
Weak Memory Models as LLVM-to-LLVM
Transformations?

Vladimı́r Štill, Petr Ročkai??, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xstill,xrockai,barnat}@fi.muni.cz

Abstract. Data races are among the most difficult software bugs to dis-
cover. They arise from multiple threads accessing the same memory lo-
cation, a situation which is often hard to discern from source code alone.
Detection of such bugs is further complicated by individual CPUs’ use
of relaxed memory models. As a matter of fact, proving absence of data
races is a typical task for automated formal verification. In this paper,
we present a new approach for verification of multi-threaded C and C++
programs under weakened memory models (using store buffer emulation),
using an unmodified model checker that assumes Sequential Consistency.
In our workflow, a C or C++ program is translated into LLVM bitcode,
which is then automatically extended with store buffer emulation. After
this transformation, the extended LLVM bitcode is model-checked against
safety and/or liveness properties with our explicit-state model checker
DIVINE.

1 Introduction

Finding concurrency-related errors, such as deadlocks, livelocks and data races
and their various consequences, is extremely hard – the standard testing ap-
proach does not allow the user to control the precise timing of interleaved oper-
ations. As a result, some concurrency bugs that occur under a specific interleav-
ing of threads may remain undetected even after a substantial period of testing.
To remedy this weakness of testing, formal verification methods, explicit-state
model checking in particular, can be of extreme help.

Concurrent access to shared memory locations is subject to the so called
memory model of the specific CPU in use. Generally speaking, in relaxed mem-
ory models, the visibility of an update to a shared memory variable may be
postponed or even reordered with other updates to different memory locations.
Unfortunately, most programming and modelling languages were designed to

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.

?? The contribution of Petr Ročkai has been partially supported by Red Hat, Inc.
† The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-29817-7_13

merely mimic the principles of the underlying sequential computation machine,
and therefore lack the syntactic and semantic constructs required to express
low-level details of the concurrent computation and the memory model of the
underlying hardware architecture in particular. Moreover, for obvious reasons,
programmers design parallel algorithms with the Sequential Consistency [14]
memory model in mind, under which any write to or read from a shared variable
is instantaneous and immediately visible to all concurrent threads or processes
– an assumption that is far from the reality of contemporary processors.

To protect from inconsistencies due to the reordered or delayed memory
writes in the relaxed memory model architectures, specific low-level hardware
mechanisms, such as memory barriers, have to be used. A memory barrier makes
sure that all the changes done prior the barrier instruction are visible to all other
processes before any other instruction after the barrier is executed. For more
details on how memory barriers work we kindly refer the reader to technical
literature. Naturally, the implementation details of a specific relaxed memory
model depend on the brand and model of a CPU in use [19].

As a result, programs written in programming languages such as C do not
contain enough information for the compiler to emit the code whose behaviour
is both correct with respect to the incomplete specification given by the source
code and at the same time as efficient as possible. A widely accepted com-
promise is that sequential code is guaranteed to be semantically correct, but
any concurrent data access is the responsibility of the programmer. Such access
needs to be guarded with various programming and modelling language addons
such as builtin compiler functions, operating system calls, atomic variables with
(optional) explicit memory ordering specification, or other non-language mech-
anisms. Since the correctness of behaviour depends on a human decision, often
the resulting binary code does not do exactly what it was intended to do by its
developer.

This is exactly where formal verification by model checking can help. The
model checking procedure [7] systematically explores all configurations (states)
of a program under analysis to discover any erroneous or unwanted behaviour
of the program. The procedure can easily reveal states of the program that
are only reachable under a very specific thread interleaving; clearly, such states
may be very hard to reach with testing alone. Examples of explicit-state model
checkers include SPIN [10], DIVINE [4], or LTSmin [12]. Unfortunately, none of
the mentioned model checkers have direct support for model checking programs
under relaxed memory models. Instead, should a user be interested in verification
of a program under relaxed memory model, the program has to be manually (or
semi-manually) augmented to capture relaxed memory behaviour.

