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Abstract. We present a new design and a C++ implementation of a
high-performance, cache-efficient hash table suitable for use in implemen-
tation of parallel programs in shared memory. Among the main design
criteria were the ability to efficiently use variable-length keys, dynamic
table resizing to accommodate data sets of unpredictable size and fully
concurrent read-write access.

We show that the design is correct with respect to data races, both
through a high-level argument, as well as by using a model checker to
prove crucial safety properties of the actual implementation. Finally, we
provide a number of benchmarks showing the performance characteristics
of the C++ implementation, in comparison with both sequential-access
and concurrent-access designs.

1 Introduction

Many practical algorithms make use of hash tables as a fast, compact data struc-
ture with expected O(1) lookup and insertion. Moreover, in many applications,
it is desirable that multiple threads can access the data structure at once, ide-
ally without causing execution delays due to synchronisation or locking. One
such application of hash tables is parallel model checking, where the hash table
is a central structure, and its performance is crucial for a successful, scalable
implementation of the model checking algorithm. Moreover, in this context, it
is also imperative that the hash table is compact (has low memory overhead),
because the model checker is often primarily constrained by available memory:
therefore, a more compact hash table can directly translate into the ability to
model-check larger problem instances. Another desirable property is an ability
to dynamically resize (grow) the hash table, in accordance with changing needs
of the model checking algorithm as it explores the state space. Finally, it is often
the case that the items (state vectors) stored in the hash table by the model
checker have a dynamic size, for which it is difficult to predict an upper bound.
Hence, we need to be able to efficiently store variable-length keys in the hash
table.
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While the outlined use-case from parallel model checking was our original
motivation, a data structure with the same or similar properties is useful in
many other applications.

1.1 Related Work

As we demonstrate in Section 4, our design is highly competitive, improving on
the state of the art in parallel data structures, as represented by the venerable
Intel Threading Building Blocks library [1]. The design presented in this pa-
per offers faster sequential access, better multi-threaded scalability and reduced
memory overhead. Most of these attributes can be derived from the fact that
our design is based on an open hashing scheme, in contrast to almost all existing
concurrent hash tables. Often, concurrent hash table designs take advantage of
the simplicity of concurrent access to linked lists (eg. [2], but also the designs in
Intel TBB [1]), leading to a closed hashing scheme. Alternatively, a concurrent,
open-hashing table based on our earlier (sequential) design has been described
in [3], but while providing very good performance and scalability, it was limited
to statically pre-allocated hash tables (i.e. with a fixed number of slots). Our de-
sign, however, does not explicitly deal with key removal: a standard ‘tombstone’
approach can be used, although it may also be possible to leverage the scheme
proposed in [4], where authors focus on deletion in a concurrent (but fixed size)
hash table with open addressing.

A more closely related design (without an implementation, however) was
presented in [5]. In this paper, the authors present a concurrent hash table
based on open hashing and arrive at solutions that are in many cases similar to
ours. Especially the approach to ensuring that resize operations do not interfere
with running inserts is very similar – in this particular case, we believe that the
extensive and detailed correctness proofs done in [5] would transfer to our design
with only minor adjustments. Our present paper, however, places more emphasis
on the implementation and its practical consequences. By comparing notes with
existing work on the subject, we can conclude that the design approach is sound
in principle; while we did basic correctness analysis on the design, our main
concern was correctness of the implementation. Unlike existing work, we make
use of software model checking to ascertain that the implementation (and by
extension, the design) is indeed correct.

2 Design

There are many considerations that influence the design of a data structure.
Our first priorities were performance and scalability of concurrent access; in
both cases, it is important to consider the hardware which will execute the code.

First, we need to realize that modern multi-core and SMP systems exhibit a
deep memory hierarchy, with many levels of cache. Some of this cache is shared
by multiple cores, some is private to a particular core. This translates into a
complex memory layout. To further complicate matters, multi-CPU computers



nowadays often use a non-uniform access architecture even for the main memory:
different parts of RAM have different latency towards different cores. Most of
this complexity is implicitly hidden by the architecture, but performance-wise,
this abstraction is necessarily leaky.

Moreover, the gap between the first and the last rungs of the hierarchy is huge:
this means that compact data structures often vastly outperform asymptotically
equivalent, but sparse structures. Due to cache organisation constraints, memory
cells that live close to each other are usually fetched and flushed together, as part
of a single “cache line”. They are also synchronised together between core-private
caches. A modern data structure should therefore strive to reduce to an absolute
minimum the number of cache lines it needs to access in order to perform a
particular operation. On the other hand, when concurrency is involved, there
is a strong preference to have threads use non-overlapping sets of cache-line-
sized chunks of memory, especially in hot code paths. Cache-line awarness has
also been used in design of other data structures; in the context of hash tables,
papers [3] and [6] discuss this topic in more detail.

