rwth-aachen.de

c Faculty of Informatics, Masaryk University in Brno, Czech Republic

{xforejt,barnat}@fi.muni.cz

Abstract

This paper describes the design and implementation ideas of an extension of the
parallel and distributed model checker DiVinE to a SPIN compatible distributed
model checker DivSPIN. The goal of DivSPIN is to serve as user-friendly, ready-
to-use system that takes up the recent theoretical and practical developments in
the area of distributed model checkers and combines them with well settled opera-
tional procedures of sequential model checkers to show the benefits of parallel model
checking for typical verification tasks. For this project, the research teams located
at Masaryk University Brno, Czech Republic, RWTH Aachen University, and TU
Munich, Germany join their efforts.

1 Introduction

SPIN is a sequential model checking tool used by thousands of people world-
wide. Promela, the modeling language of SPIN, combines syntactic con-
structs from several popular languages, and became de facto standard specifi-
cation language extensively used in sequential enumerative verification. How-
ever, when verification engineers find themselves in the situation of needing
resources beyond the capabilities of a single computer, Promela models can-
not be verified.

In recent years, research has been conducted in model checking algorithms
which utilize the combined resources of parallel or distributed computers to
further push the borders of still tractable systems. Nevertheless, most of the
so-far developed algorithms have been implemented as research prototypes

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Leucker et al.

Fig. 1. Using DivSPIN

which are often not publicly available, usually undocumented, without user
interface, unstable (in the sense of “prone to change”), and not optimized.
These tools are mainly research vehicles, and as such not ready for widespread
use by third parties.

Additionally, deployment of tools running on parallel computers is more
demanding than for sequential tools. We cite high entrance costs for hardware
acquisition, complex software installation procedures, but also ensuing main-
tenance costs. As a consequence, hardly any benchmark results of parallel
and/or distributed model checking algorithms can be compared fairly, since
the hardware employed for benchmarks varies from a few workstations also
being used for regular tasks, to medium-sized dedicated clusters.

Recently, the DiVinE project, a distributed counterpart of standard se-
quential tools, has been started trying to bring advantages of distributed veri-
fication to the public. Unfortunately, DiVinE neither provides a user-friendly
interface nor a widely used specification language, which are real obstacles for
users that are accustomed to e. g., Promela and SPIN’s graphical interface.

The goal of the DivSPIN project is to create a ready-to-use, large-scale
distributed model checking tool directed at a significant part of the user base
of verification tools, as well as providing hardware to run on. In particular,
the goal of the project is to allow typical users of sequential model checking
tools to easily access DiVinE through a user-friendly interface without the
necessity of transforming Promela model into DiVinE native language.

2 Overview of DivSPIN

DivSPIN is distributed model checker running on a dedicated cluster, cur-
rently the Parsecs cluster located at RWTH Aachen University. The standard
setup is shown in Figure 1. DivSPIN accepts specifications in Promela,
SPIN’s input language, and is able to check never claims and LTL proper-
ties. When checking LTL properties, the user can choose among several (dis-
tributed) model checking algorithms. DivSPIN is started and controlled via
a web interface, to ensure that the user has a minimum of software to install
and maintain.

In a typical scenario, user proceeds as follows. First, a user specifies a

296

Leucker et al.

model using his or her favorite editor. Furthermore, he or she formulates
properties to be checked. For verification, the user selects DivSPIN’s web
page. Both model and property can be either uploaded from a file or typed
directly into a text field. Then the user defines a verification job, henceforward
called task. Therefore the user chooses to constrain the hardware used for the
task or leave the decision to the system. Additionally, the she selects among
several model checking algorithms to be used. More specifically, the user
can choose several algorithms and select to stop if either the first or all have
terminated. This allows comparison of different algorithms. Then the task
is either executed immediately or it is submitted to a queue of waiting tasks
depending on user specification and available hardware resources. During the
verification task, DivSPIN reacts with status messages. Besides the web
interface, a stand-alone interface, and an Eclipse plug-in are conceivable.

For the technical side, DivSPIN relies heavily on DiVinE. The DiVinE

framework, described in the next section, is the back-end providing model
checking algorithms. New components to be developed for DivSPIN are the
Promela front-end and the web interface, both described in more detail in the
next sections.

3 The Core of DivSPIN – DiVinE

The DiVinE project was started in order to support developers of distributed

enumerative model checking algorithms, enable detailed, unified, and credible
comparison of these algorithms, and make distributed verification available to
the public. The project consists of two parts, the DiVinE library and the
DiVinE toolset. The purpose of the library is to provide potential program-
mers with those necessary parts of the implementation that are common to all
distributed algorithms and thus make the development of a distributed algo-
rithm easier. The set of the algorithms that are implemented on the base of the
library forms the toolset. Algorithms in the toolset have common interface,
accept the same inputs, and are easily compared. This makes the DiVinE

project an optimal platform for experimental evaluation of new research ideas
related to parallel and distributed model checking [BBČŠ05,Div].

