MASARYKOVA UNIVERZITA
FAKULTA INFORMATIKY

\&E\‘ FAc U
Qg& Z]JZI‘
/4/VA . g{g\&‘é\\k

&
1y \asS

On Chaining Divine and Prism
Model Checkers

BACHELOR THESIS

Kristina Zakopc¢anova

Brno, spring 2015

Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Kristina Zakopc¢anova

Advisor: doc. RNDr. Jifi Barnat, Ph.D.

iii

Acknowledgement

I would like to thank my supervisor, doc. RNDr. Jifi Barnat, Ph.D., for his
time, helpful advice and professional experience he kindly shared with me
and that goes beyond this work. Great thanks go to members of ParaDiSe
laboratory for their willingness to help and the support they have been to
me not only during working on this thesis. Last but not least, I thank my
family for their love and great support they provided creatively in so many
ways (I especially enjoyed the eatable one).

Abstract

This thesis presents a successfully implemented tool chain for verification
of multi-threaded C/C++ programs with probabilities expressed using
probabilistic choice operator. The verification is achieved by chaining two
unique model checkers; namely, DIVINE and PRISM. In this work, we dis-
cuss the technical details of extensions necessary to include in DIVINE in
order to enable analysis of probabilistic systems. Afterwards, we describe
implementation details of the tool chain. And finally, the overall function-
ality of the tool chain is demonstrated on a set of simple models. These
models are also used for an experimental evaluation.

vii

Keywords

DIVINE, PRISM, probabilistic model checking, Markov Decision Process,
Linear Temporal Logic, fairness, LTL fairness assumption, fair scheduler

ix

Contents

|2.2 Linear Temgoral Logjg

3 robabilistic Mode eckingl

2.4 Modelling Concurrent Systems|
...............................
13 Verification of C/C++ Programs with Probabilities|

B.2 Introducing Probability in Source Code
B3 Technical Detaild« voviie
.3.1 DIVINE Explicit State Space (DESS)[.

3.2 Reducing State Spacein DIVINE[.

.3.3 Property Specitication in DIVINI

[?.3.4 PEISM Expﬁcit ModelFileg|

B.3.5 PRISM Property Specification Language.
4_DPtoolchain| L oL

4.1 File sttem Structurg
42 Using DPtoolchain]

4.3 Technical Details of the Worktlow of DPtoolchain|
B Evaluationl
B.1 _CaseStudies
1.1 lection Problem|

b.1.2 Thief Probleml|

5.1.3 Fischer’s Mutual Exclusion Protocoll

b.2 Measurements e
6 Conclusionl.

— O O NN O W W

xi

1 Introduction

It is very common that computer software, computer hardware, and gene-
rally any computerised systems exhibit errors. In order to detect these
errors, a considerable number of various approaches and techniques have
been developed. For example, testing, simulation, and deductive reasoning.

During past decades, the use of computerised systems has been rapidly
increasing, affecting various aspects of human life. This involvement went
hand in hand with increasing complexity of these systems, and existing
verification techniques proved to be insufficient. Naturally, as we demand
systems to be correct and reliable, especially when considering systems that
are safety critical, mission critical or economically vital, this called for more
elaborate verification techniques.

Until the early 1980’s, the prevailing paradigm for verification was
a manual one of proof-theoretic reasoning using formal axioms and infer-
ence rules oriented towards sequential programs. [1] However, the need
for concurrent system verification, ideally while avoiding the difficulties
of constructing manual proofs, gave birth to model checking [2], a formal
verification method.

Model checking is an automated technique that takes two inputs,
a model of the system under consideration, and properties describing the
system’s desired and undesired behaviours, and systematically checks
whether these behaviours are present in the model. The systematic check
consists of an exhaustive search of all possible system states, which ensures
it can be shown that the model truly satisfies a property being verified. In
the case that a property does not hold in a model, a model checker provides
a counterexample in the form of an execution path leading to the state vio-
lating the examined property.

The studied properties of a system are described using temporal logic,
which has proved to be highly suitable for system behaviour description,
as it describes the ordering of events in time without introducing time ex-
plicitly. [3] Moreover, it is extremely intuitive and mathematically precise
at the same time. [4]

Typical properties that can be verified using model checking are of qua-
litative nature. That means that a model checker gives a yes/no answer to
the satisfaction of a certain property. However, not necessarily all system
behaviours can be described using qualitative properties. There are sys-

1. INTRODUCTION

tems where probabilistic aspects need to be taken into consideration. Such
systems are, for example, systems with real-time conditions, systems inter-
acting with environment that is naturally probabilistic, systems exhibiting
probabilistic behaviour due to the use of randomised algorithms or biolo-
gical probabilistic systems.

The goal of my work is to enable the formal verification of concurrent
systems with probabilities modelled in the C or C++ programming lan-
guage, achieved by chaining existing formal verification tools; namely,
DIVINE [5] and PRISM [6] model checkers.

DIVINE is an LTL model checker with the ability to analyse C/C++ pro-
grams with probabilities and generate the state space graph of the program
in the form of a Markov Decision Process.

PRISM is the most well established symbolic probabilistic model
checker, which provides support for the automated analysis of a wide range
of quantitative properties for various types of probabilistic models, Markov
decision processes in particular.

The rest of this thesis is structured as follows. In Chapter 2, we present
the theory behind probabilistic model checking; namely, Markov Decision
Process, Linear Temporal Logic, and an approach to modelling concurrent
systems. Chapter 3| describes the workflow of the tool chain, some tech-
nical aspects of DIVINE and PRISM, and it demonstrates the use of DIVINE
probabilistic and non-deterministic choice function __divine_choice.
In Chapter 4} we explain how to use DPtoolchain, and some technical de-
tails of the tool chain are discussed. In the last chapter, we introduce several
case studies in order to evaluate the realised tool chain.

2 Preliminaries

In this chapter we will focus on the theoretic background of quantitative
model checking. Particularly, we will discuss the underlying representation
of systems with probabilities, temporal logic used for specifying properties,
modelling concurrent systems by means of interleaving, and the issue of
fair scheduling.

As we have seen in the introduction, model checking is an automated
verification technique that, given a finite-state model M and a formal pro-
perty ¢, systematically checks whether the model satisfies given property
@, notation M |= ¢.

The common modelling formalisms for representing systems with prob-
abilities are discrete Markov chains and Markov Decision Processes.
In Markov chains, a choice of a successor state is based only on the prob-
ability distribution while in Markov Decision Process, non-determinism is
also took into consideration. Therefore, an MDP can be considered as a vari-
ant of Markov chains that permits both probabilistic and non-deterministic
choices. [4] Since we need to allow for non-deterministic choices, for ex-
ample when representing concurrency, we use Markov Decision Processes
(MDP).

2.1 Markov Decision Process

Definition 1. A Markov decision process is a tuple M = (S, Act, P, init,
AP, L) where

1. Sis a countable set of state,
2. Act is a set of actions,

3. P:Sx Act xS — [0,1] is a transition probability function such that
for all states s € S and actions & € Act:

Ywes P(s,a,8") € {0,1},
4. init € S is the initial state,

5. AP is a set of atomic propositions and L : S — 24P is a labelling
function.

2. PRELIMINARIES

Act(s) denotes the set of actions that are enabled in the state s, i.e. the set
of actions w € Act such that P(s,a, t) > 0 for some state t € S. For any state
s € S, we require that Act(s) # @ and Va € Act(s).Ygcs P(s,a,s") = 1. [4]

The semantics of an MDP could be intuitively described as follows.
Given s as the current state, a non-deterministic choice is resolved first, fol-
lowed by the resolution of a probabilistic choice. That means that an action
a € Act(s) is chosen non-deterministically, leading to a state t with proba-
bility P(s,a,t).If P(s,a,t) > 0, then we call an a-successor of s. [7]

In the case that there is just one possible action enabled in state s, we call
such a state deterministic. Naturally, if all states in an MDP are determinis-
tic, we call such an MDP a Markov chain.