2.1 Hash Functions

A hash table is represented as a vector of values in memory, associated with a
function that maps keys to indices within this vector. The function is known as a
hash function and should possess a number of specific properties: the distribution
of key images should be uniform across the entire length of the vector, a small
change in the key should produce a large change in the value, the function should
be fast to compute and such a function should be available for an arbitrary index
range.

In practice, to implement the last criterion, hash functions for hash tables
are usually implemented over the range of all 32 (64, 128 bit) integers in such a
way that the remainder of division by an arbitrary integer n (or at least a power
of two) will yield a uniform distribution in {1, ..., n}. The current practice is to
use a purpose-built lookup function, either providing 64 (lookup3 [7] is a good
candidate) or even 128 bits of output (the currently best available are spooky
hash [8] and the city hash [9]).

2.2 Open vs Closed Hashing

Even with the best lookup function, hash collisions, and more importantly, index
collisions will happen in a dynamic hash table. Hence, an important part of the
hash table design is dealing with such collisions, and there are two main options:
open and closed hashing (also known as open and closed addressing). With a
closed hashing scheme, each position in the hash table is a “bucket” – capable of
holding multiple values at the same time. This is implemented using an auxiliary
data structure, usually a linked list. While closed hashing is easier to implement
and to predict, it usually gives poor performance. An alternative is to make
each position in the table only hold at most one value at a time, using alternate
positions for items that cause a collision. Instead of using a single fixed position



for each value, the hash table has a list of candidate indices. The most common
such series are h + ai + b where i is the sequence number of the index, h is the
index assigned by a lookup function and a, b are arbitrary constants (a linear
probing scheme). Another common choice is h + ai2 + bi + c, obviously known
as quadratic probing. An important property of a probing scheme is that it does
not (significantly) disrupt the uniform distribution of values across indices. In
case of a quadratic function and a hash table with a size that is a power of 2, a
simple set of constraints can be shown to give a good distribution [10].

2.3 Cache Performance

There are many considerations when choosing a good hash table implementation
for a particular application. In model checking, as well as many other use cases,
the hash table often becomes very big, and as such, it usually cannot fit in
the CPU cache entirely. For that reason, it is very important that all hash
table operations have as much spatial and temporal locality as possible, to make
best possible use of the CPU cache. The very nature of a hash table means
that insert or lookup operations on different keys will access entirely different
memory regions: this is unavoidable. However, with a naive implementation, even
a single lookup or insert can cause many cache misses: a closed-hashing scheme,
for example, will need to traverse a linked list during collision resolution, which
is a notoriously cache-inefficient operation. Even if we would use a different
auxiliary data structure, we would still face at least one level of indirection
(pointer dereference), causing an extra cache miss. With open hashing and a
linear probing function, we can expect a high degree of spatial locality in the
collision resolution process: all candidate positions can be fetched in a burst read
from a continuous block of memory. In fact, this is a cache-optimal solution, as
it only incurs the one unavoidable initial cache miss per lookup.

However, linear probing has other problems: the property that makes it cache
efficient also means that it has a strong tendency to create uneven key distri-
bution across the hash table. The clumping of values makes the collision chains
long, and even though it is cache-efficient, the linear complexity of walking the
chain will dominate after reaching a certain chain length. In contrast, a quadratic
scheme will scatter the collision chain across the table (consequently, the collision
chains will be shorter but cause more cache misses during traversal than with a
linear scheme). Hence, as a compromise, a hybrid probing function can be used:
a quadratic function with a linear tail after each “jump”: h+ q(bi / bc) + i mod b
where q is a quadratic function and b is a small multiple of cache line size. This
has the advantage of scattering keys across the table, but in small clumps that
load together into cache, without seriously compromising uniformity.

2.4 Variable-Length Keys

If there is substantial variation in key size, it is inefficient to store the entire key
inline in the hash table, and impossible if no upper bound on key size is known.
This means that we need to store pointers in the table and the key data becomes



out-of-line. Unfortunately, this has disastrous effects on cache performance: each
key comparison now requires an extra memory fetch, since in order to find a key
in the table, we need to compare it to each element in the collision chain.