The main contribution of our paper is in a new strategy to automate model
checking of C and C++ programs under relaxed memory model without the
need of modification of the interpreter used by the model checker itself. Note
that interpreting C and C++ alone is a challenging task and any extension of the
interpreter towards relaxed memory models would only make it harder. In fact
model checkers do not typically rely on direct interpretation of C or C++ code,

but use some other, syntactically simpler, representation of the original program.
The model checker DIVINE, for example, interprets LLVM bitcode, which is an
intermediate representation of the program created by an LLVM-based compiler.

In order to perform verification of C and C++ programs under relaxed mem-
ory model, we suggest to augment the original program and extend it with further
data structures (store buffers and a cleanup thread) to simulate the behaviour
of the original program under relaxed memory model. However, for the same
reasons as above, we avoid direct transformation of C or C++ programs – it
would require to parse the complex syntax of a high-level programming lan-
guage. Instead, we apply the transformation at the level of LLVM bitcode, after
the original program is translated by a C++ compiler, but before the represen-
tation is passed to the model checker for verification. This scenario allows us to
completely separate the weak memory extension from the use of a model checker,
hence, it allows us to use any model checker capable of processing LLVM bitcode
under Sequential Consistency. Our LLVM bitcode to LLVM bitcode transforma-
tion adds store buffer data emulation to under-approximate Total Store Order
(TSO) – a particular theoretical model of a relaxed memory model. The trans-
formation is implemented within the tool called LART (LLVM Abstraction and
Refinement Tool, Section 7.1 in [22]) that is distributed as a part of DIVINE
model checker bundle, under the 2-clause BSD licence.

The rest of the paper is organised as follows. Section 2 lists the most relevant
related work, Section 3 gives all the details of the LLVM transformation, Section 4
describes some relevant but rather technical implementation details, Section 5
gives details on an experimental evaluation of our approach, and finally Section 6
concludes the paper.

2 Related Work

The idea of using model checkers to verify programs under relaxed memory mod-
els has been discussed first in connection with the explicit-state model checker
Murϕ [8]. The tool was used to generate all possible outcomes of small, assem-
bly language, multiprocessor programs using a given memory model [21]. This
was achieved by encoding the memory model and program under analysis in
the Murϕ description language, which is an idea applied in many later papers,
including this one.

To cope with the rather complex situation around memory models, theoreti-
cal models have been introduced to cover as many instances of different relaxed
memory behaviours as possible. The currently most used theoretical models are
the Total Store Order (TSO) [25], Partial Store Order (PSO) [25] and x86-TSO
which is a Total Store Order enriched with interlocking instructions [16]. In those
theoretical models, an update may be deferred for an infinite amount of time.
Therefore, even a finite state program that is instrumented with a possibly infi-
nite delay of an update may exhibit an infinite state space. It has been proven
that for such an instrumented program, the problem of reachability of a partic-

ular system configuration is decidable, but the problem of repeated reachability
of a given system configuration is not [2].

A particular technique that incorporates TSO-style store buffers into the
model and uses finite automata to represent the possibly infinite set of possi-
ble contents of these buffers has been introduced in [16]. Since the state space
explosion problem is even worse with TSO buffers incorporated into the model,
authors of [16] extended their approach with a partial-order reduction technique
later on [17].

A different approach has been taken in [11], where the algorithm to be anal-
ysed was transformed into a form where the statements of the algorithm could
be reordered according to a particular weak memory ordering. The transformed
algorithm was then analysed using a model-checking tool, SPIN in that case.

A lot of research has been conducted to actually detect deviation of an execu-
tion of the program on a relaxed memory model architecture from an execution
under Sequential Consistency (SC). An SC deviation run-time monitor using op-
erational semantics [18] of TSO and PSO was introduced in [6], where authors
considered a concrete, sequentially consistent execution of the program, and sim-
ulated it on the operational model of TSO and PSO by buffering stores, as long
as they generated the same trace as the SC execution. Another approach to
detect discrepancies between a sequential consistency execution and real execu-
tions relied on axiomatic definition of memory models and (SAT-based) bounded
model checking [5].