4 Promela Frontend

As already stated in the introduction, our choice of Promela as model-
ing language was driven by the wish to stay compatible to SPIN and enable
SPIN’s user base to change tools without effort if there is need. To inter-
face with DiVinE, we need to obtain the meaning of Promela programs in
form of state space models. Unfortunately, no complete formal semantics for
Promela is available. Prior work [HN96,Wei97,Bev97] on this topic turned
out to be incomplete, partly outdated, and even wrong in some places. In
order to put our work on a formal basis, we decided to rigorously formalize

397

Leucker et al.

Promela, and then derive an interpreter from this specification. Generally,
our main source of information were the informal description in [Hol03, ch. 7],
with resorting to experimentation with SPIN to clear up ambiguities. Our
requirements for Promela semantics are guided by pragmatism. We would
like to have a simple and complete formal model, which incidentally should
be effortless to implement, even with good performance in practice. Also, we
need to take into account requirements imposed by our main interest, dis-
tributed model checking algorithms. For example, it must be possible to take
snapshots of an interpreter’s state, and restart the computation on another
computer solely from this snapshot.

We have chosen a two-tier approach employing a compiler from Promela

to a simple byte-code language, and a tiny virtual machine (VM) which in-
terprets the compiler’s output. The current implementation consists of about
3,100 lines of C code, and another 1,100 lines for testing and measuring pur-
poses (interactive simulation, depth-/breadth-first search, hash tables).

Only the VM will be embedded into DivSPIN, thus implementational
complexity is splitted into two parts. As additional benefit, implementation
of VM and compiler could be carried out in parallel, based on our formal
specification, allowing rapid development. It turned out that the compiler is
straight-forward to implement as well, using standard text-book techniques.

As major selling points of the VM-based approach we see the reduced com-
plexity in semantic specification and implementation, and good performance
results. Measurements showed that our VM generates state spaces fast enough
that it will not be a dominating factor in DivSPIN, and it is even in the same
range as SPIN’s state space generation. Note, that we deliberately kept actual
model checking separate from the VM, as this is part of DiVinE’s duties.

Generated states are almost equal in size to states generated by SPIN,
with differences of a few bytes per states due to additional book keeping of
our VM. A state contains all information necessary to restart the VM for
further state generation, as requested above. States are represented as opaque
byte sequences, thus eliminating any overhead usually imposed by converting
them into a format suitable for network transmission.

5 The Web Interface

DivSPIN’s web user interface offers an easy way to initiate and control the
verification task. The user interface is a web page viewable with common
browsers, which remote controls verification tools running on a dedicated
cluster through a server process running on its master node (cf. fig. 1). It
is attractive for potential users because they avoid installing (and keeping up-
to-date) any verification tools themselves, which proved to be a non-trivial
task in the past due to the often prototypical nature of these tools. Besides
keeping software dependencies down, users can always work with the latest
and most featureful tool version without additional effort, because it is the

498

Leucker et al.

cluster operators’ responsibility to update their software. Instead, only a web
browser is needed on the client side.

The client part of the interface hides all technical details related to initia-
tion of a distributed computation. Users can submit multiple verification jobs
to the cluster, track and manipulate their status until completion, and finally
retrieve results. Since it is the server part of the interface that is responsi-
ble for submitting and monitoring jobs to its associated cluster, the user can
safely disconnect while his jobs are being processed. The server is capable of
informing the user about the status of running jobs, for example by e-mail.
If the user remains connected while verification jobs are processed, she can
watch various computation statistics such as the current memory load, the
number of states discovered so far, lengths of waiting queues, etc. The in-
terface is also expected to maintain a history of the user’s sessions including
examined models, verified properties, and finished tasks. The user also has
the possibility to set his or her personal preferences which include preferred
hardware to be used, preferred algorithms to be used, etc.

The web interface will be implemented with standard web application soft-
ware, using a servlet container like Apache Tomcat [TAJP]. User requests for
verification tasks or their manipulation arrive at the server solely in form
of HTTP requests, thus side-stepping potential problems with networks re-
stricted by firewalls. The servlet container handles these requests and triggers
corresponding actions to control the cluster. Feedback to users is provided in
form of web pages. Detailed information of verification runs, like state spaces
or error trails, can be downloaded as well for later use.

In order to provide a more GUI-like user experience, standard JavaScript
resp. ECMAScript [ECMA99] is used to update web pages which display
statistics about running and finished jobs, etc.

6 Current State

A first version of the DiVinE library [Div] is available. We have a working
and stable C implementation of the virtual machine part for our Promela

frontend, and first steps of interfacing it with DiVinE have already been ac-
complished successfully. The accompanying compiler is implemented in Java,
and complete enough to compile most examples coming with the official SPIN
distribution, but before production use it needs a thorough code review to as-
sure correct implementation of our specification. Eventually, we plan to make
both VM and compiler available publically.