Paths in an MDP describe potential computations, and since they de-
pend on both the non-deterministic and probabilistic choices in model M,
paths and path fragments in MDP are defined as alternating sequences of
states and actions. [4]

Definition 2. An infinite path fragment in an MDP M is an infinite se-
quence o1 S 425243 ... € (S X Act)®, written as

! &2 X3
TT=8) —>8 —S2 — ...

such that P(s;, a;11,5;41) > 0 foralli > 0.
Paths(s) denotes the set of infinite path fragments that start in state s.

The reasoning behind the probabilities of sets of paths of an MDP relies
on the resolution of non-determinism which is performed by a scheduler.
In any state s, a scheduler chooses one of the enabled actions « € Act(s). [4]

Definition 3 (Scheduler). Let M = (S, Act, P,init, AP,L) be an MDP. A
scheduler for M is a function D : ST — Act assigning an action D(0) €
Act(sy) to every finite run o = sp, a1, ..., &y, Sp.

2.2 Linear Temporal Logic

The formal description of system properties is provided by Linear Temporal
Logic (LTL). We will introduce the syntax and semantics of LTL based on the
definitions provided in [4] and [8].

4

2. PRELIMINARIES

Generally, LTL properties are path formulas composed of atomic propo-
sitions, boolean connectors and temporal operators. The basic temporal op-
erators are X, F, G and U.

Definition 4 (LTL syntax). LTL formulas over the set of atomic propositions
AP are formed according to the following grammar

pu= true [a | ~¢ | p1Ag2 | Xo | Fop | Go | g1 U g
wherea € AP.

The semantics is defined over paths of an MDP M. Let T = spay151a2...
be a path of an MDP, then let 7t* denote a suffix s; &1 511 &4 ... starting
ats; and 71(i) = s;. The satisfaction relation is defined as follows:

T |= true <= always

TE=a < a€L(n(0))

=g = TEe

TEpAep < TE@MATE

= Xo — ke

7 k= Fo — FIk>0:7"E¢

k= Go — Vk>0:7"=¢

TEqUe <= Fk>0:7"E@AVO0<Lj<k) : =@

Intuitively, path 7t satisfies property X¢ if the formula ¢ holds in the
next state of the path. Property G¢ holds if ¢ is true in every state on 7.
F o means that ¢ holds at some state on the path 7. Lastly, property ¢1Ug>
is satisfied when ¢ holds in every state of 77 until ¢ is true.

For more details on the semantics of LTL formulas, I kindly refer the
reader to [4]] or [8].

LTL properties are commonly used to reason about the quality of con-
current systems. The properties that are used for this purpose can be typi-
cally divided into two categories: safety and liveness properties. [9]

A safety property can be intuitively described as "nothing bad should
happen". [4] Such property is, for example, the mutual exclusion property
which states that no two concurrent processes appear in its critical section
at the same time. However, the safety property can be trivially satisfied,
and that is when the system does nothing. This issue is encompassed by
liveness properties.

2. PRELIMINARIES

The second category, liveness properties, states that "something good
should eventually happen". [4] When demonstrated on the mutual exclu-
sion property, the liveness property could be described as "each process
that has required to enter a critical section will eventually obtain access".

A detailed formal description of safety and liveness properties can be
found in [4].

2.3 Probabilistic Model Checking

After having introduced the concept of MDP and LTL properties, we can
define probabilistic model checking as follows.

Given a model M represented by an MDP and an LTL formula ¢ de-
scribing a behaviour of the model, the probabilistic model checking com-
putes the minimal probability Pr,,;, and the maximal probability Py, of all
paths of the model M satisfying the property ¢ with respect to all sched-
ulers D for M, written Pr2. (M |= ¢) and PrD (M = ¢).

2.4 Modelling Concurrent Systems

When modelling concurrent systems, the usual approach is to represent
such a system by the interleaving model in which all of the events in a
single execution are arranged in linear order, which is called an interleav-
ing sequence. [8] Events that are executed concurrently are arbitrarily or-
dered and we need to consider all the possible orders for the verification
and analysis of a system. That means that we need to consider all possible
interleavings of concurrent events. As a result, the state space of a concur-
rent program can be extremely large.

In order to reduce the state space of a program, various reduction tech-
niques can be used. In Section we discuss the way DIVINE reduces the
size of a state space of a program.

2.5 Fairness

An important aspect of verification of concurrent systems is fairness. Fair-
ness is concerned with resolving non-determinism in such a way that it is
not biased to constantly ignore a possible option. [4]

2. PRELIMINARIES

To illustrate it on an example, let assume a simple system containing
mutual exclusion and two processes and let verify a property of starvation
freedom. Starvation is a situation when a process is constantly denied ac-
cess to resources that are necessary for the thread to make progress. The
resolution of non-determinism arisen from the interleaving lies on a sched-
uler, that is the scheduler selects a process to execute next. During veri-
fication, a scheduler can choose such path that one process is constantly
ignored and its competitor process is always being selected for execution.
However, in practice, this is very unlikely to happen. Therefore, we want
to consider only such paths that are executed in some "fair" manner and
reflect well a realistic behaviour. For this purpose, we introduce fairness as-
sumption that rule out behaviours that are considered to be unrealistic. In
our case, a fairness assumption will be expressed as an LTL formula. For
formal description of fairness assumption see [4].

In order to establish fairness in computations considered during model
checking, we introduce the notion of a fair scheduler.

Definition 5 (Fair Scheduler). Let M be a Markov decision process and fair
an LTL fairness assumption. A scheduler F for M is fair (with respect to
fair) if for each state s of M :

Prl = {m € Paths(s)|r = fair} =1

The fairness assumption fair is realizable in M if there exists some fair sched-
uler for M. [4]

In Linear Temporal Logic, fairness assumption can be encoded syntacti-
cally into the formula to be verified.

Definition 6. Let M be a finite MDP, fair an LTL fairness assumption that is
realizable for M and F a set of fair schedulers. Then, for each LTL formula
¢ and state s of M

Priin(s = @) = Pryin(s = fair — ¢)

Pri (s = @) = Pryu(s = fair A @)

3 Verification of C/C++ Programs with Probabilities

When verifying a C/C++ program using model checking, in order to ana-
lyse all possible behaviours we need to take into consideration the context
in which the program runs. It means that the environment that the program
is executed within needs to be modelled, including all the possible user-
interface actions. Programs which are put into such context are referred to
as closed programs. [10]

When modelling the environment, we need to reproduce the freedom
of what could happen. Usually, this is represented by a non-deterministic
choice. This approach assures that if the model checker states that a certain
property is satisfied within a closed program, then that will always be true
regardless of what will happen.

However, as we have already seen, non-deterministic choice can be of-
ten insufficient for representing some behaviours realistically. For example,
when considering an environment with a very low possibility of failure, if
we were limited to using only non-deterministic choice then one of the pos-
sible sequences of actions would be an infinite sequence of failures, whereas
the real probability of this happening is infinitesimal.

Therefore, we introduce the probabilistic choice as a natural extension
of the non-deterministic choice.