The problem of relaxed memory model computation has been addressed also
in the program analysis community. Given a finite-state program, a safety speci-
fication and a description of the memory model, the framework introduced in [20]
computes a set of ordering constraints that guarantee the correctness of the pro-
gram under the memory model. The computed constraints are maximally per-
missive: removing any constraint from the solution would permit an execution
that violates the specification. To address the undecidability of the problem, an
abstraction from precise memory models has been considered by the BLENDER
tool [13]. The tool employs abstract interpretation to deliver an effective verifi-
cation procedure for programs running under relaxed memory models.

Another program analysis tool, called OFFENCE, was introduced to ensure
program stability [1] by inserting a memory barrier instruction where needed
– an approach also used in [17]. The problem of relaxed memory model and
correct placement of synchronisation primitives is also relevant for the compiler
community [9].

The problem of LTL model checking for an under-approximated TSO memory
model using store buffers was also evaluated in [3], where authors proposed
transformation of the DVE modelling language programs to simulate TSO.

3 Emulation of Relaxed Memory in LLVM Bitcode

We have chosen to provide an under-approximation of the TSO memory model,
both for its simplicity and the fact that it closely resembles the memory model

int x = 0, y = 0;

1 void thread0() {

2 y = 1;

3 cout << "x = " << x << endl;

4 }

1 void thread1() {

2 x = 1;

3 cout << "y = " << y << endl;

4 }

main memory

0x04 0x08

x = 0 y = 0

store buffer for thread 0 store buffer for thread 1

0x08 1 32 0x04 1 32

thread 0

store y 1;

load x;

thread 1

store x 1;

load y;

Fig. 1. In this example, each of the threads first writes into a global variable and
later reads the variable written by the other thread. Under sequential consistency, the
possible outcomes would be x = 1, y = 1; x = 1, y = 0; and x = 0, y = 1, since
at least one write must proceed before the first read proceeds. However, under TSO
x = 0, y = 0 is also possible: this corresponds to the reordering of the load on line 3
before the independent store on line 2, and can be simulated by performing the store
on line 2 into a store buffer. The diagram shows (shortened) execution of the listed
code. Dashed lines represent where given value is read from/stored to.

used by x86 computers. In this memory model, all stores are required to become
visible in the same order as they are executed; however, loads can be executed
before independent stores. This situation can be emulated by per-thread store
buffers – stores are performed into store buffers and later flushed into main
memory. Loads then have to first consult their thread’s respective store buffer,
and if it does not contain the address in question, proceed by consulting the
main memory. Loads do not see changes that are recorded only in store buffers
of other threads. We can see an illustration of the TSO memory model, and its
simulation using store buffers, in Figure 1. While in the sequentially consistent
case, the result x = 0, y = 0 would not be possible, under TSO it is a valid output
of the program, and indeed it can be proved reachable by running DIVINE on
the transformed code. Note that store buffers are flushed non-deterministically,
using a dedicated thread; in particular, we run a dedicated flushing thread for
each worker thread.

Note that we deliberately avoid precise (unbounded store-buffer) simulation
of the theoretical TSO memory model, as this could easily result in infinite
state space of the program under verification. However, the store buffer size
can be passed as a parameter to the bitcode transformation. This way, we can

make both reachability and LTL verification decidable and connect it seamlessly
to an existing explicit-state framework. Please note that this approach only
under-approximates the set of all TSO behaviours. I.e., when DIVINE finds a
counterexample in the modified model, this counterexample can indeed occur
in some runs of the given program on some real hardware with TSO semantics.
On the other hand, not finding a counterexample does not guarantee error free
execution on machines with store buffers deeper than specified for verification.
Obviously, setting the size of store buffers is a matter of compromise – larger
buffers will result in more precise verification, but also in a larger state spaces.