To negate this effect, we can store the actual hash value of each key inline
in the table: this way, we can first compare the hash values, without incurring a
memory fetch. In the vast majority of cases, a 64-bit hash will only test as equal
if the actual keys are equal – we will only pay the price of an extra memory fetch
in the cases where the keys are actually equal, which is at most once per lookup,
and in only a tiny fraction of cases where the keys are distinct. The main reason
this optimisation works is that most collisions in the hash table are not due to
identical hash values for distinct keys (as stated, those are very rare), but due
to different hashes leading to the same index in the hash table, which is much
smaller than 264 elements.

Even though efficient, this approach doubles the memory overhead of the
hash table, storing a pointer and an equal-sized hash value for each key. This is
especially problematic on 64-bit machines, making the overhead 16 bytes per slot
when using a 64-bit hash value. Moreover, a 64-bit hash value is needlessly big,
a much smaller, 32 or even 16 bit value would provide nearly the same value in
terms of avoided cache misses, as long as the part of the hash saved in the cell is
distinct from the part used for computation of a cell index. On most platforms,
though, this will require arranging the hash table in terms of cache lines, as 96
or 80 bit slots will cause serious mis-alignment issues. With the knowledge of
a cache-line size, we can organise the hash table into “super-slots” where each
super-slot fits in a cache line, and packs the pointers first and the corresponding
hash values next, in the tail.

On 64-bit machines, though, there is another option, which avoids most of
the layout complexity at the table level. Contemporary CPUs only actually use
48 bits out of the 64 bit pointer for addressing, the rest is unused. While it is
strongly discouraged to use these 16 extra bits for storing data (and CPU vendors
implement schemes to make it hard), this discouragement is more relevant at the
OS level. At the expense of forward portability of the hash table implementation,
we could use these 16 bits to store the hash value, reconstructing the original
pointer before dereferencing it. Finally, it is also possible to use an efficient
pointer indirection scheme, which explicitly uses 48-bit addressing in a portable,
forward-compatible fashion [11].

2.5 Capacity & Rehashing

As we have already said, a hash table is normally implemented as a vector,
whether it contains single-value slots or multi-value buckets. As such, this vector
has a certain size, and as keys are added into the table, it becomes increasingly
full. The ratio of slots taken to slots available is known as a load factor, and most
hash table implementations perform reasonably well until load of approximately
0.75 is reached (although factors as high as 0.9 can be efficient [12]). At a certain
point, though, each hash table will suffer from overlong collision chains. This
problem is more pronounced with open hashing schemes: in the extreme, if there



is only one free slot left, an open hashing scheme may need to iterate through
the entire vector before finding it. There are three options on how to avoid
this problem: the most efficient one is to approximately know the number of
keys that we’ll store beforehand. However, this is often impossible, so some
implementations (especially in case of model checkers) resolve to allocating all
available memory for the hash table. However, this does not work for the case
of dynamically sized keys stored outside of the table proper, or more generally,
whenever there is no good way to split memory allocation between the hash
table and other components. Furthermore, such static resource allocation can
be rather inappropriate on machines used by multiple users in a non-exclusive
manner.

Therefore, in most cases, we need to be able to resize the table. This is usually
done in the manner of a traditional dynamic array, only the values are not copied
but rehashed into the newly allocated vector, which is usually twice the size of
the current one.

Rehashing the entire table is at best a linear operation, but amortises over
insertions down to a constant per insert. In real-time applications, gradual re-
hashing schemes are used to avoid the latency of full rehashing. However, in most
application, latency is of no concern and monolithic rehashing is in fact more
efficient. As a small bonus, rehashing the table will break up existing collision
chains and give the table an optimal uniform layout.

2.6 Concurrent Access

As we have discussed, open hashing is more cache efficient, and compared to
a simple closed hashing scheme is also more space efficient. However, closed
hashing has an important advantage: linked lists are a data structure easily
adapted for lock-free concurrent access. Hence, most concurrent hash table im-
plementations are based on closed hashing. The situation with open hashing is
considerably more complex. It is relatively straightforward to implement a fixed-
size hash table (i.e. for the scenario where we know the size of the working set
in advance). Since this is not the case in DIVINE [13], we have implemented a
(nearly) lock-free, resizable open-hashed table, to retain the advantages of open
hashing, while at the same time gaining the ability to share the closed set of the
graph exploration algorithm among multiple threads.