In the next section, we will outline the workflow of the realised tool
chain, followed by a section which demonstrates both the functionality of
the tool chain and use of the non-deterministic and probabilistic choice in
C/C++ programs using the DIVINE built-in function __divine_choice. In
the final section, we will discuss the various technical aspects that play an
important role in the quantitative verification tool chain.

3.1 Workflow

The workflow of the tool chain for quantitative verification of C/C++ pro-
grams can be divided into three parts. The first part consists of processing
C/C++ programs by DIVINE in order to generate an explicit representation
of the state space of a program. The explicit representation is used in the
second part as an input of the DPtoolchain program which transforms it

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

C/C++
LTL property
(divine syntax)
dptoolchain

translator

.
.

.

: LTL translator model export
’ - T k]

: DIVINE be v
.

.

.

.

.

Y

Y.

LLVM bitcode LTL property

A A
compile (prism syntax) *tra KI *.sta

T Tot]

gen-explicit]

A4
5]
2
(7]
=

Figure 3.1: Divine — Prism tool chain workflow

into a format acceptable by PRISM, together with an LTL property to be ver-
ified. In the last part, we employ the PRISM model checker for quantitative
verification of the explicit model against provided LTL formulas. Details of
the tool chain are depicted in Figure

Since DIVINE does not directly understand C/C++ programs, it needs to
transform such programs into an input format it can analyse. For this pur-
pose, DIVINE uses LLVM framework; namely, the LLVM intermediate repre-
sentation format. Thus, a C/C++ program is first translated into an LLVM
bitcode (*.bc) which is interpreted using a custom interpreter of DIVINE
in order to generate the state space graph of the program. The state space
representation is saved in a custom file format of DIVINE; namely, DIVINE
Explicit State Space (DESS), which is described in detail in Section

Since the DESS format for representing explicit models is naturally dis-
tinct from the representation of explicit models in PRISM, we have cre-
ated a special program DPtoolchain which takes care of the transforma-
tion of a model from the DESS representation into the one of PRISM. The
PRISM format for representing explicit models is described in Section [3.3.4]
DPtoolchain is also used to translate LTL properties from DIVINE syntax
into the syntax of PRISM.

10

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

#include<atomic>
std::atomic<int> 1i;

int main(){
i=0;
while (i<4 && __divine_choice(3,3,1,2)) i++;
assert (i>1);
return O;

Figure 3.2: Example of C program with the probabilistic choice

Now that we have both a model and an LTL property in the format de-
fined by PRISM, we can employ PRISMfor quantitative model checking.

3.2 Introducing Probability in Source Code

Now that we know how the probabilistic verification is enabled in our
tool chain, we will demonstrate how to implement probabilistic and non-
deterministic behaviour in C/C++ programs.

Let us first assume a simple probabilistic program, shown in Figure
The program contains a single integer variable i whose initial value is 0.
Value of i is incremented inside a while loop until the variable reaches a
value of 3. However, the while loop can be early-terminated, that is be-
fore variable i reaches value 3, with 50% probability in each iteration. This
is achieved by using the DIVINE built-in function __divine_choice which
simulates the probabilistic choice.

The __divine_choice function takes a variable number of parameters
and returns an integer from the range (0,7 — 1), where n is the first and
obligatory parameter of the function and states the total number of possi-
ble choices, that is the number of state successors created in MDP. Given n
probabilistic choices, the __divine_choice function needs to receive other
n parameters, each setting the probability weight of a respective branch.
Therefore, a __divine_choice function with n choices receives n 4 1 param-
eters in total, where (i 4+ 1)th parameter sets the weight of the ith branch,
numbering both branches and parameters from zero. The returned integer
value identifies a branch in which the program continues.

11

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

The probability of each branch is obtained as its weight divided by the
sum of weights of all branches. Thus, the call __divine_choice(3,3,1,2)
returns 0, 1 or 2 with probabilities 3/6, 1/6 and 2/6. Now, we can clearly
see that the while loop terminates when __divine_choice returns 0, that
is with 0.5 probability.

Note that while the program can see just the returned integer value of
__divine_choice, DIVINE explores all the possible outcomes, which means
all three branches created, each entered with the aforementioned probabil-
ity.

After the termination of the while loop, we test in an assertion statement
whether the value of i is greater than one. We can see that for the value of
i to be greater than one, the while loop cannot be early-terminated during
the first two iterations.

Having explained the employment of probabilistic choice inside source
code, we can use our tool chain for computing the probability of assertion
failure. We use an atomic proposition assert which indicates whether an
assertion is violated in a program. Since there is only one assertion in our
program, we can simply ask about the presence of the atomic proposition
assert in the program at anytime, thus the LTL property will be F(assert).
The obtained minimal and maximal probability of assertion violation is
0.75. This can be easily proven to be correct as the probability of the early-
termination is 0.5 in the first iteration and 0.5 x 0.5 in the second iteration,
hence 0.75 in total.

We can see that the result of both minimal and maximal probability is
the same. This is due to the absence of non-deterministic behaviour in the
program. In order to demonstrate the use of both probabilistic and non-
deterministic choice in a program, we will slightly modify our program in
Figure3.2]by adding a non-deterministic choice.

The non-deterministic choice is implemented by the __divine_choice
function as well. However, in contrast to the probabilistic choice, it takes
only one parameter that states the number of non-deterministic choices,
that means the number of created branches, and returns an integer indicat-
ing the resulting branch.

Now, let’s assume a program (shown in Figure which is derived
from the program depicted in Figure We can see that the first part
of the program has not changed, in each while loop the value of i is in-
cremented while there is a 50% chance of early-termination. However, a
non-deterministic choice __divine_choice(2) is entered after the while

12

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

std::atomic<int> 1i;

int main(){
i=0;
while (i<4 && __divine_choice(2,1,1)) i++;
if (__divine_choice(2))
assert (i>1);
else
assert (i>2);
return 0O;

Figure 3.3: Example of C program with both probabilistic and non-
deterministic choices, toy0.c

loop, creating two branches, each with a different assertion statement. The
first assertion, assert (i>1), is violated with 0.75 probability, as we saw in
the previous example. The second assertion, assert (i>2), is violated with
probability 0.875. It is calculated as the sum of the probability of early-
termination during first two iterations, that is 0.75, and the probability of
early-termination in the third iteration, thatis 0.5 x 0.5 x 0.5. When employ-
ing the tool chain in order to compute the probability of assertion violation,
it runs the verification with respect to the resolution of non-determinism,
therefore, the minimal probability of assert violation is 0.75 and the maxi-
mal probability is 0.875, as expected.

So far, we have seen the use of both probabilistic and non-deterministic
choices on a simple-threaded program. In our last example, we will present
a simple multi-threaded program as an extension of the program

in Figure

Let’s take the program in Figure and modify it in the following
way: before entering the while loop we create a new thread which asyn-
chronously increments a value of i, and then we wait for it to terminate by
calling pthread_join before the assertion statement is reached. We know
that in practice, the program will always terminate, and therefore the asser-
tion statement will always be evaluated. However, when such a program
is analysed by a model checker, the scheduler can choose such a path that
the join operation may never succeed, and thus the program will neither

13

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

std::atomic<int> 1i;

void *T1(void *){
i++:

b

return O;

int main(){
i=0; pthread_t p; pthread_create(&p,0,T1,0);
while (i<4 && __divine_choice(2,1,1))
i++;
pthread_join(p,0); AP(joined);
assert (i>1);
return O0;

Figure 3.4: Example of multi-threaded C program with the probabilistic
choice, toyl.c

terminate nor evaluate the assertion statement. In order to rule out such un-
realistic behaviours, model checkers usually include the option to consider
only those paths that can be scheduled only by fair schedulers. Such paths
are referred to as fair paths. In order to identify fair paths, we introduce
a fairness condition that needs to be satisfied by a path to be considered
a fair path. We extend our tool to process fairness conditions expressed as
an LTL formula. So, in our example of a program in Figure the fairness
condition will be specified as F(joined). As an atomic proposition joined is
present in the program after the thread that was created from the main pro-
cedure terminated, the satisfaction of the fairness condition makes certain
that the whole program will terminate as well.