The biggest part of remaining work needs to go into the web interface for
cluster control, which is currently under development. On the hardware side,
the Parsecs cluster at RWTH Aachen University is available for use.

599

Leucker et al.

References

[BBČŠ05] J. Barnat, L. Brim, I. Černá, and P. Šimeček. DiVinE –
Distributed Verification Environment. Submitted to PDMC’05’s short
presentations., 2005.

[Bev97] W. Bevier. Towards an operational semantics of PROMELA in ACL2.
In Proceedings of the 3rd International SPIN Workshop, April 1997.

[Div] DiVinE. http://anna.fi.muni.cz/divine.

[ECMA99] European Computer Manufacturers
Association. ECMA-262: ECMAScript language specification. Available
at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM, December 1999.

[HN96] Gerard J. Holzmann and V. Natarajan. Outline for an operational-
semantics definition of PROMELA. Technical report, Bell Laboratories,
July 1996.

[Hol03] Gerald J. Holzmann. The SPIN model checker: primer and reference

manual. Addison-Wesley, Boston, MA 02116, September 2003.

[TAJP] The Apache Jarkata Project. Apache Jakarta Tomcat.
http://jakarta.apache.org/tomcat/.

[Wei97] Carsten Weise. An incremental formal semantics for PROMELA. In
Proceedings of the 3rd International SPIN Workshop, 1997.

6100

PDMC 2005 Preliminary Version

A New Reachability Algorithm for Symmetric
Multi-processor Architecture

Debashis Sahoo 1

Electrical Engineering, Stanford University, Stanford, USA

Jawahar Jain 2

Fujitsu Laboratories of America, Inc., Sunnyvale, USA

Subramanian K. Iyer 3

Computer Sciences, University of Texas at Austin, Austin, USA

David L. Dill 4

Computer Science, Stanford University, Stanford, USA

Abstract

Partitioned BDD-based algorithms have been proposed in the literature to solve
the memory explosion problem in BDD-based verification. A naive parallelization
of such algorithms is often ineffective as they have less parallelism. In this paper
we present a novel parallel reachability approach that lead to a significantly faster
verification on a Symmetric Multi-Processing architecture over the existing one-
thread, one-CPU approaches. We identify the issues and bottlenecks in parallelizing
BDD-based reachability algorithm. We show that in most cases our algorithm
achieves good speedup compared to the existing sequential approaches.

Key words: Reachability, Algorithm, Parallel, Multi-threaded

1 Introduction
A common approach to formal verification of hardware is checking invari-

ant properties of the design. Unbounded model checking [3,9] of invariants
is usually performed by doing a reachability analysis. This approach finds
all the states reachable from the initial states and checks if the invariant is
satisfied in these reachable states. However, exhausting the state space using
the reachability approach is an intractable problem. Not surprisingly, such
approaches suffer from the so-called state explosion problem for representing
large state sets.

In practice, reachability analysis is typically done using Reduced Ordered
Binary Decision Diagrams (OBDDs) [1,4]. A more compact representation

1 Email: sahoo@stanford.edu
2 Email: jawahar@fla.fujitsu.com
3 Email: subbuk@cs.utexas.edu
4 Email: dill@cs.stanford.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sahoo

of boolean functions, Partitioned-OBDDs (POBDDs) [8] leads to further im-
provement in reachability analysis [10]. Various improvements to BDD data
structures, variable ordering schemes, as well as the reachability algorithm
itself have also been suggested to improve capturing the total reachable state
space using reachability based verification. However, in practice the verifica-
tion problem typically consumes far more resources than are typically avail-
able for even small sized problems of 100 state variables, and the gap between
requirement and performance is continually growing.

The growing prevalence of, increasingly powerful, clustered high perfor-
mance SMP (Symmetric Multi-Processing) machines appears to be an in-
evitable trend. However, it is not straightforward to devise a single algorithm
to meaningfully use a very large number of processors.

Given the above two trends, it is important to develop efficient parallel
verification algorithms that can appropriately exploit the SMP architecture.
Though the intractability of the problem will remain, the verification time can
get reduced by a significant factor.

In this paper, we show that the naive parallelization of the POBDD-based
reachability analysis doesn’t have good parallelism. We present a novel par-
allel reachability approach that improves the parallelism. Our algorithm also
improves the performance of sequential POBDD based approaches drastically
in some cases. This is because, in sequential POBDD-based algorithms, the
relative order in which the partitions are analyzed plays a critical role in the
overall performance. Finding an optimal schedule is a very hard problem.
Therefore, any heuristic to find a good schedule is likely to not perform well
in all cases. In a few cases, the approach can get stuck in some difficult par-
tition and, hence, many remaining states which otherwise could have been
easily computed are not reached at all. Our algorithm clearly obviates this
scheduling problem since it runs all partitions in parallel. Also, in a parallel
shared-memory environment, using our techniques of Early Communication
and Partial Communication, state space traversal in some partitions can con-
tinue even while remaining partitions are proving to be difficult.