Let us first discuss how a fixed-size open-hashed table can accommodate
concurrent access. The primary data race in a non-concurrent table is between
multiple inserts: it could happen that two insert operations pick the same free
slot to use, and both could write their key into that slot – this way, the insert
that wrote later went OK; however, the first insert apparently succeeds but
the key is actually lost. To prevent this, write operations on each slot need to
be serialised. The simple way to achieve this is with a lock: a spinlock over a
single bit is simple and efficient on modern hardware, and since each hash table
slot has its own lock, contention will be minimal. Using a lock is necessary in
cases where the key cannot be written atomically, i.e. it is too long. If the key
fits within a single atomic machine word, a locking bit is not required, and an



atomic compare-and-swap can be used to implement writing a slot. When a lock
is used, the lock is acquired first, then the value to be inserted and the locked slot
are compared and possibly written. When using a compare-and-swap, in case it
fails, we need to compare the keys – concurrent inserts of the same key could
have occurred, and the same key must not be inserted at two different indices.

Concurrent lookups are by definition safe, however we need to investigate
lookups concurrent with an insert: it is permissible that a lookup of an item
that is being inserted at the same time fails, since there is no happens-before
relationship between the two (this is in fact the definition of concurrency). It
can be easily seen that an insert of a different key cannot disrupt a lookup of
a key that is already present: all inserts happen at the end of a collision chain,
never in the middle where they could affect a concurrent lookup.

In cases where variable-length keys are used based on the scheme suggested
in section 2.4, lock-free access is only possible for variants where the pointer and
the hash (if present) are located next to each other in memory, i.e. a hash-free
(pointers only) table, or the 64 bit + 64 bit variant (only on machines with
atomic 128-bit compare-and-swap), or the variant with the pointer and the hash
combined into a single 64 bit value.

2.7 Concurrency vs Resizing

The scheme outlined in the last section does not take the need for resizing
and subsequent rehashing into account. The first problem of a concurrent resize
operation is that we cannot suspend running inserts, as this would require a
global lock. However, insert as a whole is not, and cannot be made, an atomic
operation: only the individual probes are atomic. As a consequence, if we were
to re-allocate the table at a different address and de-allocate the existing one,
a concurrent insert could be still using the already freed memory. Since we
cannot interrupt or cancel an insert running in a different thread, nor can we
predict when will it finish, the best course of action is to defer the de-allocation.
Unfortunately, even if we avoid writing into invalid memory, the same set of
circumstances can cause an insert to be lost, since at the point it is written,
the copying (rehashing) of the table might have progressed beyond its slot (and
since the probing order is not, and cannot be made, monotonic, this cannot be
prevented).

In order to clean up unused memory as soon as possible, and to solve the
“lost insert” problem, we can, after each insert, verify that the currently active
table is the same as the table that was active when the insert started. When
they are the same, no extra work needs to be done, and the insert is successful:
this case is the same as with a fixed-size table. If, however, the active table has
changed, the insert has to be restarted with the new table. Additionally, we can
use the opportunity to also clean up the old table if it is no longer used – if there
are no further threads using the table. To reliably detect this condition, we need
to associate an atomic reference counter with each table generation. The counter
reflects the number of threads which consider a given generation to be the latest,
and is only incremented and decremented at most once per thread.



Finally, if an insert has been restarted and succeeds, but the reference count
on the old table pointer is not yet zero, the thread doing the insert can optionally
help rehashing the table. This way, the resize operation can be executed safely in
parallel, greatly reducing the time required: since an individual insert is already
thread-safe, it is sufficient to slice the old table into sections and let each thread
rehash keys from a non-overlapping subset of slices. The assignment of slices to
threads can be implemented using a standard concurrent work queue.

3 Implementation

We have implemented the design laid out in the previous section1, in order
to evaluate and verify it, and also for use in the DIVINE model checker. We
provide pseudocode for the most important parts of the implementation (see
Algorithm 1), but for full details we refer the reader to the C++ implementation,
which is unfortunately too extensive to be included here. The basic design of a
sequential open-hashing hash table is very straightforward, including rehashing:
the table is entirely stored in a sequential area of memory, consisting of fixed-
size cells. For long or variable-length keys, the cells contain a pointer to the
data itself; small fixed-size keys can be stored directly. Rehashing is realised by
allocating a new, empty hash table of a larger size (usually a small multiple of
the current size) and invoking the ‘insert’ procedure for each element present in
the current table. When all elements have been rehashed this way, the old table
can be de-allocated.

Our implementation follows the same scheme, but with a few provisions to
deal with data races arising in concurrent use. These have been outlined in
Sections 2.6 and 2.7 – the implementation follows the design closely. We use
either locked cells with 64bits of hash, or atomic 64 bit cells which store a 48 bit
pointer and 16 bits of a hash (a different part of a 128 bit hash value than used
for index calculation is used in this case). Alternative cell designs can be provided
using C++ templates. When resizing takes place, any thread which attempts to
an insertion or a lookup will help with rehashing; chunks of the hash table to be
rehashed are assigned dynamically to participating threads. To track the load
of the hash table, we use a thread-local counter which is synchronized with a
shared atomic counter every 1024 insertions.