In our tool chain, there is also an alternative for ensuring fairness ver-
ification using verification of only realistic executions using PRISM’s im-
plementation of fairness. PRISM enables fairness verification by using the
-fair switch. As we supply PRISM with only explicit model representation,
PRISM cannot have any notion about processes in the original program.
Therefore, fair analysis cannot depend on the processes being scheduled.
Instead, a path of the MDP is considered to be fair if, for states s occurring
infinitely often in the path, each possible non-deterministic choice available
in state s is taken infinitely often.

14

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

3.3 Technical Details

In this part we discuss the technical details of DIVINE, including some mod-
ifications in DIVINE that were necessary to allow probabilistic analysis of
C/C++ programs and we describe PRISM’s format for explicit models.

3.3.1 DIVINE Explicit State Space (DESS)

DIVINE uses its custom format DIVINE Explicit State Space (DESS) for the
representation of a state space of a program. For the purposes of probabilis-
tic model checking, the original DESS format was extended of transition
probabilities and state labels. In other words, it was extended so it could
encode Markov Decision Processes.

The structure of the DESS format is as follows. Generally, the DESS is
composed of two parts, a fixed-length header and a graph representation.

The header contains two types of information. First, it stores general
information about the DESS file, such as the DESS version, DESS id string
or byte order check which is used to verify the endianity of the DESS file.
It also contains model specific information, such as the number of graph
vertices, forward edges offset or nodes offset. The exact description of the
header format can be found in the DIVINE manual [11]].

The second part of the DESS format contains an encoding of the graph
which represents an input model.

Vertices of the graph correspond to individual states of an input model,
and they are sequentially numbered starting from 1. Moreover, DIVINE adds
an extra vertex into a graph, indexed 0, in order to uniquely identify all
initial states of the model. Thus, there is an outgoing edge from the vertex
indexed 0 to each of the vertices representing the initial states of a model.

Each vertex stores a pointer to a data block. A data block is composed
of tuples representing edges. Each tuple represents one outgoing edge from
the original vertex into a vertex whose index is stored in the tuple. Origi-
nally, a tuple comprised an index of the vertex to which the edge leads and
an optional label. However, for the purpose of representing an MDP, the
tuple was extended to 3-tuple with the transition probability saved as the
third tuple element.

15

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

As for the construction of a model from an explicit graph representation,
PRISM needs to obtain a definition of each state in terms of a set of atomic
propositions, the definition of a state in DIVINE was extended of state flags
(state labels). State flags represent respective atomic propositions defined
in the program and also some general safety properties automatically veri-
tied by DIVINE, such as assertion violation, division by zero, memory leak,
mutex deadlock and others. The value of a flag of a specific state is set to 1
if the flag represents an atomic proposition that is present in the state, or if
it represents a property that is violated in the state. Otherwise, the state flag
is set to 0. Currently, the number of state flags is limited by the size 64 bit,
therefore, each state can only be defined in terms of 64 flags maximum.

3.3.2 Reducing State Space in DIVINE

As we have seen in Section the basic approach to modelling concur-
rent programs is by means of interleaving. In practice, this means the non-
deterministic choice of the order in which the actions of the processes that
run in parallel are executed. As such non-deterministic choice (i.e. context
switch) is basically allowed after each instruction step in any of the threads,
and especially when in combination with the very fine-grained LLVM bit-
code, the state space of a program grows rapidly. Thus, DIVINE faces the
typical problem of state space explosion which can render the whole verifi-
cation process infeasible.

However, DIVINE takes some measures to overcome the problem of too
large state spaces. First of all, it implements several very efficient state-
space reduction techniques, such as Tau and Tau+ reductions [12] which
are combination of partial order reduction and path compression, which,
combined with parallel and distributed-memory processing, renders
DIVINE suitable for the verification of large systems. [13]

Moreover, we observe that interleaving at some points does not pro-
duce any new results with respect to verified property, and therefore seems
pointless.

DIVINE offers the user an option to avoid such pointless context
switches by providing him with a tool for creating atomic sections of code.
Such sections are delimited using two DIVINE’s built-in functions, namely
__divine_interrupt_mask and __divine_interrupt_unmask, the former
marking the beginning and the latter marking the end of an atomic section.

16

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

__divine_choice

__divine_choice __divine_choice

__divine_choice

divine_interrupt_unmask

__divine_interrupt_unmask

Figure 3.5: a) Branching in an atomic section. b) Nested branching in an
atomic section.

In between these two functions, the running thread cannot be interrupted
by any other thread, i.e. no context switches are allowed.

In the sequel, the number of considered interleavings in the model of a
concurrent system can be significantly decreased. As a result, this reduces
the number of states of the corresponding explicit graph representation as
no intermediate states need to be created, and therefore, the whole verifica-
tion process may be rendered faster.

3.3.3 Property Specification in DIVINE

DIVINE supports the verification of properties expressed by LTL formulas,
and it also provides the verification of some built-in safety properties.

By default, in every program, DIVINE verifies so called Safety property,
which is a combination of assertion, memory, mutex deadlock and arith-
metic safeties, memory leak freedom, custom defined safety problems and
the safety of compiler-defined guards.

LTL properties to be verified can be specified in two ways. Properties can
be either provided to DIVINE, and by extension to DPtoolchain, through
a command-line argument, or the properties can be defined in the source
code of a program and pass to command-line only the name of a property
to be verified. The DIVINE syntax for specifying LTL properties follows.

17

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

Definition 7 (LTL Syntax). Given a set of atomic propositions AP and
a € AP, the syntax of LTL formula ¢ acceptable by DIVINE is as follows:

@ ::=un_op @ |l¢ bin_op ¢ | (¢) | term

unop ::=! | X | F |G
binop ::=&& | || | > <> 1" U |V I[|W
term ::= true | false | a

The name of atomic proposition is a string of the following structure.
{_a-z}[_0-9a-z]*.

However, there are some words that are reserved by DIVINE and cannot
therefore be used as the names of user-defined atomic propositions. The list
of currently reserved words is:

init, noproblem, other, assert, invaliddereference, invalidargument,
outofbounds, divisionbyzero, unreachableexecuted, memoryleak,
notimplemented, uninitialised, pointstoviolated, deadlock, trace

Atomic propositions need to be defined inside the source code as an
enumerated type with the type name APs, for example:

enum APs { found, lucky, black, white };

Their presence in the program is then set by calling a function AP which
takes the name of an atomic proposition as its only parameter, for example
AP(lucky).

3.3.4 PRISM Explicit Model Files

Despite the fact that PRISM is primarily a symbolic model checker focused
on verification of models described using PRISM language, PRISM also pro-
vides support for verification of imported explicit models. It defines several
plain text file formats [14] for explicit model representation. For the purpose
of representing an MDP, we will use a state file (*. sta) and a transitions file
(*.tra). PRISM also provides a file format for saving labels (*.1ab) with de-
scription of states that satisfy them. However, for the given moment, it is

18

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

not yet fully implemented. Therefore, we use the state file for saving the
state labels as well as for identifying an initial state what could otherwise
be saved in the label file. Below, we will describe formats of both state and
transitions files.