We show that in most cases our algorithm performs much better than the
corresponding sequential run using 8 processors. Using our approach, we can
locate error states significantly faster than other BDD based methods. We
can also show that our results are much better than the standard reachability
algorithms in many passing cases as well. Finally, we show that our method
is more robust than the standard sequential POBDD-based reachability algo-
rithm as it is able to solve various easy reachability instances which prove to
be problematic for current POBDD approaches.

2 Preliminaries

Reachability is based on a breadth-first traversal of finite-state machines [4,9].
The algorithm takes as inputs the set of initial states and a transition relation
(TR) that relates the next states a system can reach from each current state.
The set of reachable states is obtained by repeatedly performing image com-
putations until a fixed point is reached [4,9]. This is termed as the Least Fixed
Point computation. Verification based on reachability can often be improved
by the use of POBDDs [7,10,13]. Essentially, the POBDD based-reachability

2
102

Sahoo

algorithm performs as many steps as possible of image computation within
each partition i in a step of least fixed point within the partition. When no
more images can be thus computed, it synchronizes between partitions by con-
sidering the transitions that originate in partition i and lead out from there.
The term Communication refers to these cross-partition image computations
that are followed by transferring the computed BDDs to other partitions. No-
tice that the POBDD-based reachability algorithm performs a BFS which is
local to individual partitions, and then synchronizes to add states that result
from transitions crossing over from one partition to another. We may charac-
terize this as a region-based BFS, where individual regions of the state space,
i.e, the partitions, are traversed independently in a breadth first manner. We
term the computation within individual partitions as a local Least Fixed Point
computation or a local LFP computation in short.

Related Work

Several methods have been proposed to do parallel verification. Stern and
Dill [16] parallelize an explicit model checker. In [17], parallelized BDDs are
used for reachability analysis. Verification using parallel reachability analysis
has been studied in [5,6,18]. A scalable parallel reachability analysis is pre-
sented in [6]. They perform distributed reachability using the classical BFS
traversal of the state space in a parallel environment, using distributed mem-
ory. A different disjunctive partitioning approach based on iterative squaring
is explored in [2]. A thread-based approach has been applied to Constraint-
Based Verification in [11].

We implemented our algorithm as a multi-threaded program. We would
like to compare our algorithm with other distributed approaches. However,
at the time of submission of this paper, we didn’t have an implementation
of other distributed algorithms to compare with our approach. Therefore, we
keep this as a future work.

3 Improving Parallelism in the Reachability Analysis

The reachability analysis involves construction of a TR and the actual
reachability steps using the TR. We use the standard sequential approach of
building the transition relation. We keep the parallelization of the construction
of the transition relation as a future work. In this paper we parallelize the
reachability algorithm using various heuristic improvement.

The POBDD-based algorithm given in [10] is naturally parallelizable. The
local LFP computation of each partition combined with their communication
can be processed in parallel. We have to wait for all the partitions to finish
their local LFP computation and the communication to begin transferring the
communicated states to the appropriate partition. However, empirically we
find that this simple parallelization of the algorithm in [10] doesn’t have much
parallelism. This may be due to following reasons
High variation of BDD computations:
The performance of the image computations inside each partition depend on
the BDD variable order. We call a partition an easy partition if the BDDs
inside the partition are compact and a hard partition otherwise. For a major-
ity of circuits, the complexity of the BDD computations can have significant
variations between different partitions. In such cases, all easy partitions wait

3
103

Sahoo

for the hard partitions to finish their image computation, which reduces the
parallelism significantly.
Depth of the local LFP computation:
Another reason for the reduced parallelism may be because the depth of the
local LFP computation can vary a lot between partitions. In this case the
partition with smaller depth finish faster whereas the partitions with larger
depth take longer time. This results in many idle processors which reduces
the parallelism.

In practice we find that a large number of partitions wait for a few hard
partitions. To address this issue we use following heuristics[14] to improve the
parallelism.

Early Communication: Communicate states to other partition after the
least fixed point.

Partial Communication: Initiate a partial communication in an idle pro-
cessor.

3.1 Early Communication

After a partition finishes its local LFP computation, we allow the partition
to immediately communicate its states to the other partitions. Each partition
accepts this communicated states asynchronously during their local LFP com-
putation. This would enable the easy partitions to make progress with their
subsequent local LFP computation without waiting for the hard partitions
to finish. Therefore, the early communication from easy partitions to other
easy partitions enables all such partitions to reach a fixed point. This is very
difficult to achieve in sequential partitioned reachability analysis because such
scheduling information is difficult to obtain.