To better illustrate the principles behind those provisions, we provide a
schematic of the table layout in memory (Figure 1), as well as an example course
of a concurrent insert operation in Figures 2 and 3 and a scheme of the concur-
rent resize algorithm in Figures 4 through 6.

3.1 Verification

In order to ensure that the hash table works as expected, we have used DIVINE
to check some of its basic properties. The properties are expressed as small C++

1 The C++ source code for the hash table implementation can be found online: https:
//divine.fi.muni.cz/trac/browser/bricks/brick-hashset.h#L481



1 Function ReleaseMemory(index) is
2 if refCount[ index ] - 1 = 0 then
3 deallocate row at index;

4 Function Rehash() is
5 while segment is available do
6 for cell ∈ segment do
7 lock the cell;
8 if cell is not empty then
9 mark cell as invalid;

10 insert cell to the new row;

11 if was it the last segment then
12 ReleaseMemory(currentRow - 1);
13 unlock the growing lock;

14 Function Grow(newIndex) is
15 lock the growing lock;
16 if current row has changed then
17 unlock;
18 return false;

19 row[ newIndex ] ← array[ NextSize(oldSize) ];
20 refCount[ newIndex ] ← 1;
21 allow rehashing;
22 Rehash();
23 return true;

24 Function InsertCell(value, hash, index) is
25 for attempt ← 0 . . . maxAttempts do
26 cell ← row[ index ][ Index(hash, attempt) ];
27 if cell is empty then
28 if store value and hash into cell then
29 return (Success, cell);
30 if index 6= currentRow then
31 return (Growing)

32 if cell is (value, hash) then
33 return (Found, cell);
34 if index 6= currentRow then
35 return (Growing)

36 return (NoSpace)

37 Function Insert(value, hash, index) is
38 while true do
39 res ← InsertCell(value, hash, index);
40 switch res.first do
41 case Success do
42 return (res.second, true);
43 case Found do
44 return (res.second, false);
45 case NoSpace do
46 if Grow(index + 1) then
47 index ← index + 1;
48 break;

49 case Growing do
50 Rehash();
51 UpdateIndex();

Algorithm 1: Pseudocode for key procedures.



programs – basically what a programmer would normally call a unit test. They
are usually parametric, with the parameters governing the size and parameters
of the data structure as well as the way it is used.

Clearly, the parameter space for various properties is infinite, and admit-
tedly, even for fairly small values the verification problem becomes very large.
Nevertheless, most bugs happen in boundary conditions, and these are identical
for all parameter instantiations upwards of some structure-specific minimum.

The second limitation is that we can only currently verify the code under
the assumption of sequential consistency. At first sight, this may seem like a
severe limitation – on a closer look, though, it turns out that the vast majority
of relevant memory accesses is already tagged as sequentially consistent using
appropriate std::atomic interfaces (this translates to appropriate architecture-
specific memory access instructions that guarantee sequential consistency on
the value itself, as well as working as a memory fence for other nearby memory
accesses). In this light, the limitation is not quite fatal, although of course it
would be preferable to obtain verification results under a relaxed memory model.

For verification of the concurrent hashset implementation, we have opted for a
property parametrised with three numbers, T – the number of threads accessing
the shared data structure, N – the number of items each of those threads inserts
into the data structure, and O – the number of overlapping items.

We verified our C++ implementation directly, the only differences from the
version of the hash table as used in DIVINE2 is that when resizing new table size
is 2 times old table size, whereas in DIVINE hash table would grow faster for
small sizes and that initial table size is 2 slots to make table sufficiently compact
for verification and allow verification of a case with 2 resizes.

The C++ program we used in our verification3 is relatively straightforward;
first, we would allocate hash table and spawn T − 1 worker threads, each set
up to insert a specific range of items (possibly overlapping with the ranges of
other threads). The last worker is then executed in the main thread to avoid
unnecessary thread interleaving. After it finishes, the remaining worker threads
are joined and the final state of the hash table is checked: we iterate over the
underlying array and check if all the inserted values are present exactly once.

Given the C++ program described above, we used DIVINE for its verification.
While DIVINE cannot directly read C++ programs, it can read and verify LLVM
bitcode and uses a standard C++ compiler (clang) for translating C++ into
LLVM. Besides the checks (assertions) in the driver program itself, the hash
table implementation contains a few assertions of its own, which were checked
as well.