Transitions file

The transitions file (* . tra) contains an explicit list of transitions of a model.

n ¢ m
ip, ko Jo Xo
it ki ji1 %

irs ky jo X2

1n km Jm Xm

Figure 3.6: PRISM transitions file format

The first line of the file provides information about the model generally;
namely, the number of states (n), the number of non-deterministic choices
(c) in the whole model and the total number of transitions (m). The remain-
ing lines take the form "i k j x", where i and j are the source and desti-
nation state indices of the transition, k is the index of the non-deterministic
choice that it belongs to, and x is the probability of transition. State indices
are zero-indexed. [14]

State file

The state file (*. sta) contains an explicit list of a model’s states.

The first line is of the form (vo, vy, ..., vy), containing the names of all
atomic propositions that appear in the model. Each of the following lines
corresponds to one state whose index is represented by the first number on
each line followed by the values of atomic propositions at that state, value
x; corresponding to the v;th atomic proposition. [14]

Usually, the initial state of a model would be defined in the label file, but
since loading initial states from the label file is not yet implemented, we
have built a workaround. In the case that PRISM receives no information

19

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

—~

Vo,Vi1,Vo,..., Vn)

0: (%0, X1, X2, ++., Xn)
1: (%0, X1, X2, -+, Xn)
2 :(Xo, X1, X9, «.., Xn)
3: (%o, X1, X2, ..., Xp)

m: (X0, X1, X2, -, Xn)

Figure 3.7: PRISM state file format

about the initial state, it automatically considers a state in which all the
variables take their minimum value to be the single initial state of a model.

As we saw in Section DIVINE adds an extra vertex to each graph
and considers this vertex to be the initial state of an MDP. Naturally, none
of DIVINE’s automatically checked properties is violated in this state, nor
can an atomic proposition be present in it. Therefore, we know that all the
variables take their minimum. However, we have no guarantee that this
is an unique state with minimal values of variables in the whole graph.
A simple solution to this is to add an extra variable which takes value 0 only
in the initial state, otherwise it is evaluated to 1. At this moment, we know
each graph to have a single initial state that can be recognized by PRISM.
Hence, in the case of our tool chain, the first variable’s name is always init
and it serves to indicate the initial state of a model. Thus, init is a reserved
word and cannot be used as the name of any atomic proposition.

3.3.5 PRISM Property Specification Language

Given a set of atomic propositions AP and a € AP, the syntax of LTL for-
mula ¢ acceptable by PRISM is as follows:

@ ::=un_op (@) | ¢ bin_op (¢) | (¢) | term

unop ::=! | X | F | G
binop ::=& | | | = | <= |U|VIW
term ::= true | false | "a"

20

3. VERIFICATION OF C/C++ PROGRAMS WITH PROBABILITIES

Then, the syntax of a query about the minimal and maximal probabil-
ity of a model to satisfy a behaviour described by an LTL property ¢ is as
follows:

Pmin

? Lol
? Lol

Pmax

21

4 DPtoolchain

The realization of the chaining of DIVINE and PRISM model checkers is im-
plemented by a bash script DPtoolchain and modeltranslator program
written in C++ programming language.

DPtoolchain ensures the overall probabilistic model checking function-
ality by chaining DIVINE, PRISM and modeltranslator programs and pro-
cessing their inputs and outputs.

The modeltranslator program serves two purposes. Firstly, it translates
the LTL formula from DIVINE syntax into that of PRISM. Secondly, it creates
the necessary files which represent a model under verification in a format
acceptable by the PRISM model checker.

In the first part of this chapter, we will outline the file organisation of
DPtoolchain. Afterwards, we will the discuss technical details of its flow,
and at the end we will describe how to use it.

4.1 File System Structure

During the execution of the tool chain, there is a non-trivial number of gen-
erated files. These files are either necessary for the subsequent steps of the
tool chain and verification process or they can reduce the time for later veri-
fication of the same model, for instance, when verifying different properties
of the same model. Some processes, such as generating the explicit state-
space of a program, may take a non-trivial amount of time, so having an
option to reduce this time and, in consequence, reduce the time of the ver-
ification process, is a highly desired property of the tool chain. In order to
do so, it is inevitable to build a logical structure among the files so that both
DPtoolchain and the user can easily find and work with necessary files.

For every model, DPtoolchain creates a special directory whose name
is derived from the model’s basename. All files produced during the
execution of DPtoolchain over a specific model are saved in the model’s
directory. All such model directories are located in the folder
path_to_DPtoolchain_dir/models/ as depicted in Figure 4.1}

All model representations such as the source code, DESS format, state
and transitions files bear an identical basename.

23

4. DPTOOLCHAIN
L| dptoolchain
dptoolchain.sh
models/
program/

— program.bc

— program.dess
— program.sta

— program.tra

— program_bc_info

—| draw_socks_randomised/ |

draw_socks_randomised.bc

draw_socks_randomised.dess

“— modeltranslator

Figure 4.1: DPtoolchain file hierarchy

4.2 Using DPtoolchain

When running DPtoolchain script, it is necessary to have set paths of
DIVINE and PRISM executable files to the PATH variable.

The use of DPtoolchain is showed below. Meaning of individual op-
tions is described in Table

dptoolchain -i <filename>

dptoolchain -c¢ <filename> f <flags>]
-1 <1tl_formula> | -p <property_name>
s

<fair_cond>]]

dptoolchain -n <filename> -1 <1tl_formula> | -p <property_name>
]

<fair_condition>])

dptoolchain -h

24

4. DPTOOLCHAIN

-1

<filename>

<filename>

<basename>

<flags>

<ltl_formula>

<property_name>

<fair_condition>

Print information about a model which is rep-
resented either as an LLVM bitcode (*.bc) or by
DIVINE Explicit State Space file (* . dess)

Both file formats provide a list of state flags de-
fined for each state. When the input file is an
LLVM bitcode, a list of properties defined by
DIVINE (general safety properties) plus proper-
ties defined in the source code of a program are
displayed.

Compile C/C++ program into an LLVM bitcode
and generate an explicit state space. In case LTL
property is specified, run probabilistic model
checking.

Run probabilistic model checking over a com-
piled model with given basename, it means its
state space has been generated. The necessary
model files are automatically accessed in the
corresponding model directory, therefore it is
not necessary to provide path to a specific file.

Print help.

Flags that are necessary for compilation of cor-
responding C/C++ program

LTL formula of property to be verified.

The name of LTL property which is specified in
a source code of a program under verification.

Specify LTL fairness condition and run proba-
bilistic model checking with respect to it.

Table 4.1: DPtoolchain options

25

4. DPTOOLCHAIN

Names of atomic propositions representing DIVINE-difined properties
are derived from state flag names stated in model information in the follow-
ing way. A name of an atomic proposition is the string following a colon in
a name of a state flag converted to lower case. For example, let the state flag
name be G:Assert and G: InvalidArgument, then valid atomic propositions
are assert and invalidargument.

4.3 Technical Details of the Workflow of DPtoolchain

Compilation

As we have seen in Section 3.1} DIVINE cannot verify C and C++ programs
directly. Therefore, the first necessary step is to translate C and C++ code
into LLVM bitcode using a suitable C or C++ compiler and then link it
against the DIVINE-provided runtime libraries. [11]

However, the compilation of the DIVINE runtime environment takes a
non-trivial amount of time. But, as the DIVINE-runtime environment can
change only with a new version of DIVINE, we can reduce the time spent
on the compilation by pre-building it. Therefore, with each new version of
DIVINE, DPtoolchain automatically pre-builds DIVINE runtime libraries
and then when compiling C/C++ code, it just adds the path to the com-
pile command using the following switch:

--precompiled=<path_to_pre-build_divine_libs>

The compilation of a program written in C/C++ programming language
is invoked by the following command:

$ divine compile --1lvm program.c --precompiled=<path>

The output file, program.bc, is then saved into the corresponding model
directory.