If new states are communicated during early communication, then we
restart the current image computation after adding these states. Such aug-
mentation can make a harder image computation significantly easier in some
cases. This may be because the states that would have been hard to compute
in one partition can be more easily computed in another partition and then
communicated to the first partition.

3.2 Partial Communication

Even after applying the above technique, we found that some partition that
have completed the local LFP on their current states were waiting for other
partitions to communicate some states, so that they can continue their local
LFP computation. This case arises when all the easy partition finish their local
LFP and need communication from a hard partition to make further progress.
To improve parallelism, the active partition initiates a communication in an
idle processor using a small subset of the state space of the hard partition.
The communication introduces new states in the easy partitions. This enables
easy partitions to make progress further with their collective least fixed point
from the communicated states. Intuitively this tries to accelerate the activity
among easy partitions. We found that communicating the full BDD to a dif-
ferent partition is very hard. Therefore, we find a small subset of state space
that can be expressed with a compact BDD (High Density BDD[12]). This
heuristic tries to keep all the processors busy there by improving the paral-
lelism. Further, this heuristic can increase the number of early communication

4
104

Sahoo

instances. Thus, the combined effect of the partial communication and early
communication improves the parallelism significantly.

Parallel-Reachability(n, TR, InitStates) {
Create n partitions for InitStates

Run in parallel for each partition i{
After every microsteps runs

ImproveParallelism(i) {
Get all the communicated states
Calculate LeastFixedPoint(Rch) in partition i

Compute cross-over states from i to all parts
}

} until (No new state is found in any partition);
}
ImproveParallelism(n: Partition Number) {

check and add all the communicated states
if new states are added

restart current image computation
request a waiting partition to initiate

partial communication procedure
}

Fig. 1. Parallel Reachability Algorithm

3.3 Parallel Reachability Algorithm

We present our complete parallel POBDD-based reachability algorithm as
shown in Figure 1 using the techniques discussed in last section.

We run the local LFP computation combined with the Communication
in parallel. All computation inside a partition is managed by a dedicated
processor. Each processor polls for the communicated states from the other
processor. After every micro-step of the image computation, each processor
calls a function ImproveParallelism that implements two heuristics for im-
proving parallelism. The first heuristic is to do early communication. As a
part of the first heuristic, the function checks whether other processors have
communicated some states to the current partition. If it finds any proces-
sors, then it transfer all the communicated states from their corresponding
partitions to the current partition. This simple check and update subroutine
performed by each processor implements the early communication heuristic.
The second heuristic is to do partial communication. As a part of this heuris-
tic, every active processor checks for an idle thread. If an idle processor is
found, then it gives a small subset of the state space from the current par-
tition to the idle processor. The idle processor start a Communication from
this subset of states to the partition associated with the idle processor.

3.4 Termination Condition

In our approach, each processor manages a partition. The processor goes
back to idle state if no new states are communicated to the partition associated
with that processor. One of the processor manages the global termination
conditions. The processor asserts a global termination flag if all the processors
are idle.

4 Engineering Issues
Our implementation of the POBDD-data structure and algorithms uses

VIS-2.0 package. The VIS-2.0 package uses CUDD [15] for the BDD opera-
tions. We implemented our parallel reachability algorithm as a multi-threaded

5
105

Sahoo

program in a symmetric multi-processing (SMP) architecture. SMP systems
can be programmed using several different methods. In a multi-threaded ap-
proach, the program divides the work across the processors by spawning multi-
ple light-weight threads, each executing on a different processor and perform-
ing part of the calculation. Since all threads share the same program space,
there is no need for any explicit communication calls. However, designing a
multi-threaded FV approach using BDDs poses significant challenges.
BDD Issues in Multi-threaded Reachability: The CUDD BDD package
is designed for use in a non-thread based environment. Further, there are
various optimization features in CUDD, that prevent it to function correctly
in a multi-threaded environment. It uses many global variables, which needs
to be synchronized in a multi-threaded environment. Nevertheless, fixing this
problem enable the program to behave correctly provided each thread work
on their respective BDD-managers. However, this leads to a non-deterministic
behavior in the BDD-computation.

The CUDD package uses various memory based optimization to boost its
performance. However, such optimizations behave non-deterministically in
a multi-threaded environment. Therefore, the produced computation trace
is often non-reproducible and the program becomes very difficult to debug.
It also results in many orders of magnitude difference in run times. Thus,
the program behavior is not predictable. However, deterministic behavior
of the program is very important for the evaluation of its performance. We
re-engineered all the relevant features in the CUDD package that leads to a
non-deterministic behavior. This enables the BDD-package to be safe to run
in a multi-threaded environment and makes the program more conveniently
analyzable. However, this was surprisingly painful to implement.