2 Doubts could arise when using a model checker which uses the hash table to be
verified internally. An analysis of failure modes of the hash table along with the
properties of the model checking algorithm indicate that this could not cause the
model checker to miss a valid counterexample. Nonetheless, the entire issue is easy
to side-step by using a much simpler sequential hash table and just waiting longer
for the result.

3 The code can be found online at https://divine.fi.muni.cz/trac/browser/

examples/llvm/hashset.cpp



In this particular scenario, we can observe the huge impact of the exponential
state space increase. For T = 3, N = 1, verification of the above test-case took
multiple days using 32 cores, generated over 716 million states and used about
80GiB of RAM. On the other hand, verification for T = 2, N = 1 finishes in
less than 3 minutes and generates fewer than 100 000 states. Verification for
T = 2, N = 3 finishes in 8 hours on 32 cores and uses 14GiB of RAM, while
generating roughly 120 million states.

This means that out of the desirable properties, we were able to verify that a
cascade of two growths (possibly interleaved) is well-behaved when two threads
access the table – using T = 2, N = 3 – in this scenario, a single thread can
trigger a cascade of 2 growths, while other threads are inserting items. We were
also able to verify that a single growth is correct (it does not lose items) in pres-
ence of 3 threads (test-case T = 3, N = 1), and that insertion of overlapping sets
of elements from 2 threads is correct (does not lose items or cause duplicated
elements – a test-case with T = 2, N = 1, O = 1. A scenario with 2 cascaded
growths and 3 threads, however, seems to be out of our reach at this time. Nev-
ertheless, the verification effort has given us precious insight into the behaviour
of our concurrent hash table implementation.

While the hash table described in this paper was in a design and prototyping
phase, we have encountered a race condition in the (prototype) implementa-
tion. The fact that there is a race condition was discovered via testing, since
it happened relatively often. The problem was finding the root cause, since the
observable effect of the race condition happened later, and traditional debugging
tools do not offer adequate tools to re-trace the execution back in time.4 In the
end, we used DIVINE to obtain a counterexample trace, in which we were able
to identify the erroneous code.

4 Benchmarks

Earlier, we have laid out the guiding principles in implementing scalable data
structures for concurrent use. However, such considerations alone cannot guar-
antee good performance, or scalability. We need to be able to compare design
variants, as well as implementation trade-offs and their impact on performance.
To this end, we need a reliable way to measure performance.

The main problem with computer benchmarks is noise: while modern CPUs
possess high-precision timers which have no impact on runtime, modern operat-
ing systems are, without exceptions, multitasking. This multitasking is a major
source of measurement error. While in theory, it would be possible to create
an environment with negligible noise – either by constructing a special-purpose
operating system, or substantially constraining the running environment, this
would be a huge investment. Moreover, we can, at best, hope to reduce the
errors in our measurement, but we can hardly eliminate them entirely.

4 An extension to gdb to record execution exists, but we were unable to use it suc-
cessfully. Either the window in which time reversal was possible was too narrow, or
the memory and time requirements too high.



One way to counteract these problems is to choose a robust estimator, such as
median, instead of the more common mean. However, since we only possess finite
resources, we can only obtain limited samples – and even a robust estimator is
bound to fluctuate unless the sample is very large. Ideally, we would be able
to understand how good our estimate is. If our data was normally distributed
(which we know is, sadly, not the case) we could simply compute the standard
deviation and base a confidence interval for our estimator on that. However,
since we need a computer for running the benchmarks anyway, we can turn to
bootstrapping: a distribution-independent, albeit numerically intensive method
for computing confidence intervals.

While bootstrapping gives us a good method to compute reliable confidence
intervals on population estimators, it does not help to make those confidence
intervals tighter. Given a sample with high variance, there are basically two ways
to obtain a tighter confidence interval: measure more data points, or eliminate
obvious outliers. While a bigger sample is always better, we are constrained by
resources: each data point comes at a cost. As such, we need to strike a balance.
In the measurements for this paper, we have removed outliers that fell more
than 3 times the interquartile range (the distance from the 25th to the 75th
percentile) of the sample from the mean, but only if the sample size was at least
50 measurements, and only if the confidence interval was otherwise more than
5% of the mean.

To assess performance of the final design with concurrent resizing, we have
created a number of synthetic benchmarks. As the baseline for benchmarking,
we used implementation of std::unordered_set provided by libc++ (labelled
“std” in results). Additionally, we have implemented a sequential open-hashed
table based on the same principles as the final design, but with no concurrency
provisions (tables “scs” and “sfs”) – this allowed us to measure the sequential
overhead of safeguarding concurrent access.

