FACULTY OF INFORMATICS, MASARYK UNIVERSITY

RTIS Iy,
s P F%

<<? 2,
N RAY
© A
= =
e
2 =

2, N

é;? 4&*

RTINS

Caching SMT Queries in
SymDIVINE

BACHELOR’S THESIS

Jan Mrazek

Brno, 2016

Declaration

Thereby I declare that this thesis is my original work, which I have created on
my own. All sources and literature used in writing the thesis, as well as any
quoted material, are properly cited, including full reference to its source.

Advisor: doc. RNDr. Jifi Barnat, Ph.D.

Abstract

Scalability of automatic verification tools is a crucial factor for usability of
such tools in practise. There are vast number of ways to improve it. Trading
off space for time is one of a classic approaches to improving time efficiency
of these tools, mainly used when constraints satisfiability checking plays a
central role. Caching of quantifier-free Satisfiability Modulo Theories (SMT)
queries is now widely used in the world of symbolic execution.

SymDIVINE is a tool for bit-precise control-explicit data-symbolic model
checking of parallel C and C++ programs. Quantified SMT queries for
multi-state equality decisions play a central role in SymDIVINE and take most
of the verification time. Standard caching techniques do not work due to
the quantification. In this thesis we propose dependency-based caching for
quantified SMT queries, that are used in SymDIVINE. We also demonstrate
integration of it in SymDIVINE and provide experimental evaluation on a
diverse set of benchmarks.

Keywords

Formal Verification, C, C++, LLVM, Model Checking, SMT, Caching, Imple-
mentation

Acknowledgements

First, I would like to thank all the people in the ParaDiSe laboratory for
providing such a nice half work-friendly and half procrastination-friendly
environment. It was a pleasure to write this thesis with you! Namely, I would
like to thank Jifi Barnat for providing me the opportunity to become a member
of ParaDiSe laboratory and advising this thesis, and Vladimir Still for the
instant small consultations he provided me all the time.

I would like to thank Zuzana Baranovi and Jana Mrazova for consulting
the traps of the English language with me. Also, I would like to thank my
family for supporting me and having enough patience with me.

Finally, I cannot forget to thank all the people who constantly reminded
me to work. This thesis would not exist without you.

Contents

1 Introduction

2 Preliminaries
2.1 Explicit-State Model Checking
2.2 Symbolic Execution. oL
2.3 LLVM . ..
2.4 Satisfiability Modulo Theories

3 SymDIVINE

3.1 About the Tool,
3.1.1 Input Language Overview

3.2 Control-Explicit Data-Symbolic Approach

3.3 Internal Architecture L.
3.3.1 LLVM Interpreter
3.3.2 DataStore
3.3.3 Exploration Algorithms

3.4 SMT Store e
3.4.1 Theoretical Model L.
3.4.2 Implementation

4 SMT Queries Caching
4.1 Motivation. Lo
4.2 Classical Approaches In Other Tools
4.3 Naive Approach
4.4 Dependency-Based Caching,
4.5 Implementation of Partial Store

5 Results
5.1 Benchmark Set and Environment
5.2 Evaluation

6 Conclusion
6.1 Future Work

X

27
27
28
29
30
33

35
35
36

47

Bibliography

A

Archive Structure and Running SymDIVINE

A.1 Archive Structure
A.2 Running SymDIVINE

Measurements

CONTENTS

49

Chapter 1

Introduction

Validation and verification are one of the essential parts of the software
development, as software bugs in a released product may become costly and
degrade the overall rating of the vendor, or even cause harm to the users.
Therefore, a lot of effort is usually put into this part of the development process
even though it is one of the most time-consuming and most expensive part.

Testing is a widely adopted method in the industry, as it is quite simple and
does not require any complex tools. Usually only a simple testing framework
and an (automated) runtime environment is used. Even though this method
is not sound (it cannot prove the absence of a bug), it performs quite well in
practice during bug-finding in sequential code.

As multi-core CPUs are quite common today, multi-threaded software is
required to fully utilise them. Even mobile devices, such as cellphones, feature
multi-core CPUs and thus multi-threaded software is increasingly commonly
produced today. This kind of software is hard to test due to the presence of
non-determinism in thread scheduling. Two runs of the same program with the
same input can lead to a different threads interleaving. This can cause distinct
program behaviour for each run — so-called race conditions. Multi-threaded
program tests are also affected by the scheduler’s non-determinism, so it is
possible to obtain two different test results for two test runs. These bugs are
hard to find, as they can occur only in a single thread interleaving, which can
be scheduled only in very specific circumstances. Observation of the program
(e.g. run when under a debugger or run in a different environment) can also
affect the scheduling and the bug might not occur.

A lot of effort has been put into the development of formal methods during
the last few decades. These methods could replace testing and would help to
find more bugs. There are methods like symbolic execution, bounded model
checking and others, which are in general unsound; however, they can help with
discovery of the hard-to-find bugs (e.g. integer overflow related bugs, memory
safety etc.). On the other hand, there are methods like deductive verification,
model-checking and others, which are sound, and, besides bug-finding, they

2 CHAPTER 1. INTRODUCTION

can actually prove absence of a bug. Many of these methods also support
multi-threaded programs, so it is possible to deterministically find bugs in
multi-threaded software. This could be one of the motivations to replace
testing by these methods in the industry.

Despite the promising features of the formal methods, they are not
widespread in the industry and stay mainly within the academic interest.
There are several reasons for that. First of all, techniques like deductive verifi-
cation are not automatized and require qualified user interaction. On the other
hand, the automatized techniques do not scale well to real world programs.
Either they cannot take an unmodified code and process it (manual annotation
is needed, all language features are not supported), or the verification needs an
enormous amount of computing resources for real-world code. Many tools fail
to verify real-world code due to substantial input data domain or complexity
in control flow.

One of the tools that aim for verification of real-world parallel C/C++ code
is SymDIVINE. This tool is a control-explicit data-symbolic model checker.
Unlike explicit-state model checkers, it can handle non-deterministic input
well. It allows user to take an unmodified C/C++ code with notation of input
values and verify it for reachability or LTL properties. To alleviate state-space
explosion caused by input values, a so-called set-based reduction is incorporated
in this tool. The reduction is based on symbolic data representation, which
heavily uses quantified bit-vector SMT queries to an SMT solver.

In this thesis we propose and implement new optimizations for SMT
machinery in SymDIVINE in order to speed-up the verification task and thus
help SymDIVINE to scale better. Our optimizations are based on caching of
SMT queries.

The thesis is organised as follows: first, we a make an short overview
of related topics in Chapter 2. Then we provide a detailed description of
SymDIVINE’s internals that are essential for our thesis in Chapter 3. In Chap-
ter 4 we make an overview of the existing SMT caching solutions and propose
a new one. The results of the experimental evaluation of our optimization are
presented in Chapter 5. Chapter 6 summarizes our contribution and discusses
future work.

Chapter 2

Preliminaries

2.1 Explicit-State Model Checking

Model checking is a formal method for verification of finite-space systems
against given property [12]. This check can be performed fully automatically
by a software tool. The core idea of this method is that the whole state-space
of a system can be produced and explored. Usually the system is composed of
multiple processes that can interact with each other. During the exploration
of the system state-space, all interleavings are explored, so a detection of race
conditions is possible. When a property is violated, model checker can produce
a counter-example — a run that violates the property.

The specification can be expressed as a formula in a temporal logic, like
LTL, CTL or CTL*. The system is traditionally specified in a special modelling
language (e.g. ProMeLa in case of SPIN [14], or DVE in case of DIVINE [3]).
However, this method can be also be used for verification of computer programs,
implying the existence of tools that take a program source code instead of a
special modelling language. Examples of such tools are CBMC [17] or DIVINE,
that can take a C or C++ code and verify it against the given property.

Explicit-state model checking considers all possible memory configura-
tions of the system. This puts a restriction to verified programs — they can
hardly read non-deterministic input values from the outside world (all possible
valuations has to be enumerated). There are, however, methods like the
control-explicit data-symbolic approach [2], on top of which is SymDIVINE
build, that can help to solve this issue.