3.1 Infinite Delay Problem

For safety properties, such as assertion violation and/or memory safety, delaying
writes indefinitely (never flushing them from a store buffer) is not a problem, as
any violation of safety property is witnessed by finite path and for each run with
infinite delay, there also exists (possibly finite) run where each write is eventually
flushed. In infinite runs, however, such as those constructed as counterexamples
to liveness properties, infinite delays could pose a problem. Imagine, for example,
the following two threads:

bool x = false, y = false;

1 void thread0() {

2 y = true;

3 while (!x) { AP(w0) }

4 for (;;) { /* work */ }

5 }

1 void thread1() {

2 x = true;

3 while (!y) { AP(w1) }

4 for (;;) { /* work */ }

5 }

and a liveness property written (using LTL) as FG(¬w0 ∧ ¬w1). Assuming a
separate thread to perform store buffer flushes, it is easy to see that this property
holds only if the buffers are actually flushed on every possible run. However,
since flushing happens non-deterministically, it may actually never happen on
an infinite run. While this can be viewed as theoretically correct, it does not
correspond to any real-world behaviour, where delayed writes will eventually
finish and the program eventually proceeds. To counteract this inconsistency, we
ask our model checker to assume weak fairness [15], where it is guaranteed that
every non-blocking thread has performed infinitely many actions in an infinite
run.

In [3], authors proposed to handle this problem by extending LTL specifi-
cation to include this store buffer fairness criteria. In our case though, we have
chosen to implement our transformation in a way which does not require any
additional specification and store buffer fairness is implied by the standard weak
fairness.

3.2 Invalidated Variable Store Problem

Another issue to deal with are delayed flushes from a store buffer that come at
the time when the object that should be written into does not exist anymore in

the main memory. As both memory allocation and stack depth can change at
the run-time, it might happen that an entry in the store buffer points to invalid
location (either given memory chunk was deallocated by the user, or it lived
in a stack frame that has already been abandoned). To solve this problem, we
would need to make sure that inaccessible addresses are evicted from the store
buffers. For dynamic memory, this can be done by overriding the function which
deallocates objects from memory in such a way that it first iterates over all store
buffers and evict entries into the to-be-freed memory before calling the original
deallocate function.

For stack memory, however, the situation is more complicated – it is not
sufficient to evict all the stack-frame-allocated memory from store buffers before
returning from a function, because an exception can cause stack unwinding,
which can also result in invalid references in store buffers. This means that
cleanup handlers [24] need to be added to each function to deal with the situation.

4 Implementation

First of all, let us briefly explain how LLVM bitcode is used by our target model
checker DIVINE to support for C/C++ verification. There are two levels below
the LLVM bitcode of the program to be verified – an interpreter and an LLVM
userspace. The interpreter is used directly by the model checker to generate and
explore the state space graph by executing LLVM instructions. The interpreter
detects errors such as invalid memory dereference, memory leaks, assertion vi-
olations, etc. The interpreter has to be aware of threads and dynamic memory
management, hence, its role is similar to what the CPU and the core of the
operating system do when executing the code natively. The userspace, on the
other hand, corresponds to the runtime of the programming language, that is,
it provides LLVM bitcode for the basic libraries required by the given program-
ming language and/or threading model. The userpsace and interpreter together
provide the user with a standards-compliant interface for user’s programming
language of choice.

While in general, the separation of work between the interpreter and
userspace could be almost arbitrary (one could, for example, include the entire
pthread library in the interpreter), it is advantageous to keep the interpreter as
simple as possible, pushing most of the required functionality into the userspace.
Therefore, DIVINE provides a fairly small set of intrinsic functions (sixteen in to-
tal), which give access to the necessary functionality provided by the interpreter.
The rest is left to userspace.

The support for relaxed memory verification, such as functions that simulate
store buffers, thus need not come separately for every program to be verified
under relaxed memory model, but may actually become a part of the DIVINE
LLVM userspace. However, it is not possible to implement weak memory simula-
tion through addition of userspace functions alone – we need to change the be-
haviour of memory manipulation instructions (such as loads, stores, and fences).
For this reason, we implemented an LLVM to LLVM bitcode transformation pass,

which translates relevant instructions into calls to the relevant userspace func-
tions. The actual simulation of the memory model is thus implemented within
the userspace and is separate from the original program. As a result of this de-
sign choice, this transformation can be easily modified to work with other LLVM
model checkers and with different weak memory models.