Since std::unordered_set is only suitable for sequential access, as a baseline
for measuring scalability, we have used a standard closed-hashing table (labelled
as “cus”, from concurrent_unsorted_set) and a similar design primarily in-
tended for storing key-value pairs, concurrent_hash_map (labelled “chm”), both
implementations provided in Intel Threading Building Blocks [1]. The final de-
signs presented here are labelled “ccs” and ”cfs”. The middle letter indicates the
size of the hash table cell c for “compact” and f for “fast”: the “fast” variant
uses a hash cell twice as wide as a pointer, storing a full-sized (64b) hash inside
the cell. The “compact” variant uses a truncated hash that fits in the spare bits
inside a 64-bit pointer. (The hash inside cells is only useful in hash tables with
out-of-line keys; for integer-keyed tables, they are simply overhead).

As the common performance measure, we have chosen average time for a
single operation (an insert or a lookup). For benchmarking lookup at any given
load factor, we have used a constant table with no intervening inserts. Four types
of lookup benchmarks were done: miss (the key was never present in the table),
hit (the key was always present) and a mixture of both ( 1

2 hit chance, and 1
4



hit chance). For insertions, we have varied the amount of duplicate keys: none,
25 %, 50 % and 75 %.

All of the insertion benchmarks have been done in a variant with a pre-sized
table and with a small initial table that grew automatically as needed. Finally,
all of the benchmarks outlined so far have been repeated with multiple threads
performing the benchmark using a single shared table, splitting workload equiv-
alent to the sequential benchmarks, distributed uniformly across all threads. All
the benchmarks have been done on multiple different computers, with a differ-
ent number of CPU cores and different CPU models, although we only report
results for a single computer – a 12-core (2 sockets with 6 cores each) Intel Xeon
machine.5 We have chosen 4 plots to include in this paper; they can be seen in
Figure 7, along with descriptions.

5 Conclusions

We have described, implemented and verified a hash table suitable for both small
and large data sets, with fully concurrent lookup and insertion and with dynamic,
concurrent resizing. The benchmarks we have done show that both the design and
the implementation are highly competitive, and our experience with using the
hash table as presented here in the implementation of a parallel explicit-state
model checker confirms that it is well-suited for demanding applications. The
C++ source code of the implementation is available online6 under a permissive
BSD-style licence. The provided code is production-ready, although for use-cases
where item removal is required, it would need to be adapted using one of the
approaches described in existing literature.
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0
1
2
2CR

#5

#4

#3

#2

#1

hash valueF

The hash table consists of two parts – global (shared) data and thread-local data.
The global data are shown inside the big rectangle. All rows of the table are accessible
through a row index, which is shown in the left part of the global data rectangle. There
are two columns for each row – one holds a reference counter while the other stores
a pointer to the row itself. The pointer CR (current row) points to a globally valid
row of the hash table (this reference is not included in the reference count). Every row
consists of cells, where every cell has three fields: flag, hash, and value. The flag may
have four possible values: empty (e), writing (w), valid (v), and invalid (i).
The thread-local data are represented by small rectangles labeled #1 – #5, each be-
longing to one thread. Every thread needs to remember which row it is currently using.

Fig. 1. Overall layout of the hash table.

Let there be three threads – #1, #2, and #3 – inserting values 2, 6, and 8 respectively;
insertion is happening in a row of four cell, which is initially empty. A solid connector
means that a thread is manipulating a cell (i.e. the cell is locked by that thread);
a dotted connector represents a thread reading a cell. For this example, we use the
following formula to calculate a hash of value: (value mod row.size) + 1.

1. Both threads #1 and #2 are access-
ing the second cell; thread #3 is accessing
fourth cell:

0 0e 0 0e 0 0e 0 0e

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

2. Thread #1 has atomically modified the
flag of the cell from ‘empty’ to ‘writing’
and stored a hash of the value so that
thread #2 cannot modify the content of
the cell and is forced to wait until the
pending writing operation finishes:

0 0e 2 0w 0 0e 0 0e

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

Fig. 2. Insertion algorithm, part 1.