The limiting scalability factor of model checking is the so-called state-
space explosion. With non-determinism in the system (the possibility of
resource acquisition failure, scheduler in multi-threaded systems), the number
of possible runs and consequent size of the state-space, grows exponentially.
All modern model checkers involve techniques for state-space reduction — e.g.
T+-reduction [23] in DIVINE.

4 CHAPTER 2. PRELIMINARIES

2.2 Symbolic Execution

Symbolic execution [16] is another formal verification technique that, unlike
model checking, primarily aims for verification of programs that can read
non-deterministic input values. It does not usually handle parallel systems
well. KLEE [10] is an example of a tool for symbolic execution of C and C++
programs.

Symbolic execution basically executes the program and, instead of obtaining
concrete values of program variables, represents their values symbolically.
When a branching on a non-deterministic value occurs, the computation is
split into two paths — one where the branching condition was true, the other
one where the branching condition was false. In each branch, a constraint
for variable values is constructed. These constraints form a so-called path-
condition. The exploration produces a symbolic execution tree.

Symbolic execution might not terminate, even on finite-state systems, if an
infinite cycle in the system is present. Symbolic execution is quite wide-spread
and there are many mutations of this technique, e.g. using concrete values to
speed-up the process and using the symbolic part only for synthesis of new
values during branching. Symbolic execution can also be used for automatic
synthesis of tests for software [16].

2.3 LLVM

LLVM [18] is a compiler infrastructure. This infrastructure features tools
for optimization and code generation that are independent of programming
language and platform. This is achieved by definition of a custom intermediate
representation — LLVM IR (also called LLVM bit-code). This representation
is suitable for software verification tools as it can be easily interpreted and
precisely reflects semantics of input value.

So-called compiler front-ends translate the input programming language
(C/C++, Haskell, etc.) in the simplest possible way to LLVM IR. All further
optimizations are performed on top of LLVM IR — each optimization is written
as LLVM to LLVM transformation and thus optimization may be applied in
arbitrary order, even multiple times. So-called back-ends performs the last
step of compilation — the translation of LLVM IR to native code for a given
platform.

LLVM IR is a static-single-assignment-based low level language similar to
common assembly. It can be represented in three ways: a human-readable
form (.11 file), a serialized form for fast machine handling (.bc file) or in
the form of an in-memory C-++ objects. There is a library that allows easy
manipulation with all the forms of LLVM IR, which is a huge advantage
for software verifiers, as it presents a way to easily take almost any input
programming language relatively effortlessly. In the following text, we will

2.4. SATISFIABILITY MODULO THEORIES 5

shortly introduce the most important aspects of LLVM IR.

An LLVM program consists of modules [22]. A module contains functions,
global variables and meta-data. Fach module is a product of a single compila-
tion unit or as a product of an LLVM linker. There are two basic identifiers
in LLVM: global identifiers (variables, functions) denoted with @ before the
name and local identifiers (registers, labels) denoted with % before the name.

Each function consists of its header (name and parameters definitions)
and a body. The body consists of basic blocks, with each basic block being a
sequence of instructions. Basic blocks cannot contain any branching except
the last instruction. A branching instruction can decide which basic block will
be executed next. A function can use unlimited number of registers to store its
data. These registers are in the SSA form. LLVM instructions operate strictly
on registers, except load, store, atomicrmw and cmpxchg instructions, which
can be used for memory manipulation. The address of a register cannot be
taken. To obtain a variable, whose address can be taken, alloca instruction
can be used. This instruction takes a size and a type and returns an address of
a memory location. The memory is automatically freed when function returns
(it is usually implemented as a stack allocation).

LLVM is a typed language. There are 4 main groups of types: integral
types, floating point types, pointer types and composed types. Integral types
can be any width and are denoted by i and its bit-width — e.g. 132 for a
typical integer or il for boolean value. There are two floating point types
— float and double. Pointer types are denoted in the same way as in C —
e.g. 132x for a pointer to a 32-bit integer. Composed types can be arrays
([16 x 132]1) or structures ({132, i8, double}). Types in LLVM cannot be
implicitly cast. To preform a cast, a special instruction is required.

2.4 Satisfiability Modulo Theories

There are many applications in computer science that can benefit from decision
procedure for first-order logic formula satisfiability. Even though there are
solvers for first-order logic [26], many applications do not require general first-
order logic, but rather need satisfiability with respect to a given background-
theory. This background theory usually fixes the domain and interpretation
of predicate and function symbols. A background theory can usually yield a
specialized, more effective decision procedure.

The research field concerned with satisfiability of formulae with respect
to these theories is called Satisfiability Modulo Theories (SMT) [1]. There
are many solvers for various theories: e.g. Z3 [19], CVC4 [4] or OpenSMT |[8].
Much effort has been put into standardization of input to these solvers. This
effort resulted in the SMTLib format [5] which specifies input language and
theories. In our work, we are mainly interested in SMT for quantified and
quantifier-free version of the FixedSizeBitVectors theory.

CHAPTER 2. PRELIMINARIES

Chapter 3

SymDIVINE

In this chapter, we introduce SymDIVINE from the user point of view and
then describe its internal architecture. For purposes of this thesis we focus
mainly on selected parts of the LLVM interpreter in SymDIVINE, SMT data
representation and the related machinery in SymDIVINE. We omit mainly
technical details about LLVM interpretation and general optimizations. In
many cases, we provide more in-depth description than [13]|, however, for
others, we kindly refer to that thesis.

3.1 About the Tool

SymDIVINE is a tool for verification of real-world parallel C and C++ programs
with non-deterministic inputs. It is being developed at ParaDiSe Laboratory, at
Faculty of Informatics Masaryk University. It is distributed under MIT licence.
Source code can be found at https://github.com/yaqwsx/SymDIVINE.

The tool is built on top of the LLVM framework in order to avoid the
need of modelling and, at the same time, to achieve the precise semantics of C
and C++ programming languages. SymDIVINE is motivated as an extension
of purely explicit model checker DIVINE [3] that is capable of handling full
parallel C/C++ programs without inputs. SymDIVINE shares the ideology of
DIVINE - it aims for bitprecise' verification of parallel C and C++ programs
without modification. To properly handle programs with inputs, SymDIVINE
relies on control-explicit data-symbolic approach [2], which we detail in the
next section.

The tool was originally presented in [13] as a generic platform for control-
explicit data-symbolic state-space exploration. It provided a state generator
from LLVM bitcode and allowed the user to specify a custom state format
and an exploration algorithm. This set-up let the user to implement a wide

LAll operations precisely keep the semantics of the original program. This is mainly
of arithmetic concern — integers have limited bit-width and overflow on unsigned types is
defined.

https://github.com/yaqwsx/SymDIVINE

8 CHAPTER 3. SYMDIVINE

Verified property: reachability, LTL

C/C+|——{ Clang }——[tivm IR}——(symDIVINE Ok

Counterexample

Figure 3.1: Typical verification workflow in the current version of SymDIVINE.
It takes an LLVM bitcode and property specification on input and decides
whether supplied property does hold or not. If not, a counterexample can be
produced by the verification algorithm. Input bitcode is usually produced by
the Clang compiler from C or C++ source code, however the user can obtain
it differently.

variety of verification techniques — e.g. explicit-state model checking, symbolic
execution or some kind of hybrid technique. Over the years, SymDIVINE trans-
formed from a generic platform to an “out-of-box ready” verification tool [20]
by providing predefined SMT-based state representation and implementation
of algorithms for assertion safety and LTL properties checking. See Figure 3.1
for typical verification workflow in the current release 2. Algorithms and store
implementation provided in the current release were tested in practise and
provide quite good performance. Nevertheless, the internal modular archi-
tecture was preserved, so SymDIVINE can still be used as a platform for user
experiments.

3.1.1 Input Language Overview

SymDIVINE is designed to take an LLVM bitcode as an input language and
thus support for C and C++ languages features is mainly reduced to support
of the LLVM instruction set. In the current version SymDIVINE supports
almost all LLVM instructions except of:

e instructions for symbolic pointer arithmetic,
e instructions for pointer casts®,
e instructions for floating point arithmetic.

To verify a program using SymDIVINE, the input LLVM bitcode has to be
self-contained — there must not be any call to functions that are not defined in

2Current version at the time of writing this thesis is v0.3. Release of this version is avail-
able at https://github.com/yaqwsx/SymDIVINE/releases/tag/v0.3 and in the electronic
archive submitted with this thesis.