In addition to the above, each thread needs to synchronize based on a de-
terministic measure before communicating to another thread. Otherwise, the
program would behave non-deterministically because of the non-determinism
in the thread scheduling. We synchronize the threads using a fixed count
based on the number of BDD conjunction operations and the number of sift
operations during variable reordering. Further, we find that the deterministic
version of the program performs as good as the non-deterministic program as
described in Section 5.2.
Performance Issues on SMP machine: Further, the scheduling of the
threads in an SMP machine, although improved significantly over the years,
might not be optimal for our application. Each thread, in our case use separate
BDD managers for carrying out various BDD operations. Therefore, if the
system thread scheduler assigns the thread to a different processor, then the
thread would loose all its cached data and the new processor would re-fetch all
the necessary data to carry out the BDD operations. Thus, assigning a thread
to a new processor would incur unnecessary large overhead. However, a very
simple scheduling strategy of assigning each thread to an exclusive processor
would reduce the overhead generated by the heavy cache misses significantly.
On the other hand, it is quite difficult to quantify the performance penalty
due the non-optimality of scheduling threads.
Performance Issues on uniprocessor machine: Furthermore, the sim-
ulated parallel execution of the multi-threaded algorithm in a uniprocessor

6
106

Sahoo

machine may perform better than other sequential algorithm because of the
scheduling flexibility. However, the program may have large overhead due to
the cache misses because of the frequent switching of threads in one processor.
We find that reducing the frequency of switching of threads in a uniprocessor
machine significantly improve the results. Moreover, a simulated sequential
approach in an 8-CPU machine, where each thread can potentially use differ-
ent processor cache improves the results further. We use explicit locks to run
one thread at a time in the 8-CPU machine. We find that the performance
in this simulated case is 2-6 times faster that the corresponding uniproces-
sor run. Thus, the uniprocessor performance is significantly penalized by the
cache overhead. Therefore, we provide results from this simulated sequential
approach in the 8-CPU machine in our final table to give a good overview of
the parallelism achieved. However, the performance in any uniprocessor ma-
chine is much worse than the simulated sequential case in an 8-CPU machine.

5 Experimental Results

We run our experiments using default cluster size of 5000, lazy sift reorder-
ing, MLP image method on a 8-way SMP Linux machine based on Intel(R)
Xeon(TM) MP CPU 2.20GHz and 8GB RAM. We run all the sequential al-
gorithms on a Linux box with Intel(R) XEON(TM) CPU 2.20GHz and 2GB
RAM. We report results only on a few VIS-verilogand industrial circuits be-
cause of limited time. Results on full VIS-verilogbenchmark circuits will ap-
pear in the final version. In keeping with the typical timeout limits set in our
in-house verification tools, we set a timeout of 5000 seconds on all circuits.
For sake of brevity, we present our results only on those circuits where VIS
requires more than 100 seconds. Results are omitted for the circuits where all
the methods timeout. We use 8 different partitions for all POBDD-based ap-
proaches. We select the partitioning variable using the method in [10]. We use
same partitioning strategy for all partitioned approaches in order to perform
a fair comparison.

5.1 Overview of Table

Table 1 shows our invariant check results on various public and industrial
circuits. In Table 1, we separate the total reachability time into the transi-
tion relation construction time and the actual reachability time. We compare
the actual reachability time taken by the following approaches: the standard
approach of VIS, the simple partitioning approach and our parallel POBDD-
based reachability algorithms. We compare the naive parallel approach with
the successive introduction of the two heuristics for communication – early
communication and partial communication. The columns in the table are
arranged in the same order. The first column is the circuit name, followed
by transition relation construction time, vis, sequential POBDDs, naive par-
allelization, the parallel approach with just early communication and finally
with both techniques. The final column has two parts – 8 CPUs and 1 CPU,
which report, respectively, the total reachability time in a parallel environment
using 8 CPUs and the time in a simulated sequential approach in an 8-CPU
machine. The simulated sequential approach is discussed in section 4. Note
that many of the sequential results are better than standard POBDD-based
reachability because of the partition and communication scheduling flexibil-

7
107

Sahoo

Parallel (early comm +
Parallel 8 CPUs partial comm)

TR seq 8 CPUs (early Parallel

ckts time vis pobdd (naive) comm) 8 CPUs 1 CPU

(a) Industrial Circuits
c1 36 371 T/O T/O T/O 227 286
c2 12 3346 1789 1564 93 917 917
c3 17 2540 T/O T/O T/O 62 228
c4 11 2236 2084 1174 161 161 509

(b) Few VIS-benchmark Circuits
spprod 5 891 61 53 93 440 510

am2910 9 T/O 281 122 204 356 386
palu 3 273 4 9 8 9 9

s1269b-1 2 3635 T/O T/O 59 60 72
s1269b-5 2 2287 T/O T/O 55 55 67
blkjack-3 2 T/O 1213 470 340 70 98

(c) Simple Industrial Circuits
d1 11 6 T/O T/O 13 13 13
d2 15 10 11 13 45 30 39
d3 12 15 21 23 100 100 130
d4 8 11 T/O T/O 39 38 60
d5 7 12 16 15 34 37 37

(T/O = Timeout of 5000 sec)

Table 1
Time (in sec) for Invariant Checking on a few VIS-verilog and Industrial Circuits

using 8 CPUs
ity. The details of the processor utilization are presented in Section 5.3 using
Gantt charts.