26

4. DPTOOLCHAIN

Generating explicit state-space representation

Given an LLVM program, DPtoolchain calls DIVINE to generate the explicit
graph representation of the program.

DIVINE generates the explicit state space and saves it into a DESS file by
using the following command:

$ divine gen-explicit --probabilistic --compression program.bc

The --probabilistic switch tells DIVINE to store the transition proba-
bilities in the DESS file. The use of --compression switch sets DIVINE to use
lossless state space compression based on tree compression, which is espe-
cially efficient on large models. [11] As a consequence, the time for model
construction and model checking process in PRISM is reduced.

As an output of this operation, a DESS file is created and saved in an
appropriate model directory.

Translating model into states and transitions files for PRISM

DPtoolchain uses the modeltranslator program designed particularly for
generating states and transitions files in format accepted by PRISM and for
translating a LTL formula into PRISM syntax.

modeltranslator reads the DESS file corresponding to the model being
verified, draws all necessary information from the Markov Decision Process
and creates the states and transitions files which are then used as an input
for PRISM model checker. The exact format of these files and their creation
is more closely described in Section [3.3.4]

Translating LTL formula

modeltranslator takes the LTL formula and uses the DIVINE LTL parser
and textual substitution in order to create a corresponding LTL formula
acceptable by PRISM. modeltranslator returns two LTL formulas, one ask-
ing about the minimal probability and the other asking about the maximal
probability of the property being satisfied in the given model.

27

4. DPTOOLCHAIN

Probabilistic model checking in PRISM

The last step of the DPtoolchain is to run probabilistic verification inside
the PRISM model checker. We provide PRISM with the created states and
transitions files, program. sta and program. tra, which PRISM uses to build
a model, and with two LTL properties to be verified saved in prop variable.

The command for running PRISMis the following;:

$ prism -cuddmaxmem (4 * 1024 * 1024) -importstates program.sta
-importtrans program.tra -pf prop

During computation, PRISM relies on the CUDD (Colorado University
Decision Diagram) package [14] which provides, among others, functions
to manipulate Binary Decision Diagrams (BDDs) and Multi-Terminal-BDDs
(MTBDDs), having both C and C++ interfaces [15]. However, by default, the
upper memory limit of CUDD is 200 MB which may cause PRISM to run out
of memory during model checking. Therefore, using the -cuddmaxmem val
switch allows us to set the upper memory limit to a higher value (in KB),
in case a machine that is being worked on has significantly more memory:.
In our case, we set the upper memory limit to cuddmaxmem (4 * 1024 *
1024), that is 4 GB.

28

5 Evaluation

In this chapter, we present several examples covering different domains in
order to evaluate efficiency of the realised tool chain.

Generally, we can observe two possible approaches to using C/C++
programming language for probabilistic model analysis. The first approach
uses C/C++ for modelling various randomised algorithms and systems ex-
hibiting probabilistic behaviours whilst in the second approach, real C/C++
programs are analysed using probability.

5.1 Case Studies

In this section, we will present each of the studied examples. The first ex-
ample, the Sock Selection Problem, focuses on the use of probability in a
randomised algorithm implemented by a single-threaded C program. The
second problem, the Thief Problem, serves to demonstrate probabilistic an-
alysis on a multi-threaded program using C++11 thread library, it illustrates
the use of DIVINE’s masking functions described in Section and pres-
ents the use of an atomic proposition joined in order to consider only fair
runs during model checking. The last example, Fischer Mutual Exclusion
Protocol, presents a real multi-threaded protocol implemented in C pro-
gramming language, and the use of an LTL fairness assumption.

5.1.1 Sock Selection Problem

To begin with the simplest of the problems, we present the randomised Sock
Selection Problem [16] written in C programming language, whose main
purpose is to demonstrate the implementation of probabilistic behaviour
using the __divine_choice built-in function.

The Sock Selection Problem models an algorithm for finding a matching
pair of socks. The problem is described as follows. A person successively
draws socks from a drawer which contains socks of n colours. There is a
limitation that the person can hold only two socks at a time. In case the
person does not hold a matching pair, he randomly drops one of the two
socks and draws the next sock from the drawer. This drop-and-draw pro-
cess takes place until the person finds a matching pair or until there are no

29

5. EVALUATION

socks left in the drawer. Each draw of a sock of a specific colour happens
with certain probability derived from the ratio of colours.

We have implemented this algorithm for the number of colours n = 2
and n = 3. The corresponding programs are draw_two_socks_randomized.c
and draw_three_socks_randomized.c

In the algorithm, the __divine_choice function is used three times. Firstly,
it serves to decide what colour the currently drawn sock will be, depending
on the rate of colours in the sock drawer.

Secondly, it simulates coin flipping in order to decide which sock to
drop in case the person holds two non-matching socks. In this case, we
use __divine_choice(2,1,1) to obtain two equiprobable choices creating
two branches in MDP. One branch corresponds to dropping a sock in the
left hand, the other one to dropping the sock in the right hand.

The last use of the __divine_choice is at the beginning of the algorithm.
It is used to determine the ratio of the first colour. The ratio can be set to any
of the following values (with the same probability): 3/10,4/10,5/10,6/10,7/10.
The ratio of other colours is derived from the probability of the first color,
the probability is uniformly distributed among the remaining colours. The
following line of code shows setting of the probability of the first colour:

int prob = (__divine_choice(5,1,1,1,1,1)) + 3;

In case we consider just two colours of socks, the drawing of socks is exe-
cuted by running the following code:

switch (__divine_choice(2, prob, 10 - prob)) {

case 0: \\drawn a white sock

case 1: \\drawn a black sock

However, for the computations presented in Table[5.2} we omit the third
probabilistic choice which sets the ratio of the first colour, and by exten-
sion, of the remaining colors. Instead, we set the ratios manually in order to
obtain reasonably understandable and easily computable results.

30

5. EVALUATION

The studied probabilities of this model are of the following kind. Given
the ratio of white to black socks 9:1; find out the probability that the even-
tually found matching pair of socks will be black, find out the probability
that the first two drawn socks will be of the same colour, or find out the
probability that a matching pair will not be found.

In order to be able to study properties of this kind, we introduced atomic
propositions found, to indicate that a matching pair was found, lucky, say-
ing that the first two drawn socks were matching, and black and white,
stating what the colour of the found matching pair was. For the result of
verification of various properties, see Table

5.1.2 Thief Problem

As the significant advantage of model checking lies in the verification of
concurrent systems, in the following examples we will consider multi-
threaded programs. The first example, the Thief Problem, is a simple
multi-threaded program that does not use any synchronisation concepts
such as mutexes, conditional variables, etc. It serves not only to show the
successfully realized probabilistic model checking of C++ programs im-
plementing threads from C++11 THREAD library, but also to demonstrate
the way of ensuring fairness and the impact of DIVINE built-in functions
__divine_interrupt_mask and __divine_interrupt_unmask. As we have
seen in Section they allow the user to define atomic sections over a
sequence of instructions, thus, to significantly reduce the state space of a
model.