3Simple integer conversions are supported, only the real ‘bitcast’ operation is not.

https://github.com/yaqwsx/SymDIVINE/releases/tag/v0.3

3.2. CONTROL-EXPLICIT DATA-SYMBOLIC APPROACH 9

the bitcode. Behaviour of such functions is unknown to the tool and thus they
cannot be verified. This also includes system calls to an underlying operating
system. There are, however, a few exceptions, as SymDIVINE provides intrinsic
implementation® of a subset of Pthread library [15] to support multi-threading
and also a subset of functions defined in SV-COMP competition rules [7] to
implement a notation for non-deterministic input.

The following functions from Pthread library are supported:

e pthread_create, pthread_join and pthread_create for thread manip-
ulation,

e pthread_mutex_lock and pthread_mutex_unlock for mutex manipula-
tion.

The following functions from SV-COMP notation are supported:

e __VERIFIER_nondet_{type} for modelling a non-deterministic input of
a given type,

e __VERIFIER_ atomic_begin and __VERIFIER_atomic_end for modelling
atomic sections.

This means that the standard C and C++ library is supported if it is linked
to the input program in the bitcode form and used functions do not call any
system calls.

The current version of SymDIVINE does not support heap allocation, so the
verified program is forbidden to call malloc or use the new operator. Likewise

dynamic sized arrays from C99 cannot be handled in the current version of
SymDIVINE.

3.2 Control-Explicit Data-Symbolic Approach

In the standard explicit-state model checking, the state-space graph of the
verified programs is explored by an exhaustive enumeration of its states.
SymDIVINE basically follows the same idea, but it employs the control-explicit
data-symbolic approach to alleviate the state space explosion caused by the
non-deterministic input values.

When an input read (__VERIFIER_nondet_{type} function is called) is
interpreted by an explicit-state model checker, a new successor for every
possible input value has to be produced. This causes a tremendous state-space
explosion. It is worth noting that these states only differ in a single data
field and thus the same instructions are further applied to all of them (only

4Behaviour of these functions is hard-coded in the interpreter and follows their specifica-
tion.

10 CHAPTER 3. SYMDIVINE

branching or the select instruction can change the control flow). SymDIVINE
can benefit from this fact. When SymDIVINE interprets non-deterministic
read, only a single so-called multi-state is produced. The produced multi-state
is composed of an explicit control flow location and a set of program’s memory
valuation.

A single multi-state can be viewed as a set of purely explicit states (so-
called set-based reduction, we kindly refer to [13| for formal definition). As
a result, multi-state space can bring up to exponential size (and memory)
reduction compared to the explicit state-space of the same program with inputs.
The model-checking algorithms present in SymDIVINE operate exclusively on
multi-states. As the multi state-space is up to exponentially smaller and a
single operation application to a multi-state corresponds to an application of
the same operation to a set of explicit states, these algorithms can be much
faster, even though handling multi-states is computationally more demanding.
This is the key differentiation compared to the purely explicit approaches. To
illustrate the effect of the set-based reduction, see an example of a bitcode and
the corresponding explicit-state space and a multi-state space in Figure 3.2.

Moreover, if we provide a decision procedures for multi-state equality, it
is possible to adopt existing explicit-state model checking algorithms. This
allows easy implementation of standard automata-based LTL model-checking
or perform safety analysis for non-terminating programs (provided that the
multi-state space is finite).

To verify a real-world program, an efficient representation of the multi-
states is needed. SymDIVINE is not linked to a given fixed format of multi-
states and users can supply their own implementation (as described in detail
in Section 3.3). During development of SymDIVINE several representations
of multi-states were implemented and tested. This includes representation
using binary decisions diagrams (BDD) or representation using SMT formulae.
BDD representation performs quite well on artificial benchmarking programs
containing no advanced arithmetic. SMT representation significantly out-
performed the previous one on real-world programs with more arithmetic.
Support for BDD representation was dropped in the current version and the
SMT representation is the only one shipped. We describe this representation
in detail in Section 3.4, as it an essential preliminary for our work presented
in this thesis.

3.3 Internal Architecture

As we mentioned in the previous section, SymDIVINE was originally developed
as a platform for creating custom tools for the control-explicit data-symbolic
approach. Thus the internal structure is split into clearly-separated mod-
ules with fixed interface and each module can easily be replaced by another
implementation. The whole tool is implemented in C+-+. Each module is

3.3. INTERNAL ARCHITECTURE 11

1 %ha = call i32 @__VERIFIER_nondet_int ()
2 %b = icmp sge i32 %a, 65535
3 br il %b, label %5, label %6

The code represents a simple LLVM program, where register a is initialized
with a non-deterministic 32-bit integer, then is checked whether it is greater
or equal to a given constant. The result of the check is stored to register b
and used for branching.

DIVINE
... ca111cm
call icmp

—» | a = 6553.4; b

a = 65535 | a = 65535; b

H

H

SymDIVINE
icmp a = {0,...,65534} N :
A ini a = > > _
iomp s = {65535,...,2% —1}|
b = {1}

Figure 3.2: The figure compares state exploration in the explicit approach of
DIVINE and in the control-explicit data-symbolic approach of SymDIVINE on
an LLVM program example. From init state DIVINE explores states for every
possible value of a (232 values), hence exponentially expands the state space.
In contrast, the SymDIVINE approach of symbolic representation generates
only two different states. One where the condition on branching (a > 65535)
is satisfied and the other one where the condition is violated.

represented by a class. Figure 3.3 illustrates components interaction. There
are following main modules in SymDIVINE:

e the LLVM interpreter (responsible for multi-state generation from LLVM
bitcode),

e data stores (implementation of multi-state representation),

12 CHAPTER 3. SYMDIVINE

SymDIVINE
Algorithms
LTL formula — LTL reachability
LLVM bitcode LLVM Interpreter

Data Stores :
Explicit Store SMT Store SMT solver

Figure 3.3: High-level overview of SymDIVINE architecture. Nested boxes
correspond to interfaces and their concrete implementations.

e exploration algorithms.

3.3.1 LLVM Interpreter

The interpreter in SymDIVINE operates between input LLVM bitcode and
a multi-state space exploration algorithm. It acts as an abstraction layer
that provides explicit program representation in the form of a multi-state
space graph instead of the implicit one to the exploration algorithms. In this
subsection we provide a general overview of the interpreter operation and
we describe parts interacting with data store in detail, as understanding the
interaction is essential to our work.

The interpreter is represented by the Evaluator class in the source code
and provides a similar interface to the state generators of explicit-state model
checking tools like DIVINE. After initialization of the interpreter with an input
LLVM bitcode, it provides a reference to so-called working multi-state (we
will refer to it as the “working copy”) and provides several functions that can
be used to modify this working copy. Exploration algorithm then can then
write a multi-state to the working copy and use the interface of the interpreter
to modify it and examine it. The following functions are available:

e initial function constructs an initial multi-state in the working copy —
a multi-state of a program just after the start of the main thread and
the call of the main function.

e advance function sequentially constructs all possible successors of the
working copy. The caller is notified about newly produced successor by
a callback function.

3.3. INTERNAL ARCHITECTURE 13

e is_empty function returns true if the set of possible memory valuations
of the working copy is empty.

e is_error function returns true if there is a violated assertion or a
memory corruption (e.g. access beyond array boundaries) in the working

copy.

e push_prop_guard function filters possible memory valuations of the
working copy using a given predicate.

This interface allows for easy mimicking existing explicit-state model checking
algorithms like simple reachability or automata-based LTL model checking.
A multi-state corresponds to a set of explicit-states, as we mentioned in the
general tool overview, so the generator-related operations in these algorithms
can be up to exponentially faster compared to their explicit-state version.

To allow the interpreter to operate on top of a user-supplied implementation
of a multi-state (here and in a source code referred to as data store), several
assumptions about the state representation are made:

e control flow location is represented explicitly,
e memory mapping layer (MML) is provided,
e set of functions for data manipulation is provided.

We will now discuss each of these assumptions in detail.