5.2 Efficiency Issues

Table 1 is composed of three different sections. Section (a) and (c), respec-
tively shows the results on a few hard and easy industrial circuits. Section
(b) shows the results on a few VIS-verilog benchmark circuits. As can be
seen from the table, the resulting parallel run times with all the heuristics,
i.e the last column of the table have no timeouts. They are also clearly su-
perior to classical partitioned-reachability. The proposed parallel approach
will all heuristics, is also usually superior to the less sophisticated parallel
techniques. The parallel approach with only early communication, i.e the 6th
column in Table 1, often works well and have less timeouts compared to the
naive parallel approach. Consider the circuit blkjack-3, which represents the
best scenario, where the results gets better and better after successive addition
of the heuristics. We find that the parallel approach is usually more robust
than the sequential approaches. Note that the last column shows the results
of simulated sequential approach in an 8-CPU machine to demonstrate the
parallelism achieved. The corresponding uniprocessor results are 2-6 times
worse than the simulated sequential approach. We find that the parallelism is
very small and hope to improve it in a future work.
Scheduling is a Problem Even on Easy Functions : Consider the results
of some properties from an industrial design whose OBDDs are fairly small as
shown in Table 1 (c). The partitioned reachability for such cases gets harder.
Both the standard sequential POBDD-based reachability and naive parallel
reachability falls in the trap of an inefficient computation. An early commu-
nication often helps in this case, as can be seen from the table. However, both
early communication and partial communication are needed to finish all the
circuits. The reachability of small circuits using 8 partitions might contribute

8
108

Sahoo

redundancy [10]
0.3 0.5 0.7

Parallel seq Parallel seq Parallel seq
c1 227 288 226 286 229 292
c2 73 386 917 917 2569 2570
c3 1492 1493 62 228 1407 T/O
c4 2967 2970 161 509 158 520
d1 26 28 13 13 92 138
d2 30 40 30 39 31 39
d3 53 67 100 130 102 133
d4 29 37 38 60 38 59
d5 13 13 37 37 37 38
s1269b-1 61 73 60 72 165 183
sp prod 446 510 440 510 259 260

Time in sec
ckts non-det det

(a) Industrial Circuits
c1 T/O 227
c2 962 917
c3 809 62
c4 903 161

(b) Simple Industrial Circuits
d1 13 13
d2 24 30
d3 84 100
d4 30 38
d5 13 37

(T/O = Timeout of 5000 sec)

Table 2
Time (in sec) for Invariant Checking on the

Industrial Circuits using different redundancy
value in a parallel and sequential framework

Table 3
Time (in sec) for Invariant Checking
on the Industrial Circuits using the

non-deterministic and the
deterministic program.

to some overhead in the partitioned reachability approaches.
Further, we will like to comment on the relative speedup of the multi-

threaded 8-CPU approach over the simulated sequential approach. This speedup
is not only proportional to the algorithm but also to the choice of partitioning
variables. For the same algorithm, even though the same partitioning vari-
ables may be provided to both the approaches, depending on the splitting
choices, the amount of parallelism that is generated can vary dramatically.
For example, in Table 2 it can be seen that for almost half of the entries,
by varying redundancy and balancedness, the two parameters that are cal-
culated for evaluating partitioning variables, the amount of parallelism that
is generated can vary dramatically. This points to the need for an approach
which can dynamically evaluate different choices in deciding the partitioning
variables. Such an idea is motivated by the strong results presented in Sahoo
et al. [13], where it was shown the successful BDD decisions can be taken if
we generate different short traces of reachability computation for each choice
and then make the required decision.

Finally, we show that the deterministic version of our program doesn’t loose
the performance by a great margin to the non-deterministic version. Table 3
shows the results of Invariant checking on the industrial circuits using both
the non-deterministic and the deterministic version of our program. As we
can see from the table, the performance of non-deterministic program is very
similar to the deterministic program in the simple circuits, i.e. Table 3 (b).
However, the performance of the deterministic program is better than the
non-deterministic version in the hard circuits in Table 3 (a). Therefore, we
strongly prefer the deterministic version to the non-deterministic version.

5.3 Improving Parallelism

Consider the reachability analysis of s1269b-5 from the VIS Verilog bench-
mark suite. As shown in Table 1 (b), we perform reachability analysis using
8 partitions, each of which runs in a separate thread.