4.1 Updates to LLVM Userspace

Currently, LLVM userspace provides replacement functions for load, store

and fence. The relevant userspace functions can be identified by their
__lart_weakmem prefix. Store buffers are represented by a thread-local array
with one record for each store – this record contains the address, the value itself
and the bit width of the value. We have chosen to limit a single store to 64
bits, which is the usual size atomically written by modern CPUs and also the
maximal size of standard integer types in C. Each store then pushes a record
into the local store buffer, while loads first consult the local store buffer for an
up-to-date value, and if it is not present proceed to load from memory. A fence
flushes all the entries from the local store buffer.

Note that block memory manipulation functions have to be replaced too, to
protect them from bypassing the store buffers. Hence, the userspace provides
replacements for block memory manipulation functions such as llvm.memmove,
llvm.memcpy, etc.

Further, atomic LLVM instructions, e.g. cmpxchg, are rewritten within the
transformation to use only functions implemented within the userspace. How-
ever, we currently only support sequentially-consistent ordering of atomics
(which is the default ordering for atomic variables in C++11). Further exten-
sions to support all atomic access orderings supported by LLVM/C++11 are
planned.

Finally, attention had to be paid to initialisation of the store buffers. Due to
the nature of global variable constructors in C++ which can run in arbitrary
order, we cannot use non-trivial constructors for store buffers, as this could
cause the constructor to run after some calls to __lart_weakmem_* functions
have already happened. Therefore, the store buffer array is initialised to a null
pointer and allocated in the first call to one of the __lart_weakmem_* functions.

4.2 LLVM to LLVM Transformation

The transformation is implemented as part of the LART tool. It basically iterates
over all the instructions in the original LLVM bitcode and replaces some of them
with calls to the corresponding replacement functions.

To perform this transformation correctly, we had to introduced special LLVM
function attributes: bypass, tso, and sc, denoting in what mode a particular func-
tion should operate. Functions marked bypass are not subject to the transfor-
mation at all, functions marked tso are fully processed by the transformation
as indicated above. In functions marked sc, additional memory barriers are in-
serted at the beginning of the function and after a call to any non-SC function.

Note that it is important that the functions which implement the relaxed weak
memory model itself are not transformed; for this reason, all __llvm_weakmem_*
functions are annotated as bypass. The default behaviour of the transformation
on functions that are not annotated with any of the attributes can be set by a
parameter passed to the transformation.

Since LLVM allows loads and stores larger than 64 bits (either large scalar
types, such as 128 bit integers, or aggregate values), we first break these large
loads and stores into chunks of at most 64 bit-wide operations in a separate
transformation pass and only after this is done, we perform the instruction sub-
stitution transformation as outlined above.

Finally, to avoid interference from compiler optimisations, some of the mem-
ory accesses in our functions had to be marked volatile and we had to prevent in-
lining of some of the functions (since inlining would discard function attributes).
Likewise, all the exposed functions had to be marked noinline.

4.3 State Space Reduction

Store buffers substantially increase the size of the state space, hence it is neces-
sary to counteract this growth. DIVINE provides powerful reduction techniques
out of the box, based on analysis of instruction visibility. Those reductions are,
however, rendered less effective by interactions with the store buffer: in particu-
lar, any TSO load or store is treated as visible by the τ+ reduction due to global
variable access within the TSO load/store implementation.

Fortunately, it is possible to reduce the overhead of store buffers by entirely
bypassing their use for memory locations that are private to a particular thread.
However, since the entire logic of TSO stores is handled in the userspace, it
is necessary to expose an additional intrinsic (builtin) function in the model
checker, which, for a given address, decides whether the address is visible from
any other threads.

As far as correctness is concerned, when we realise that from the point of view
of the model checker, store buffers are part of the global memory, the argument
carries over from the analogical construct (store visibility) used in τ+ reduc-
tion [23]. Any pointers currently residing in store buffers – and hence, capable of
revealing new memory locations to foreign threads – are treated as global; hence,
a delayed write of such a pointer cannot incorrectly hide intervening stores (into
locations that were previously thread-private but revealed by the pointer living
in a store buffer).