The interpreter expects the control flow location in a straightforward form
following the instruction identification in an LLVM bitcode. Each instruction
in an LLVM bitcode can be uniquely identified by a triplet (fiqz, bbidz, tidz)s
where f;q:, bb;qr and i;4, are indices of function in the LLVM bitcode, a basic
block in the function and the instruction in a basic block, respectively. As
SymDIVINE supports multi-threaded programs, a control flow location is kept
for each thread. There is a unique integral identifier assigned to each thread
upon its execution. To represent control flow state of a multi-thread program
with function calls, SymDIVINE keeps a stack of instruction identifiers for every
thread.

To interpret the verified program, a unique identification of program’s
variables also needs to be established. Identification similar to the way as
instructions are identified is not sufficient, because recursion and nested
function calls might occur and it is necessary to distinguish variables in
different calls of the same function. As SymDIVINE does not support dynamic
memory allocation, inspiration for variable identification was taken from the
classical call stack. When a new block of memory is allocated in an LLVM
program (function is called or an alloca instruction is interpreted), a new
memory segment is created and assigned to the operation (function call or
the alloca instruction). Each automatic variable in the function body or an

14 CHAPTER 3. SYMDIVINE

element of array (in case of the alloca instruction) is then assigned an index
(in source code and in further text referred to as offset) in this segment. Every
instance of a live variable can then be identified by its segment and offset.
Note that the first segment is reserved for global variables.

Variable naming using segment and offset is required by the interpreter
as this fixed naming allows straightforward implementation of strongly typed
pointers, arrays and structures. Pointers are simply implemented as a pair
containing a segment and an offset. An array of size n is represented as
n independent variables. Since the arrays are strongly typed (the bitcast
instruction is not supported by SymDIVINE), pointer arithmetic for arrays can
be implemented as offset manipulation. Similarly, structures are implemented
as several independent variables. Since there are no requirements for the offset
numbering, memory layout layer, implemented by a data store, allows the
interpreter to map variables from currently executed function to a correct
offset. To see example of a memory layout layer, follow Section 3.4.

Since the set of possible data valuations in a multi-state can be expressed
in many ways, the interpreter relies on the interface provided by the data
store. This interface is designed in such a way, that the effect of every LLVM
instruction and every intrinsic function definition on a given multi-state can
be expressed as a sequence of function application from the interface. The
interface is further described in Section 3.3.2.

Given this set up, the implementation of the advance function for successor
generation is straightforward. In theory, SymDIVINE produces successors by
an exhaustive enumeration — every possible thread interleaving is emitted.
This approach would cause a state-space explosion well-known from explicit-
state model checkers that operate on top of LLVM like DIVINE. To at least
partially alleviate the state-space explosion, the interpreter involves the so-
called 7-reduction|23]. In practice the interpreter does not emit every direct
successor, but keeps traversing the multi-state space graph until a visible
action is performed (load or store on a globally visible variable is interpreted
or a safety property is violated). It effectively squashes the effect of multiple
instructions with no visible action to single transition and thus removes
unnecessary thread interleavings and produces smaller multi-state spaces
equivalent with the original one (for safety properties and LTL formulae with
no next operator). For details of implementation we kindly refer to [13].

To illustrate the interpreter operation, we present Figure 3.4 and Figure 3.5.
The first figure shows an example of a simple C code and the corresponding
LLVM bitcode. The second figure shows a multi-state space graph that is
produced by the interpreter if the bitcode from Figure 3.4 is supplied as the
input.

3.3. INTERNAL ARCHITECTURE 15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

volatile int a;
int main() {

a = __VERIFIER_nondet_int();
while(1) {
int b = __VERIFIER_nondet_int();

if (b<a) {a="5b;}
if (a == 42) { break; }
}

return O;

@a = common global i32 0, align 4

; Function Attrs: nounwind uwtable

define 132 @main() #0 {
%1 = tail call i32 (...)* Q@__VERIFIER _nondet_int() #2
store volatile 132 %1, i32* @a, align 4, !tbaa !1
br label %2

; <label>:2 ; preds = 7, 50
%3 = tail call i32 (...)* @__VERIFIER_nondet_int() #2
%4 = load volatile i32% Qa, align 4, !tbaa !1
%5 = icmp slt 132 %3, %4
br i1 %5, label %6, label %7

; <label>:6 ; preds =]2
store volatile 132 %3, i32* Q@a, align 4, !tbaa !1
br label %7

; <label>:7 ; preds = }6,]2
%8 = load volatile i32% @a, align 4, !tbaa !1
%9 = icmp eq i32 %8, 42
br i1 %9, label %10, label %2

; <label>:10 ; preds = J7
ret i32 0

Figure 3.4: Example of a very simple C code and the corresponding LLVM
bitcode obtained as a result of a compilation with Clang with O2 optimizations.
The produced bitcode should be simple enough to be understandable even
without a deep knowledge of LLVM. Note that variable a was marked as
volatile and thus the compiler cannot optimize out any load or store opera-
tions to/from this variable. See Figure 3.5 for the corresponding multi-state
space.

16 CHAPTER 3. SYMDIVINE
initial
PC: 4] [PC:6
@ae{-2%,... 2% -1} @a = %1
%l e {—2%2,...,232 —1} %l e {—2%,...,232 -1}
%3 € {—2%2...,2%2 1} %3 € {—2%2,...,2%2 1}
%4 € {—2%2....2%2 1} %4 e {232 2% 1}
%5 € {0,1} %5 € {0,1}
%8 € {—232,...,2%2 -1} %8 € {—232,...,2%2 -1}
%9 € {0,1} %9 € {0,1}
[P 16) [pc 11
@a = %3 @a = %1
%le{-2"..2"-1} %1 e {-2%2 .. 2%2_1}
%3 € {—2%,...,Qapre, — 1} | %3 < %4 %3 € {—232,...,232 — 1}
%4 = @a %4 = @a
%5 =1 %5 € {0,1}
%8 € {—232,...,2%2 — 1} %8 e {232 .. 232 1}
9 o
%9 € {0,1}) asza | %9 € {0,1}
%3 > %4 %8 # 42
((Pc: 20] [PC: 20
©a = %3 Qa = %1
%1€ {-2%,... 2% -1} %l e {-2%, .. 2% 1}
%3 € {_232-, cee ’@apre'u - 1} %3 € {@a, . ,232 — 1}
%4 = Qa %4 — @a
%5 =1 %5 =0
%8 = Qa %8 = Qa
%9 € {0,1}] | %9 {0.1}
%8 = 42 %8 = 42
PC: end] f PC: end
Qa =%3 Qa = %1
%16{_2327’232_1} %16{—232,”.7232—1}
%3 € {_2327 e ’@aprev - 1} %3 S {@a, ey —232 — 1}
%4 = Qa %4 = Qa
%5 =1 %5 =0
%8 = Qa %8 — @a
9 =1 J [%9 =1 |

Figure 3.5: Multi-state space corresponding to the code from Figure 3.4. As
there are no nested function calls, we used simple naming according to variable
and register names in the LLVM bitcode. Program counter (PC) is expressed
as a line number of instructions that is going to be interpreted next to make the
scheme easier to read. Note the T-reduction in action, where multiple globally
invisible actions are squashed together. To make the schematic even more easy
to read, we highlighted fields that have been modified by a transition and we
also added labels to edges, to make clear which action caused a given transition.
If multiple threads were involved, all possible context switches would occur on
every transition. Also, please note that to express the valuations set, it was
necessary to refer to the value of a from previous state. We marked it as a,eq .

3.3. INTERNAL ARCHITECTURE 17

3.3.2 Data Store

In this subsection we describe an interface of a data store that is used by the
LLVM interpreter to analyse and transform multi-states. To see an example
of a possible implementation of this interface, please see Section 3.4, where
we provide in-depth description of SMT Store. Each data store keeps the
explicit part of a state and the symbolic (data) part. We omit description of
the explicit part of state as its implementation is trivial. The interface can be
split into following categories: memory mapping layer, transformations and
analysis.

To present the interface formally, we define a set of possible memory
valuations as a function v : V. — 28, where V is a finite set of program variables
and B is a set of all bit-vectors. v also follows that for all y € v(x),z € V the
bit-width of y matches the bit width of x declared in the LLVM bitcode.