The Thief Problem models a situation in which a thief tries to steal a
diamond from a guarded museum room. The thief and a guard are each
represented by a thread. The museum room is described using a simplified
discrete representation.

The guard protects the displayed diamond placed in the middle of a
rectangular museum room. He walks from one side of the room to the other,
following the same line every time. To steal the diamond, the thief needs to
cross the line followed by the guard. However, stealing the diamond is not
so easy. The complication is that at any point the guard can decide to change
the direction and start walking the opposite way.

The thief follows a simple strategy. He waits until the guard’s back is
turned to the diamond and the guard is walking away from the place where

31

5. EVALUATION

the thief is hidden. At such moment, the thief rushes to the diamond, picks
it up and runs away, crossing the guard’s walking line again. If the guard

turns during the thief’s run and sees the thief, we claim he has caught the
thief.

In our implementation, the line followed by the guard is divided into
11 sections. Each section is assigned two values, turnL and turnR. These
values describe the probability of the guard changing his walking direc-
tion. The probability of the guard changing his direction increases with the
decreasing distance of a wall he is walking toward.

Another possible employment of probability is to include a decision be-
fore every guard’s step. The guard decides whether to make a step or stay
at his current position. This decision can be simulated by coin flipping.

As concurrent systems are modelled by means of interleaving, the state
space of the Thief Problem grows significantly. However, it is possible to
reduce the size of the corresponding MDP without influencing the result of
the verification by using DIVINE’s functions __divine_interrupt_mask and
__divine_interrupt_unmask, i.e. by limiting the number of interleavings.

Thanks to a convenient use of these built-in function at various parts of
the code, the state space of the Thief Problem can be reduced of 33.5%.

The model introduces two straightforward atomic propositions, caught
and stolen, and an atomic proposition pickedup to indicate that the thief
picked up the diamond. In order to ensure that the model checking consid-
ers only realistic paths, a special atomic proposition is used, called joined.
It is present only after both thief and guard threads have finished. There-
fore, the used LTL fairness assumption is F(joined).

In this model, we measured the probability of the thief stealing the di-
amond, or of the guard catching the thief either before or after picking up
the diamond.

5.1.3 Fischer’s Mutual Exclusion Protocol

The last case study is an example from DIVINE’s collection of examples,
the Fischer’s Mutual Exclusion Protocol, programmed in C using PTHREAD
library. This example is used for demonstration of the verification of the
safety and liveness properties, which are defined inside the source code.

32

5. EVALUATION

Fischer’s mutual exclusion protocol is a well known delay protocol that
ensures mutual exclusion among N processes using real-time clocks and a
shared variable lock.

The algorithm uses a shared variable owner to remember which process
requested access to the shared resource. In case owner = 0, it indicates that
the lock is available. If a process reads owner = 0, it writes its process id to
the variable and delays for some time. In case the value of owner still equals
the process’ id after the delay, the process enters the critical section.

In order to study the safety and liveness properties, we have introduced
atomic propositions waitX, indicating that a thread X has requested the lock
and is waiting to obtain it, and criticalXin and criticalXout, indicating
that a thread X entered or left its critical section. In our implementation, the
protocol uses two threads trying to enter the critical section. Thus, the ex-
clusion property is defined as:

G((criticalOin — (!'(criticallin) W criticalOout)) &%

(criticallin — (! criticalOin W criticallout)))
and the progress property:

G(wait0 — F(criticalOin)) && G(waitl — F(criticallin)).

5.2 Measurements

The Table 5.2|contains experimental values of probabilistic model checking
executed on programs described in the previous section and on the two

programs presented in Section in Figures3.3]and

The second column of Table [5.2| shows the time spent on compilation
and generation of explicit state space of each program using DIVINE. The
number of states of the generated state space is presented in the next col-
umn, MDP size. Columns PRISM P,,;, and PRISM Py, present results of the
quantitative model checking. The three following columns refer to duration
of model construction and model checking in PRISM. The last column sums
the duration of the whole DPtoolchain execution.

33

Ecoﬁumw ur paonpoxjur are santadord uorsnpxa pue ssexdord 10§ se[nwiIoy 117 7 I0LD (JID UO PaYseId IO JNsax piea e apraoid o) payrey NSIMd ‘T

SJUWIINSEIIA :1°G d[qeL,

5. EVALUATION

s/pwz | S1€S 0681 T9% 0T 01 (pouzol)4 = s [“ssas8oid
sgwize | §Tee9l | £e6cT | Fesk 0T 00 ssa4804d . . (8nq tpim)
spuzr | X U'Sh/9 | ¥€1Q plrey 0| (powol)g:awf uosnpra | STELET ces /et JMMMM
SPPWIZ8T | 9°9261T | ST09% | S'S/E 01 00 U01SM]0X2 .
spewge | 981 | ¥FSET | 8'96C 01 0T U01SN]0X2
STWIT | §79C SOTT 0°0¥C 01 01 (pauzol) 4 : s f*ssas8oid | g6/ 08 TIe /€t ¢ _Mowwm
wegT | €F658 | 1'SCIT | T9TT 01 00 ssaSo4d P
S6'C 6200 | 20 SH0°0 <0 g0 | (pautol)g : awf*(1408s0)4
09 S00°0 1000 | ££00 S0 00 (1ossv)4 | 6L 80/9% 1 £or
/'L $00°0 00 €00 01 00 (paurol) 4
A 100°0 Q000 | 8100 c/8°0 A\ (140ss0)q | L€ 90/¢T 0 4oL,
spewze | T'€F9 0T | ¥0LE 01 00 | (pourol)g:awf*(uajoss)q
STWoT | T8L9 | 8L T'zee Irey 00 | (pourol)q:uwf’(3y8nwo)d | cge¥9 I'ZEL/ €T E@MHM
STTWOL | 86¥1 Q9’1 T'zee (Irey 00 (3y&nvo)q .
$9°¢ <000 9000 | ¥50°0 GZI100 | STIT00 ((punof)i)o
$9°¢ £00°0 2000 | ¥50°0 G/890°0 | /89200 (yov19)4
$9°¢ 9000 2000 | SS0°0 S/8196'0 | S/8196°0 (omym) g
/'€ 500 9200 | ¥S0°0 G/8IST'0 | S/8IST0 ((Axyonp)i)o®m (231ym)4 | Tl 90/T1 mvwwmm_mm
$9°¢ 6€0°0 €100 | 1100 100 100 (Yov1q) 339 (Ayony) 4
$9°¢ 80T°0 €100 1100 18°0 180 (a71ymn) J3939 (fyong) 4
$9°¢ €00°0 00 1100 Z8°0 780 (Ayong)q
xvui g :.::Q pPrng Amv daw
own OIN O [opowt o g £yzodord 9ZIS Suneroudl / [PPOAL
[eloL (s) owm NSIYd NSI¥d INSI¥d daW | uonendwon

34

5. EVALUATION

For these experiments, we used the current stable version of PRISM,
4.2.1, and DIVINE version 3.3.1.

The experiments were performed on models that could be considered
as small. We can observe that compilation and generation of the state space
in DIVINE takes approximately a proportional amount of time to the size
of a model. While, on the side of PRISM, the time of the model verification
varies a lot for different LTL formulas, and for larger models, the time can
exceed several hours.

During these experiments, we discovered several bugs in the PRISM
model checker and discussed them with the PRISM developers. Generally,
we have discovered two types of bugs.