3. Thread #1 stored the value, thread #2
is still waiting. Thread #3 has atomically
modified the flag of the cell to ‘writing’:

0 0e 2 1w 0 0e 4 0w

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

4. Thread #1 has changed the flag of the
cell to ‘valid’ and finished the insert op-
eration. Thread #2 found that the val-
ues are different and by using quadratic
lookup, it turned to the fourth cell. Mean-
while, thread #3 has stored the value:

0 0e 2 1v 0 0e 4 7w

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

5. Thread #3 has finished the insert op-
eration. Thread #2 is comparing hashes:

0 0e 2 1v 0 0e 4 7v

#2

insert( 5 )
hash = 2

6. Thread #2 found an empty cell,
changed the flag and stored the hash:

2 0w 2 1v 0 0e 4 7v

#2

insert( 5 )
hash = 2

7. Thread #2 has finished the insert op-
eration:

2 5v 2 1v 0 0e 4 7v

Fig. 3. Insertion algorithm, part 2.

1. The initial situation: all five threads are
pointing to the second row which is also
the current row. Thread #5 starts an in-
sert operation:

0

5
CR

#5

#4

#3

#2

#1

11 7 18 910

insert( 2 )
hash = 3

2. As the current row is full, thread #5
signalized that the table needs to be
grown, allocated a new row, and changed
the value of CR to this new row:

0

5

CR

#5

#4

#3

#2

#1

insert( 2 )
hash = 3

11 7 18 910

Fig. 4. Resizing the hash table, part 1.



3. Thread #5 has split the original row
into segments and started rehashing the
first available segment. Thread #3 was
about to start an insert operation, but as
the table is growing, it is impossible to in-
sert new items; thread #3 hence started
rehashing the next available segment:

0

5

CR

#4

#2

#1

i 11 i 18 9

#5
insert( 2 )
hash = 3

#3
insert( 13 )
hash = 4

#5 #3

10 7

4. Thread #2 was about to start an in-
sert operation, but it also started rehash-
ing the next (and last, in this case) avail-
able segment. Meanwhile, thread #3 has
finished rehashing and is waiting for the
table to be unlocked:

0

5

CR

#4

#2

#1

i 11 i i 9

#5
insert( 2 )
hash = 3

#3
insert( 13 )
hash = 4

#5

insert( 6 )
hash = 2

#2

10 7 18

5. After the last thread finished rehash-
ing, thread #5 unlocked the table and up-
dated its current row index. From this mo-
ment on, the table is ready for insert and
find operations (please note the reference
counts for table rows: only one thread is
now using the current row, so the previous
row cannot be deallocated yet):

0

4

CR

#4

#2

#1

i i i i i

#5
insert( 2 )
hash = 3

#3
insert( 13 )
hash = 4

insert( 6 )
hash = 2

1 10 7 1811 9

6. Thread #5 has finished its insert oper-
ation. The detail of the cell shows how an
invalid state is encoded:

0

4

CR

#4

#2

#1

i i i i

#5

#3
insert( 13 )
hash = 4

insert( 6 )
hash = 2

1

0 0i

i

10 7 1811 92

7. Both thread #2 and #3 have updated
their current row indices, as well as the
reference counters of the corresponding
rows:

0

2

CR

#4

#2

#1

i i i i

#5

#3
insert( 13 )
hash = 4

insert( 6 )
hash = 7

3

i

10 7 1811 92

8. Both thread #2 and #3 have finished
their insert operations. Threads #1 and
#4 are about to perform a find operation,
while their thread-local row pointer is still
pointing at the old row:

0

2

CR

#4

#2

#1

i i i i

#5

#3

3

i

find( 5 )

find( 13 )

10 7 1811 92 13 6

Fig. 5. Resizing the hash table, part 2.



9. Thread #4 has updated its current row
index and decided that the value 5 is not
present in the table:

0

1

CR

#4

#2

#1

i i i i

#5

#3

4

i

find( 13 )

10 7 1811 92 13 6

10. Finally, thread #1 has updated its
current row index and deallocated the old
row. It also found the value 13 present in
the table:

0

0

CR

#4

#2

#1

#5

#3

5 10 7 1811 92 13 6

Fig. 6. Resizing the hash table, part 3.
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Fig. 7. Performance measurements with integer-sized keys. From top left, clockwise:
1) comparison of sequential performance of various hashtable designs 2) insertion with
50 % key duplicity rate, with 1 million items and a pre-sized hashtable with half a
million cells 3) insertion with no key repeats, 16M items 4) behaviour of the final de-
sign (ccs) as a function of hash table size and a number of threads (no reserve, the
hashtable is resized dynamically). The implementations are labelled as follows: std =
std::unordered set, scs = sequential compact set, sfs = sequential fast set, ccs = con-
current compact set, cfs = concurrent fast set, cus = tbb::concurrent unordered set

and chm = tbb::concurrent hash map. Please consult the electronic version of this
paper or http://divine.fi.muni.cz/benchmarks for easier-to-read plots.