The memory mapping layer is invoked when the interpreter needs to
allocate new memory or dereference a register or a pointer. The following
functions are required:

e add_segment (bws) function — given a thread identifier and a list of
bit widths bws, constructs a new stack segment for these variables
and returns its identifier. Formally speaking, the set of variables V is
extended, v(z) for newly-added z is undefined.

e erase_segment (id) function — erases segment and guarantees that val-
uation of variables from other segments is not changed. Formally, the
set of variables V' is reduced. Value of v(x) for all = that were not in
the removed segment also stays the same.

e deref(tid, id) — given a thread identifier and a register identifier
from LLVM bitcode, it returns an identifier of a variable in the form of
segment and offset. If the identifier was a pointer, it returns an identifier
to a location pointed to by that pointer. Only values from the global
scope or the currently called function in the given thread are allowed as
arguments.

Transformation functions are invoked when the interpreter needs to perform
an arithmetic operation or store value to a memory. The following functions
are required:

e implement_{op}(a, b, c) — set of functions that, given three memory
locations obtained by call to MML, implement a given binary operation
(arithmetic, bitwise, etc.) using a and b as arguments and storing
the result to c. Formally, implement_{op} changes v to v’ such that
V() ={x op y |z €v(a),y € (b)}if 2 = c, otherwise v'(x) = v(z).

18 CHAPTER 3. SYMDIVINE

e implement_input(a) — stores a non-deterministic value to given memory
location. Formally, implement_input changes v to v’ such that v'(x) =
{b] b is a bit-vector of bit-with corresponding to bit-width of z} if z =
a, otherwise v/(z) = v(x).

e prune_{op}(a, b) — given a simple relation operator (grater, smaller
that, equal to, etc.) and two memory locations, it removes memory
valuations in which the relation does not hold.

e store(r, p) and load(r, p) — given a register and a pointer’, it either
stores a value from register to the memory pointed to by the pointer
or loads a value to a register from memory pointed to by the pointer.
Formally, store changes v to v’ such that v'(x) = v(r) if p points to z,
otherwise v'(z) = v(x). load operation is defined symmetrically.

The last category are analysis functions used mainly by exploration algorithms
to construct a set of known multi-states and produce a product with an
automaton:

e empty(a) — returns true if the set of possible valuations of a is empty.
Formally, returns true if and only if there is an x such that v, (z) = 0.

e equal (A, B) — given two multi-states, returns true if the program
counter of both states is the same and the sets of possible valuations are
the same. Formally, returns v4 = vp. Note that the sets of program
variables V4 and Vg are the same, as SymDIVINE does not support heap
allocation and the program counters are equal. Also note that there
might be representations, whose equality cannot be checked purely by
syntactic or memory equality, as we show in an example Section 3.4.

e get_explicit_part — returns an encoded explicitly represented part of
the multi-state in the form of a binary blob. If two multi-states are equal
to each other, both blobs from the multi-states have to be the same.

e less_than — if there is an ordering defined on the multi-state represen-
tation, this function can be provided (and thus an algorithm can use a
tree set to represent a set of multi-states)

There were several implementations of data store developed. A short summary
of them follows. Note that not all of them are distributed in the current
release of SymDIVINE as they were replaced by a more efficient one, or their
development and support was discontinued.

5Note that store can also take a constant instead of aregister. As it is a technical detail,
we omit this variant in the text.

3.3. INTERNAL ARCHITECTURE 19

e Explicit store — represents only a single possible memory valuation, not a
set of valuations. Usage of this store “degrades” SymDIVINE to a purely
explicit-state model checker. This store is used for implementation of the
explication optimization to reduce number of multi-state equality test
during state space exploration. As this optimization is not important
for our thesis, we kindly refer to cite{Havel2014thesis} for further detail.

e BDD store — BDDs are used to represent a set of possible memory
valuations. There are algorithms for computing binary arithmetic and
logic operations for BDD [9], so the implementation of a store is straight-
forward — for every program’s variable there is a single BDD. An equality
check of two BDD s is a cheap operation, as they feature canonical repre-
sentation. However, the construction of a BDD for arithmetic operations
(e.g. multiplication) is quite expensive. This kind of store failed to verify
even small examples due to the high complexity [13]. Thus, development
of this store was discontinued

e SMT store — uses an SMT formula to represent a set of possible memory
valuations. To decide whether two representations describe the same set
of valuations, an SMT solver for quantified bit-vector theory is used. For
further description of this store, follow Section 3.4, where we describe
this store in detail. The store is used as the primary one in the current
release of SymDIVINE.

e Empty store — does not represent any memory valuations and only a
collects sequence of transformations applied to the store. This is not
useful for any verification technique, however, it can be used to translate
an LLVM bitcode into different kinds of formalisms. See next section
where we describe this process in more detail.

3.3.3 Exploration Algorithms

On top of the LLVM interpreter and a data store it is easy to implement an
algorithm for state space exploration. The algorithm is usually the only thing
user interacts with. Taken all inputs from the user (LLVM bitcode, property,
exploration strategy etc.), it usually instantiates an interpreter, asks for an
initial state and, using the advance function of the interpreter, it builds a set
of known multi-states or even the full multi-state space graph.

As a multi-state is required to provide a procedure for equality of two multi-
states, it is possible to represent a set of multi-states. A set representation
using only a an equal operation would not scale well to real-world program
sizes for obvious reasons. Note that a traditional hash-set used in explicit-state
model checker cannot be used as there can be a multi-state representation that
doesn’t have a canonical form (e.g. SMT store). Thus, SymDIVINE tries to
benefit from having an explicit control flow is mandatory for every data store

20 CHAPTER 3. SYMDIVINE

implementation. A typical set of multi-states is implemented as follows: there
is a hash map containing a list of symbolic parts of the multi-states for every
explicit part of the multi-states. When a new element is inserted to the set, list
of the symbolic parts corresponding to the explicit part is recalled and then
every symbolic part from the list is tested for equality. If an equal symbolic
part is found, procedure ends; otherwise new symbolic part is put at the end
of the list. This optimization significantly reduces the number of calls to the
equality procedure, however, it is still possible to obtain a significant number
of symbolic parts per control flow location. If a multi-state representation
allows to implement the less_than procedure, it is possible to replace a linear
search by binary search and thus further optimize the set representation.

Using various combinations of algorithms and data stores, SymDIVINE can
serve as a multi-purpose tool. During development of SymDIVINE, experiments
with the following combinations were performed:

e SMT or BDD store combined with an algorithm for reachability. This
combination produces a model-checker for safety properties that can
handle input values. This approach was originally introduced in [13].

e SMT or BDD store combined with a standard algorithm for automata-
based LTL model-checking. During the verification, negation of specifi-
cation LTL formula is converted to a Biichi automaton and during the
successors generation procedure a product with the automaton is pro-
duced. A test for atomic propositions that can refer to global variables
of the program is implemented using the prune operation of the store. It
filters-out memory valuations that violate the atomic proposition — see
Figure 3.6. This approach was originally implemented in [6] and further
improved in [20].

e Explicit store combined with reachability or an LTL algorithm on input
programs with no non-deterministic input produces a standard explicit-
state model checker.

e SMT or BDD store combined with simple exploration without tracking
the set of known multi-states yields in a symbolic execution.

e Empty store in combination with reachability can be used to convert
LLVM bitcode to an artificial modelling language. Thus, tool like nuXmv
[11], that does not support LLVM as an input formalism, can be used to
verify properties of an LLVM bitcode. When running the reachability,
the empty store produces one state per each reachable control flow
location and collects sequence of transformations applied to the state
and transition guard — constructs a non-deterministic guarded transition
system. After exploration, this transition system is translated to desired
modelling language. This usage of SymDIVINE was introduced in [6].

3.4. SMT STORE 21

(B)
PC: 1
BA: 2
acl
7 ©
PC: 1
--> BA: 3
a=0
(D)
PC: 1
BA: 4
ae{1,22 -1}

Figure 3.6: Illustration of a multi-state space generation in an automata
based LTL model checking. The LTL exploration algorithm takes a Biichi
automaton (a subset of such a automaton is shown in the left). The generation
procedure works as follows: state that is being explored is loaded into the
interpreter and a new successor (state A) is produced. The state contains a
program counter, a Biichi automaton state and a set of possible data valuations.
The product (states B, C and D) is generated by taking all possible transitions
of the automaton from a given state by pruning the set of valuations. All
non-empty states (C, D) are then emitted as successors of the explored state.