5 Evaluation

We evaluated our approach on a few models, all of which can be found in ex-
amples in source distribution of DIVINE1. Descriptions of the models used can
be found in Table 1. All measurements were performed on a laptop with In-
tel Core i7-3520M, running at 3.4 GHz, with 8 GB of memory. DIVINE used

1 online: https://divine.fi.muni.cz/trac/browser/examples/llvm/weakmem/

Table 1. Models used for evaluation

simple sc Model based on figure 1, SC, asserting that x = 0, y = 0.
simple mtso Same model, but manually modified to use TSO for relevant variables.
simple stso Same model, workers are auto-transformed to TSO, the rest is SC.
simple tso Same model, fully transformed to TSO.

peterson sc Peterson’s mutual exclusion algorithm.
peterson tso The same, automatically transformed to TSO.

fifo sc First-in, first-out, lockless inter-thread queue, as used in DIVINE.
fifo tso Automated TSO transform of fifo sc above.

4 threads for verification and never depleted available memory (loss-less state
space compression was enabled).

5.1 Results

The results of verification with DIVINE can be seen in Table 2. In all cases,
Context-Switch-Directed Reachability [26] was used, as it performed much faster
than regular reachability for the TSO simulation case. From the results, we can
see significant increase of state space size when store buffers are enabled. This is
due to two factors – one of them is that the store buffers themselves increase the
state space size, as they can be flushed non-deterministically anywhere between
the given store and the nearest memory barrier. The other issue is the interfer-
ence with τ+ reduction mentioned in Section 4.3. As can be seen in the case of
peterson sc and peterson tso with store buffers of size 0 (in this case value
is stored into store buffer and immediately flushed out within one transition in
the state space), this effect is quite strong.

As for the differences between different versions of the simple model, the
state space size is clearly dependent on how many of the loads and stores are
treated as TSO – in case of full TSO transformation all library functions are also
in TSO, therefore state space size is increased far more. The difference between
simple mtso and simple stso is more subtle: in the case of simple stso our
transformation adds memory barriers into SC functions, at their beginning and
after any call to non-SC function. While the second case is rarely present in
our model, the first case makes any function call observable, as a flush will be
considered observable by τ+ reduction (due to an accesses to the store buffer).

6 Conclusion

We have introduced an LLVM to LLVM transformation that extends a program
with relaxed memory simulation and we have shown that such an extended
program can be passed to a model checker to perform verification of C/C++
programs under a relaxed memory model. A key attribute of our approach is
that no updates to the model checker (which is based on sequential consistency)
are needed. The preliminary experiments show the approach as such is feasible,

Table 2. Results of divine verify for our examples.

model store buffer assertion # of reduced memory time
size violated states # states [GB] [s]

simple sc N/A no 205 N/A 0.16 1
simple mtso 1 yes 6.89 k N/A 0.17 3
simple stso 1 yes 10.7 k 10.7 k 0.17 6
simple tso 1 yes 24.7 M 537.2 k 3.18 20318

peterson sc N/A no 1.68 k N/A 0.16 1
peterson tso 0 no 55.9 k N/A 0.17 38
peterson tso 2 yes 2.86 M 95.7 k 0.79 990
peterson tso 3 yes 4.70 M 129.9 k 1.21 1610

fifo sc 0 no 6951 N/A 0.73 20
fifo tso 1 no – 44 M – –

even though the growth of the state space is significant. Finally, the verification
of the fifo tso model is, in itself, a valuable result, as the code in question is
sensitive to memory ordering and until now we were only able to verify it under
the assumption of sequential consistency.

As our future work we intend to improve the implementation and also im-
plement support for weaker memory models, such as Partial Store Order. As a
research goal, we want to extend LART to automatically annotate some func-
tions as SC, whenever it can be statically decided that such an annotation has no
influence on the verification result, counteracting the growth of the state space.
Further improvements of reductions supported by DIVINE and their interaction
with store buffer simulation, and thread-local memory in general, could also
significantly reduce the state space.

References

1. J. Alglave and L. Maranget. Stability in weak memory models. In Proceedings of
the 23rd international conference on Computer aided verification, CAV’11, pages
50–66, Berlin, Heidelberg, 2011. Springer.

2. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verifica-
tion problem for weak memory models. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’10, pages 7–18, New York, NY, USA, 2010. ACM.

3. J. Barnat, L. Brim, and V. Havel. LTL Model Checking of Parallel Programs
with Under-Approximated TSO Memory Model. In Application of Concurrency to
System Design (ACSD), pages 51–59. IEEE, 2013.

4. J. Barnat, L. Brim, V. Havel, and J. Havĺıček et al. DiVinE 3.0 – An Explicit-State
Model Checker for Multithreaded C & C++ Programs. In CAV, volume 8044 of
LNCS, pages 863–868. Springer, 2013.

5. S. Burckhardt and M. Musuvathi. Effective program verification for relaxed mem-
ory models. In CAV, volume 5123 of LNCS, pages 107–120. Springer, 2008.

6. J. Burnim, K. Sen, and C. Stergiou. Sound and Complete Monitoring of Sequential
Consistency in Relaxed Memory Models. Technical Report UCB/EECS-2010-31,
EECS Department, University of California, Berkeley, March 2010.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.
8. D. Dill. The Murphi Verification System. In Computer Aided Verification, volume

1102 of LLNC, pages 390–393. Springer, 1996.
9. X. Fang, J. Lee, and S. P. Midkiff. Automatic fence insertion for shared memory

multiprocessing. In International Conference on Supercomputing (ICS’03), pages
285–294. ACM, 2003.

10. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

11. B. Jonsson. State-space exploration for concurrent algorithms under weak memory
orderings: (preliminary version). SIGARCH Comput. Archit. News, 36:65–71, June
2009.

12. G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. LTSmin:
High-Performance Language-Independent Model Checking. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), volume 9035 of
LNCS, pages 692–707. Springer, 2015.

13. M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions for
relaxed memory models. In Programming language design and implementation
(PLDI’11), pages 187–198. ACM, 2011.

14. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

15. D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality, Justice and Fairness: The
Ethics of Concurrent Termination. In Automata, Languages and Programming
(ICALP), volume 115 of LNCS, pages 264–277. Springer, 1981.

16. A. Linden and P. Wolper. An Automata-Based Symbolic Approach for Verifying
Programs on Relaxed Memory Models. In Model Checking Software, volume 6349
of LNCS, pages 212–226. Springer, 2010.

17. A. Linden and P. Wolper. A verification-based approach to memory fence inser-
tion in relaxed memory systems. In Proceedings of the 18th international SPIN
conference on Model checking software, pages 144–160, Berlin, Heidelberg, 2011.
Springer.

18. S. Mador-Haim, R. Alur, and M. M. K. Martin. Specifying relaxed memory mod-
els for state exploration tools. In (EC)2: Workshop on Exploting Concurrency
Eficiently and Correctly, 2009.

19. P. E. Mckenney. Memory Barriers: a Hardware View for Software Hackers, 2009.
20. M.Kuperstein, M. T. Vechev, and E. Yahav. Automatic inference of memory fences.

In Formal Methods in Computer-Aided Design, pages 111–119. IEEE, 2010.
21. S. Park and D. Dill. An executable specification and verifier for relaxed memory

order. IEEE Trans. on Computers, 48(2):227–235, 1999.
22. P. Ročkai. Model Checking Software. Disertation thesis, Masaryk University, Fac-

ulty of Informatics, 2015.
23. P. Ročkai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL

Model Checking of C & C++ Programs. In NFM, volume 7871 of LNCS, pages
1–15. Springer, 2013.

24. P. Ročkai, J. Barnat, and L. Brim. Model Checking C++ with Exceptions. Auto-
mated Verification of Critical Systems, 70, 2014.

25. CORPORATE SPARC International, Inc. The SPARC architecture manual (ver-
sion 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

26. V. Štill, P. Ročkai, and J. Barnat. Context-Switch-Directed Verification in DI-
VINE. In Mathematical and Engineering Methods in Computer Science MEMICS
2014, volume 8934 of LNCS, pages 135–146. Springer, 2014.