The first bug occurred with some correctly constructed LTL formulas
which caused PRISM to crash on CUDD error. This happened in the case of
the Sock Selection Problem and Fischer’s Mutual Exclusion Protocol. When
we notified PRISM developers, we were informed that this bug had been
fixed in the current development version (4.2.1.dev.r9678). The CUDD error
supposedly happened either because of running out of CUDD memory, or
for an unknown reason. In our case, it seemed that the memory wasn’t the
issue. However, when we started using the current development version, it
caused other problems. The two problems we have encountered were that
PRISM computed incorrect results of probabilistic analysis, and it returned
various results for identical formulas depending on whether only a single
formula was verified or whether PRISM was provided with a list of formu-
las. Therefore, we have returned back to using the current stable version.

The second type of bug consisted of PRISM returning an Infinity and
-Infinity probability values. This problem happened, for example, during
verification of the Thief Problem for the presence of an atomic preposition
caught, as you can see in Table

35

6 Conclusion

The aim of this work was to create a tool chain connecting DIVINE and
PRISM model checkers in order to enable quantitative verification of prob-
abilistic systems modelled in the C/C++ programming language with the
probabilistic choice operator.

The main issue of the implementation was to create an explicit model
in DIVINE containing necessary information for probabilistic analysis, and
to be then transformed into a model format acceptable by PRISM. For the
purpose of the model transformation, a special program, modeltranslator,
was implemented. modeltranslator takes care of creating the necessary
inputs for probabilistic model checking in PRISM. The overall functionality
of probabilistic model checking is ensured by the DPtoolchain script which
connects the two model checkers and the modeltranslator program and
processes their input and output files.

Despite the fact that the chaining of DIVINE and PRISM was success-
fully implemented, the tool chain cannot currently guarantee to always re-
turn correct results due to several bugs that we have discovered in PRISM.
These problems have been brought to attention of the PRISM developers
and should be soon fixed. During implementation of DPtoolchain, several
bugs were also discovered in the DIVINE model checker. These were imme-
diately fixed.

This thesis presents a set of simple models created for two purposes.
Firstly, it is used to demonstrate how probability can be introduced in
C/C++ programs using the DIVINE built-in probabilistic choice operator
and atomic propositions, and how to create atomic sections of code. Sec-
ondly, experimental evaluation of the approach to probabilistic model check-
ing adopted in this thesis was performed on these models.

At this moment, the bottleneck of the tool chain is the time spent on
model construction and verification in the PRISM model checker. This could
be partly anticipated since PRISM’s primary interest does not lie in the ver-
ification of imported explicit models, but in the symbolic verification of
models described using the PRISM language. However, we believe that the
time for verification, which is already reduced by using DIVINE's state space
reduction techniques, could be further shortened by a reduction of an MDP
with respect to verified LTL formulas.

37

6. CONCLUSION

Further possible work to be carried out consists of saving state flags of
an MDP in a PRISM label file (*.1ab) instead of a PRISM state file (*.sta),
once PRISM will have finished its implementation. Since the label file stores
for each atomic proposition only a list of states in which it is present, it
would considerably reduce the size of explicit models passed to PRISM.
Moreover, it could significantly accelerate the model construction and ana-
lysis in PRISM as, instead of accessing all states to find out whether a certain
atomic proposition is present in any state, it could directly access only those
states where it is present.

38

Bibliography

[1] E. A. Emerson, “The beginning of model checking: A personal
perspective,” in 25 Years of Model Checking, O. Grumberg and
H. Veith, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 27-45.
[Online]. Available: http://dx.doi.org/10.1007 /978-3-540-69850-0_2

[2] O. Grumberg and H. Veith, Eds., 25 Years of Model Checking: History,
Achievements, Perspectives. Berlin, Heidelberg: Springer-Verlag,
2008.

[3] E. Clarke, “The birth of model checking,” in 25 Years of Model
Checking, ser. Lecture Notes in Computer Science, O. Grumberg and
H. Veith, Eds. Springer Berlin Heidelberg, 2008, vol. 5000, pp. 1-26.
[Online]. Available: http://dx.doi.org/10.1007 /978-3-540-69850-0_1

[4] C. Baier and].-P. Katoen, Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008.

[5] “DIVINE: Model Checking for Everyone,” accessed: 2015-11-16.
[Online]. Available: http://divine.fi.muni.cz/

[6] “PRISM - Probabilistic Symbolic Model Checker,” accessed: 2015-03-
06. [Online]. Available: http:/ /www.prismmodelchecker.org/

[7] J. Tdmov4, “Quantitative linear-time model checking [online],” 2010
[cit. 2015-05-17]. [Online]. Available: http://is.muni.cz/th/98614/fi_
r/

[8] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[9] C. Baier, “On algorithmic verification methods for probabilistic sys-
tems,” 1998, habilitation thesis, Fakultit fiir Mathematik & Informatik,
Universitit Mannheim.

[10] J. Barnat, I. Cern4, P. Ro¢kai, V. Still, and K. Zakopcanova, “On Verify-
ing C and C++ Programs with Probabilities,” 2015.

[11] “Divine: Model checking for everyone,” accessed: 2015-04-07. [On-
line]. Available: http://divine.fi. muni.cz/manual.html

39

http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://divine.fi.muni.cz/
http://www.prismmodelchecker.org/
http://is.muni.cz/th/98614/fi_r/
http://is.muni.cz/th/98614/fi_r/
http://divine.fi.muni.cz/manual.html

BIBLIOGRAPHY

[12] P. Rockai, “Model checking software [online],” Ph.D. Thesis,
Masarykova univerzita, Fakulta informatiky. [Online]. Available:
http://is.muni.cz/th/139761/ti_d/

[13] J. Barnat, L. Brim, V. Havel, J. Havli¢ek, J. Kriho, M. Lenco, P. Roc¢kai,
V. Still, and J. Weiser, “DiVinE 3.0 — An Explicit-State Model Checker
for Multithreaded C & C++ Programs,” in Computer Aided Verifica-
tion (CAV 2013), ser. LNCS, vol. 8044. Springer, 2013, pp. 863-868.

[14] “PRISM Manual | Main / PTAs,” accessed: 2015-03-16. [Online].
Available: http:/ /www.prismmodelchecker.org /manual

[15] “Introduction,” accessed: 2015-04-12. [Online]. Available: http://vlsi.
colorado.edu/~fabio/CUDD/nodel.html

[16] “Sequential randomized algorithm - the sock selection problem
(input randomization),” accessed: 2015-03-18. [Online]. Available:
http:/ /cs.stanford.edu/people/eroberts/courses/soco/projects/
1998-99 /randomized-algorithms/examples/sequential.html

40

http://is.muni.cz/th/139761/fi_d/
http://www.prismmodelchecker.org/manual
http://vlsi.colorado.edu/~fabio/CUDD/node1.html
http://vlsi.colorado.edu/~fabio/CUDD/node1.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/randomized-algorithms/examples/sequential.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/randomized-algorithms/examples/sequential.html

	Introduction
	Preliminaries
	 Markov Decision Process
	 Linear Temporal Logic
	 Probabilistic Model Checking
	 Modelling Concurrent Systems
	 Fairness

	Verification of C/C++ Programs with Probabilities
	 Workflow
	 Introducing Probability in Source Code
	 Technical Details
	 DIVINE Explicit State Space (DESS)
	 Reducing State Space in DIVINE
	 Property Specification in DIVINE
	 PRISM Explicit Model Files
	 PRISM Property Specification Language

	DPtoolchain
	 File System Structure
	 Using DPtoolchain
	 Technical Details of the Workflow of DPtoolchain

	Evaluation
	 Case Studies
	 Sock Selection Problem
	 Thief Problem
	 Fischer's Mutual Exclusion Protocol

	 Measurements

	Conclusion