3.4 SMT Store

In this section we closely look at the implementation of SMT Store, as un-
derstanding of its internals is essential for our work. First, we describe the
store from a theoretical point of view and then we closely look at the actual
implementation, which features several optimizations and thus slightly differs
from the theoretical model.

3.4.1 Theoretical Model

SMT store uses a representation described in [2]. A quantifier-free first-order
bit-vector SMT formula ¢ called path condition is used for description of the
possible memory valuations set defined in Section 3.3.2. The set of program
variables V' (defined in Section 3.3.2) can be mapped to the set of the free
variables in the path condition (in a way we describe later in the text). Program
variables can be sequentially assigned different values during a single program
run. To distinguish different values assigned to a variable, a so-called variable’s
generation is used. For each assignment to a program variable, a new variable

22 CHAPTER 3. SYMDIVINE

in formula is created (with incremented generation number). Thus, the set
of variables in formula is a subset of V' x N and we can denote a formula
variable as a pair (v,g), were v is a program variable from V and g is its
generation. The mapping from formula variables to program variables is easy
— every program variable v maps to formula variable (v, g) with the maximum
generation g. The set of all models of path condition defines the valuation
function v.

Implementing the data store interface using path condition is performed in
the following way (as described in [13]): when we refer to a formula variable,
we refer to the latest generation. We also assume implicit mapping of program
variables to formula variables (when we use program variable in formula, we
assume it is translated to formula variable with maximum generation).

e add_segment (bws) and erase_segment(id) functions do not modify
the path condition, only meta information used for implementation is
modified.

e implement_{op}(a, b, c) on state with a path condition ¢ leads to a
new path condition: ¢ A ((c,g+ 1) =a op b).

e implement_input(a) increases generation of a and does not modify path
condition, as a variable with no constrains models a non-deterministic
value.

e prune_{op}(a, b) on a state with a path condition ¢ leads to a new
path condition: ¢ A (a op b).

e store(r, p) and load(r, p) on a state with w path condition ¢ leads
to a new path condition: ¢ A ((p,g+ 1) =) in case of the store
instruction, load instruction is defined in a symmetrical manner.

e empty returns true if and only if the path condition is not satisfiable.
Satisfiability is decided using an SMT solver.

e equal (A, B) returns true if and only if the path condition ¢ of A and
path condition 1 of B represent the same set of possible valuations.
There is no canonical form of SMT formulae, thus two different formulae
can describe the same set and it is not possible to decide equality using
purely simple syntactic equality. Note that there also cannot be any
less_than function implemented for this data store. A quantified bit-
vector SMT query is made to a solver in order to decide the equality.
equal (A, B), returns true if and only if:

—notsubseteq(A, B) A = notsubseteq(B, A)

3.4. SMT STORE 23

is satisfiable, where notsubseteq(B, A) is a short-cut for:

Tbo, . -+ b) AVag, ..., an. @ = (\/(ai ;ébi))

where ag, ..., a, denotes the program variables in A and by, ..., b, de-
notes the program variables in B. Intuitively, notsubseteq looks for a
valuation in A that is not present in B.

Given the implementation of the operations, we can now easily illustrate
the need for different variable generations. Consider the following example of
an LLVM bitcode:

1 store 132 5, i32% %a, align 4
2 %2 = load i32% %a, align 4

3 store i32 %2, i32% %b, align 4
4 store i32 42, i32* %a, align 4

This piece of bitcode stores constant 5 to %a, then assigns the value of %a to
%b. The last operation stores constant 42 to %a. With no generations, the last
store operation would change both values of %a and %b, so it is necessary to
keep track of each variable’s history.

3.4.2 Implementation

To achieve a better performance of SMT store, several optimization to the
purely theoretical approach are made. In this section we first describe the
implementation of meta information that is needed to correctly build a path
condition. Then we describe the optimization of path condition building and
the evaluations of the empty and equal operations.

SymDIVINE uses the Z3 SMT solver [19] to decide the satisfiability of both
quantifier-free and quantified SMT queries. In order to allow easy usage of
other solvers, SMT store relies on the internal formulae representation. The
path condition is stored in this internal representation. When an SMT query
is needed, the internal representation is translated to solver’s specific format.

To correctly and effectively build a path condition, preservation of the set of
program variables, their mapping to formula variables and their generations is
needed. Also, as we described in section Section 3.3.1, the interpreter requires
that data store provides MML — thus a mapping among variables in LLVM
bitcode and program variables (where multiple calls of the same function
are allowed) needs to be established. We remind that program variables are
required to be identified by a segment and an offset.

To perform these mappings, SMT store takes advantage of the required
segment-offset program variable identification and thus keeps a set of segments
with variables and a mapping of call stack frames to these segments. Note

24 CHAPTER 3. SYMDIVINE

that this mapping is not canonical — different thread interleaving can lead to
a different mapping. Each segment contains a list of variables (information
about the highest generation, bit-width, etc.). See Figure 3.7 for an illustration
of this mapping.

As the set of segments is usually quite small, frequently accessed and
changed, an implementation using a dynamic-sized array and a free-list was
chosen. Thus the segment identifiers are re-used and the same segment in two
different states can be mapped to a different stack frame.

On top of this set-up, implementation of the data store interface is straight-
forward. Note that during the equal operation a set of variables pairs that
are compared during the notsubsetq operation needs to be computed, as the
segments mapping is not canonical and we cannot directly compare variables
from the same segment number in different states.

This naive implementation does not scale well, as path condition grows
quickly (LLVM bitcode uses a considerable number of registers, because LLVM
is a static single assignment language) and an enormous number of expensive
quantified SMT queries is performed. Thus, SMT store uses the following
optimizations:

e Unused variable definitions — the path condition is split into two parts:
list of definitions in the form wvariable = expression, and a list of path
condition clauses in the form of variablerely, variable®. Definitions
are mainly collected during arithmetic, store and load instructions.
Path condition contains only constraints collected during the prune
operation. This severance to two independent pieces allows us to easily
remove unused definitions without a complicated analysis when the
function returns. The return value can be easily expressed through
simple syntactic substitution using only function parameters and all
variables from the function segment can be removed from the definitions
and the path condition clauses. When a formula is needed, a simple
conjunction of all definitions and path condition clauses is constructed.
This optimization significantly reduces the size of path condition (and
thus the size of SMT queries to a solver) and also keeps the set of
program segments small.

e Syntactical equivalence checking — as SymDIVINE aims for verification of
parallel programs, the same path conditions due to diamond-shapes in
the multi-state can be produced. As SMT query to a solver is expensive
operation even for simple queries [13], SymDIVINE tries to perform
simple syntactic equality test of path conditions before executing this
query. Non-trivial number of solver calls can be saved in this way.

e Simplification — Z3 SMT solver offers several simplification strategies that
can be applied to a path condition. These strategies can be applied to a

6a constant can also figure in such a clause

3.4. SMT STORE

25

Thread 1 Thread 2 Thread 3
fool foo2 foo3
foo2 foo2 food
foo3
foo2
segments 2 3 4 5 6 7 8
v v v v v v v
g2 g3 g3 g3 g4| |83 g2 g3
gl gl g0 g3 gl gl g0 g0
gd| | 80| | &3] |g0| [&0 g4 | | g2
g3| | &0 gl g4 gl g0
g2 gl g0
gl g2

Figure 3.7: Illustration of path condition meta information organisation in
SMT store. Each thread has its own call stack. When a function is called,
add_segment is called on the SMT store and a new segment is created. Each
segment points to a list of variables in the given segment that keeps track of
currently-highest generation of each variable as shown in the picture. Note that
the mapping call stack frames to a segment is not canonical and, depending

on thread interleaving, it may vary.

path condition in order to produce smaller or easier forms of equivalent
path condition. Simplification is applied when a new formula with a
large number of variables is produced.

26

CHAPTER 3. SYMDIVINE

Chapter 4

SMT Queries Caching

Trading off time for space is a basic approach to improving the time efficiency
and scalability of software tools. Storing the intermediate results of inter-
mediate can be significantly less time-consuming than re-computation and
therefore cause a speed-up of a tool.