Figure 2 shows the Gantt charts of three parallel reachability analysis on
s1269b-5 circuit. We use the three charts to show the effect of the two heuris-
tics added successively to the reachability algorithm. Figure 2(a) shows Gantt

9
109

Sahoo

0s
 T

ot
al

 ti
m

e
=

 5
00

0s

0s
 T

ot
al

 ti
m

e
=

 5
5s

0s
 T

ot
al

 ti
m

e
=

 5
5s

(a) (b) (c)

Fig. 2. Parallel Reachability with successive addition of each heuristics

chart of the naive parallel reachability. Figure 2(b) shows the Gantt chart of
reachability analysis when early communication is allowed. Figure 2(b) shows
the Gantt chart of reachability analysis when both early communication and
partial communication are allowed. Each partition is represented by a vertical
broken line. The filled segment represents the cpu time for the partition to
perform a computation. At the end of each such stage, a small cross indicates
the communication of states to other partitions. A break in the line indicates
that the corresponding processor is idle. However, in a multi-threaded unipro-
cessor environment, the processor can immediately schedule another thread
for execution. The total time is the reachability time on a multi-processor
machine. As we can see from the figure, more gaps are being filled with the
addition of each heuristic. This shows a clear trend of improved parallelism
in each case.

6 Conclusion

Partitioning based state space traversal approaches where reachability on
each partition is processed independently appear very suited for paralleliza-
tion. However, we find that a naive parallelization of such algorithms is often
ineffective. In this paper we discuss an algorithm suitable for parallel reach-
ability on a symmetric multi-processing architecture. We show that in most
cases our algorithm achieves good speedup in a multi-processor shared mem-
ory environment, compared to the corresponding sequential run. Further,
the parallel algorithm is significantly faster than both the standard sequen-
tial reachability algorithm as well as the existing partitioned approaches es-
pecially when the property is erroneous. We have made the multi-threaded
program behavior deterministic. We found that the performance of both the
non-deterministic and the deterministic program is similar.

Our investigation, one of the first in the area of a parallel reachability al-
gorithm exploiting SMP architecture reveals that there are significant areas
of performance improvements. These include improving scheduling of threads
on various processors, selecting window functions that can potentially enhance
parallelism, and communication strategies between threads to decrease num-
ber of idle CPUs.

10
110

Sahoo

References

[1] Bryant, R., Graph-based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers C-35 (1986), pp. 677–691.

[2] Cabodi, G., P. Camurati, L. Lavagno and S. Quer, Disjunctive partitioning and
partial iterative squaring: An effective approach for symbolic traversal of large
circuits., in: DAC, 1997, pp. 728–733.

[3] Clarke, E. and E. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic, LNCS 131.

[4] Coudert, O., C. Berthet and J. C. Madre, Verification of sequential machines
based on symbolic execution, in: Proc. of the Workshop on Automatic
Verification Methods for Finite State Systems, 1989.

[5] Garavel, H., R. Mateescu and I. Smarandache, Parallel state space construction
for model-checking, in: SPIN workshop on Model checking of software (2001),
pp. 217–234.

[6] Heyman, T., D. Geist, O. Grumberg and A. Schuster, Achieving scalability in
parallel reachability analysis of very large circuits, in: CAV, 2000.

[7] Iyer, S., D. Sahoo, C. Stangier, A. Narayan and J. Jain, Improved symbolic
Verification Using Partitioning Techniques, in: Proc. of CHARME 2003,
Lecture Notes in Computer Science 2860, 2003.

[8] Jain, J., et. al., Functional Partitioning for Verification and Related Problems,
Brown/MIT VLSI Conference (1992).

[9] McMillan, K. L., “Symbolic Model Checking,” Kluwer Academic Publishers,
1993.

[10] Narayan, A., et. al., Reachability Analysis Using Partitioned-ROBDDs, in:
ICCAD, 1997, pp. 388–393.

[11] Pixley, C. and J. Havlicek, A verification synergy: Constraint-based verification,
in: Electronic Design Processes, 2003.

[12] Ravi, K. and F. Somenzi, High-density reachability analysis, in: ICCAD, 1995,
pp. 154–158.

[13] Sahoo, D. and S. Iyer, et. al., A Partitioning Methodology for BDD-based
Verification, in: FMCAD, 2004.

[14] Sahoo, D., J. Jain, S. K. Iyer, D. L. Dill and E. A. Emerson, Multi-threaded
reachability, in: To appear In DAC, 2005.

[15] Somenzi, F., CUDD: CU Decision Diagram Package ftp://vlsi.colorado.edu/pub
(2001).

[16] Stern, U. and D. L. Dill, Parallelizing the murphy verifier, in: CAV, 1997.

[17] Stornetta, T. and F. Brewer, Implementation of an efficient parallel BDD
package, in: DAC, 1996, pp. 641–644.

[18] Yang, B. and D. R. O’Hallaron, Parallel breadth-first bdd construction, in:
symposium on Principles and practice of parallel programming (1997), pp. 145–
156.

11
111