In this chapter we present our motivation for proposing and implementing
several SMT queries caching techniques for SMT data store in SymDIVINE. We
provide a quick overview over existing caching solutions and their suitability for
our case. We then propose and describe in detail two approaches that we find
interesting — a naive one, which leads to another optimization in SymDIVINE,
and a dependency-based one, which brought up a noticeable speed-up. In the
following Chapter 5, we present experimental evaluation of our implementation
of these techniques.

4.1 Motivation

Scalability is an important factor of verification tools, which aims for verifica-
tion of real-world sized code. During various experiments with SymDIVINE,
we noticed that most of the verification time is spent on Z3 SMT solver calls.
We analysed SymDIVINE using time measurements and Callgrind tool [27]
on verification task from SV-COMP concurrency set|7]. SMT data store
in SymDIVINE performs two kinds of SMT queries — a quantified query for
decision of multi-state equality and a quantifier-free query for emptiness check
(both described in Section 3.4). In average, roughly 70 % of the time is spent
on quantified SMT solver calls and 10 % of the time is spent on quantifier free
queries.

There are two reasons why we consider caching of queries effective. First,
SymDIVINE constructs a path condition in a similar manner as symbolic
execution. Thus, a constantly growing formula sharing a common prefix is
constructed. This growth is also supported by the fact that LLVM is a single
static assignment language and as such uses enormous number of registers.

27

28 CHAPTER 4. SMT QUERIES CACHING

The multi-state emptiness check is performed in the same manner as in the
symbolic execution.

Second, SymDIVINE focuses on multi-threaded programs and various thread
interleavings can cause so-called diamond-shapes in the multi-state space. This
means that two paths in a multi-state space join to the same state and an
equality check has to be performed. More of the same or similar diamond-
shapes can occur multiple times in different parts of a multi-state space.
Syntactic equality optimization works in some cases. However, there might be
a diamond-shape which can be resolved only by using an SMT query. When
such a diamond-shape appears multiple times, the same queries to an SMT
solver needs to be issued.

Caching of both empty and equal queries can bring a speed-up. There are
various caching techniques to speed-up SMT queries that might work for the
emptiness check (a batch of quantifier-free queries sharing a common prefix),
however, we are not aware of a technique which could help us in case of an
equality check (a batch of quantified SMT queries which includes a sub-formula
with a growing common prefix). We also see bigger potential in the equal
query, as it is computationally more demanding. The traditional techniques do
not work, as the quantifier in the query makes slicing it into cacheable parts
computationally hard or even impossible in some cases. As our experience
shows, making a query to the Z3 brings a non-trivial overhead even for easy
queries and therefore we would like to avoid it (the same phenomena was
observed in [13]), if possible.

We think bringing a knowledge of our setting (fixed format of the equal
query and its semantics or path condition origin) can help us to face the issue
and design an effective caching technique.

4.2 Classical Approaches In Other Tools

There are no resources we are aware of which in detail describe all caching
optimizations implemented in Z3. Only a brief overview can be found in [19].
However, from this overview and our shallow knowledge of Z3 source code, we
assume that, in principle, the caching optimizations work in a similar manner
as optimizations that can be found in KLEE [21], PEX [24] (both are tools for
symbolic execution) or in GREEN [25] (framework for caching SMT queries
during symbolic execution). Z3 also features a cache for the built-in SAT
solver, on top of which the SMT solver operates.

In principle, two main approaches to caching can be found — constraints
caching and unsatisfiable cores caching. Both of these approaches are adapted
for purposes of symbolic execution and are designed to handle a batch of
quantifier-free SMT formulae with common prefixes.

Constraints caching takes advantage of the way a path condition in symbolic
execution is built. As the symbolic execution collects new constraints, new

4.3. NAIVE APPROACH 29

conjuncts are added to the formula. Thus, the queries follow the form ¢ A 9,
where ¢ denotes the known part of the path condition (that was already issued
as a query) and v denotes the part of the formula with new conjuncts. If
© is not satisfiable according to a cached result, the whole query cannot be
satisfiable. Otherwise ¢ and ¢ are syntactically analysed and only conjuncts
from ¢ that share a data dependency with 1 are taken. Satisfiability of
this smaller formula is then decided. To effectively select only the necessary
conjuncts of v, GREEN builds a tree structure over existing parts of the path
condition [25]. Also before deciding satisfiability, parts of the formulae are
canonized to increase the chance of a cache hit.

Unsatisfiable cores caching can be seen as an extension of the previous
techniques. When an unsatisfiable query is issued, the unsatisfiable core is
computed and transformed into a pattern. When a new query is processed, it
is first checked for a presence of unsatisfiable patterns which have occurred so
far.

These approaches work well for quantifier-free queries which are produced
during symbolic execution. However, from our experience and experiments
performed with Z3, we assume that these caching optimizations are not applied
to quantified queries at all or do not have any noticeable effect. We are also
not aware of any work that would specialize on caching of quantified formulae.

4.3 Naive Approach

We began our experiments with a naive approach — caching of whole query
for multi-state equality. This naive approach can be seen as an extension of
syntactic equality optimization, which was described in Section 3.4.2. Syntactic
equality can eliminate a query to an SMT solver in case of diamond shapes
that result in the syntactically same path conditions. If this diamond-shape
results in a syntactically different path conditions, SMT solver has to be
called. If such a diamond appears in multi-state space again, the same query
is performed. If naive caching is present, the second query to an SMT solver
can be eliminated.

We have implemented this naive approach in SymDIVINE version from [6].
The naive caching is implemented using a hash-map from an SMT query to a
result of such query. In the original implementation, equal query was directly
constructed in the SMT solver native format. We have taken an advantage
in form of the fixed query format, as we wanted to keep the caching process
independent of an SMT solver (queries are not constructed using formulae
representation of SymDIVINE, but directly in the target SMT solver format)
and also to minimize memory footprint. Only the essential parts to uniquely
identify a query are kept in the table — list of variables pairs to compare and
path condition clauses. No other unnecessary parts of the syntactic tree are
kept. Just before the real SMT query is constructed, this footprint of query

30 CHAPTER 4. SMT QUERIES CACHING

is constructed and checked for presence in the cache. If so, cached result
is returned. Otherwise real query is constructed, executed and the result is
inserted into the cache.

We have evaluated naive approach using a subset of SV-COMP benchmarks
(mainly concurrency and bit-vector tasks) and a set of LTL benchmarks, that
have been used in evaluation of SymDIVINE in [6]. Naive caching saved only
about 2 % in the reachability tasks, however up to 65 % of the queries were
cached in the LTL benchmarks.

This result made us revisit the implementation of the LTL algorithm in
SymDIVINE. SymDIVINE uses nested DFS with iterative deepening, as bugs in
software are usually shallow and occur e.g. during the first few iterations of a
cycle in a program. If SymDIVINE finds a cycle that needs to be unrolled in a
verified program, the classical DFS approach will first fully unroll the cycle and
then will search the other parts of the multi-state space. Iterative deepening
can prevent this behaviour and thus speed up verification of erroneous programs.
However, verification of programs with no bug takes longer. The inspiration
for the implementation was taken from DIVINE, which also features iterative
deepening DFS. DIVINE does not keep the state space graph and during every
iteration with increased depth it regenerates the state-space from scratch.
However generation of multi-state space is computationally more demanding
compared to generation of explicit-state space; the overhead caused by re-
generation of the multi-state space is not negligible, as queries to an SMT
solver are involved. The re-generation of the multi-state space caused enormous
hit-rate and thus brought a significant speed-up. Note that similar effect was
not observed on reachability, as it uses a BFS based approach.

As the original LTL algorithm did not a feature user-friendly way to pass
an LTL property, we decided to implement a new version which would keep
the whole multi-state space including the transitions between states and would
bring the user-friendliness. Keeping the transitions between the states caused
a slightly bigger speed up than naive caching in the original version. Also the
hit-rate of naive cache was reduced to similar levels as in case of reachability
verification tasks. Memory overhead of this solution is negligible taking into
account the size of an average multi-state.

4.4 Dependency-Based Caching

In this section we introduce our approach for caching equal queries in SMT
data store in SymDIVINE. Our approach shares similar ideas as constraints
caching; however, it uses an additional information about the structure of the
query that we can take advantage of.

Let us briefly revisit the structure of equal query in SymDIVINE. The equal
query for states A and B is split into two separate tasks — test if A is not a
subset of B or if B is not a subset of A. Each notsubseteq test performs the

4.4. DEPENDENCY-BASED CACHING 31

following query to an SMT solver:

Fbo, - - ., by b AVag, - ., an. o —> (\/(aﬁébi))

where ¢ is a path condition of A, v is a path condition of B and ag,. .., an;
bo, ..., b, denotes variables from A, B respectively.

The unsatisfaible cores caching has no effect on our query, as SymDIVINE
ensures that ¢ and v are both satisfiable independently (empty multi-states
are never checked for equality). To apply constraints caching, detecting the
new parts of formula (compared to already seen formulas) is needed. Here we
face the problem that we cannot easily split the formula in a similar manner
into conjuncts due to the presence of a universal quantifier, which captures
part of the formula and also the implication in the quantified part.

These issues could be solved by detecting the formula growth on 1, ¢
and the sets of variables. Then a dependencies across these part could be
computed and a new, smaller query could be produced. However, we see
this as complicated and rather computationally challenging. Instead, we take
another point of view by using the semantics of the query and the possibility
to change the equality procedure to suit the needs of caching.

In our approach we represent multi-state data as a multiple independent
sets of valuations instead of a single one. We define two sets of valuations
as independent when every change on one of them leaves the second one
unchanged. In our case of valuations representation using path conditions,
each set is defined by a single path condition. We can simplify the requirements
for independence to following: two path conditions are independent if they
share no common variable. This requirement is stronger, however, from the
practical point of view, they are the same as our path conditions do not
contain unused variables. This set-up can be also seen as splitting a program’s
multi-state into several smaller mutually independent states. We will refer to
these as sub-states. See Figure 4.1 for illustration of dividing a multi-state to
a set of sub-states.

This set-up reflects commonly seen situation in multi-states of a verified
program. During nested function calls, many registers of the programs are
left unmodified and they have no effect on current multi-state transformation
the during interpretation of an LLVM bit-code. Thus, we can isolate these
registers to (even multiple) independent states, which are not modified during
current transformation. Another situation can occur during verification of
multi-threaded program. It is possible to have two threads which do not
communicate (share no memory). Using sub-states, each thread can operate
in its own sub-state and advance of one thread does not modify sub-state of
the other one.

A sub-state can be in the context of a single multi-state uniquely identified
by set of variables it contains — we call this set a sub-state label. We say that
two sub-states from different multi-states match if and only if they have the

32 CHAPTER 4. SMT QUERIES CACHING

Original multi-state New multi-state
Program counter: x Program counter: x
Path condition clauses: Substates:

a <42

a>0 a < 42

b=a+4 a>0

c> 492 b=a +4
c> 42

Figure 4.1: Illustration of a new representation of a multi-state. Instead of
keeping one path condition, multiple mutually independent path conditions are
kept — so-called sub-states. This set-up allows more effective implementation
of equal query when using caching.

same label. We say two multi-states A and B match if and only if there is
a matching sub-state in B for every sub-state in A. A multi-state can be
divided into sub-states in many ways. To decide whether two multi-states are
equal, these two multi-states have to match. Provided this set-up, we can
say states A and B are equal if and only if every sub-state from A is equal
to its matching state in B. As all sub-states are independent, proof of this
statement is trivial.

To be able to decide equality of any two multi-states, we define operations
split a sub-state and merge two sub-states that allow transformation of every
two states into a matching form. Merging of sub-states is straightforward,
we create a conjunction of their path conditions and make a set union of
their labels. Splitting a sub-state into two sub-states is possible if clauses of
the original path conditions can be split into two sets of clauses such that
they are independent (share no common variable). We call a sub-state trivial
if it cannot be split any more. Note that every two multi-states (with the
same control part) can be transformed into a matching form, as we can in the
worst-case scenario merge all sub-states to a single one and thus produce a
sub-state equivalent to a multi-state without sub-states.

Our motivation for introduction of sub-states is straightforward — provided
the above-mentioned equality procedure and keeping as many trivial sub-states
as possible, we produce smaller and simpler queries to an SMT solver. We
also expect a high cache hit-rate, as, in real-world programs, only very few
variables have effect on current transformation of a multi-state.

Compared to performing similar operations directly on the queries produced
by SMT store, we can compute the data dependencies on the fly with no
significant overhead during path condition generation. Thus, we avoid the

4.5. IMPLEMENTATION OF PARTIAL STORE 33

overhead of building a large query for an SMT solver followed by its analysis
and slicing. Instead, we can directly produce small queries which can be
cached and also take benefits of other optimizations in SymDIVINE, which can
work on top of these small queries. We call this approach dependency-based
caching.

4.5 Implementation of Partial Store

In this section we provide a detailed description of our dependency-based
caching implementation in SymDIVINE and make an overview of small differ-
ences to the theoretical description provided in the previous section.

We have implemented this caching technique as a new data store — partial
store. As a non-trivial part of the data store interface is implemented in the
same manner as SMT store (e.g. all implement_{op} functions), we abstracted
them to a new base class. Both SMT and partial store are derived from this
class. Thus we needed to provide only segment related functions, deref, load,
store, prune and implement_input functions.

We have implemented a data structure called dependency group. This
structure represents a sub-state from the previous section. Dependency group
keeps its label, a list of path conditions and a list of definitions as it implements
the same optimization as SMT data store. It provides interface for performing
dependency groups merging and splitting. Several support functions of purely
technical character are also implemented.

Instead of path condition and definitions, partial store keeps a set of
dependency groups and a mapping from variables to these dependency groups.
When a new variable is created, it is not dependent on any other and thus a
new dependency group is created for every newly created variable. When a
segment with all variables is destroyed, substitution of variable definitions is
performed just like in SMT store. As the dependency groups are independent,
substitution occurs only in the context of a single group. If the group label is
empty after deletion, the group is destroyed.

If a store or prune operation is issued, variables from an expression or
a constraint are collected, their dependency groups are located and merged.
Definition or a path condition is then inserted into the group. This implemen-
tation keeps the invariant that dependency groups are always independent.
When performing a store or prune operation would violate the invariant, the
affected groups are merged.

The other operations are implemented in the same manner as operations
in SMT store. The only difference is the corresponding dependency group has
to be located first.

Test for state emptiness is performed for each resource group independently
and each group caches the result of this check. If path condition is modified,
the result in cache is discarded and the check is repeated. This is a small

34 CHAPTER 4. SMT QUERIES CACHING

optimization, which was not introduced in the theoretical description. It
produces small, in many cases hardly-measurable speed-up.

To perform an equality check, multi-states need to be first converted to
a matching form. Not only dependency groups can differ, a variable naming
can also be different as the mapping between the call stack and segments is
not canonical. To effectively compute which group needs to be merged, we
first obtain a list of variable pairs to compare, just like SMT store does. Then
we iterate over this list and, using union-find, we build sets of groups which
need to be merged according to groups labels. Then a standard equality check
from SMT store is performed for each merged group. To cache these calls, the
same approach as the naive one is used.

Chapter 5

Results

In this chapter we present an experimental evaluation of our dependency-based
caching and we discuss strengths and weaknesses of our approaches. We have
evaluated both algorithms (reachability and LTL) from the current version of
SymDIVINE with dependency-based caching.

5.1 Benchmark Set and Environment

To evaluate reachability, we have taken a subset of C benchmarks from SV-
COMP [7] benchmark suite. Benchmarks from the following subdirectories
were taken: bitvector, eca, locks, loops, recursive, ssh-simplified, systemdc,
pthread, pthread-atomic, pthread-ext, pthread-lit and pthread-wmm. To
evaluate LTL algorithm, we have used LTL benchmarks, which have been used
in [6] for benchmarking of the first LTL implementation in SymDIVINE.

Our test machine features Intel Core i5-4690 CPU (3.50 GHz) with 16 GB
of RAM and runs Arch Linux distribution with 4.4.8-1-1ts Linux kernel.
SymDIVINE was built in the release configuration using Clang 3.4 and Z3
SMT solver version 4.4.1-1.

Three test files were produced from a single input benchmark file by
compiling it into LLVM bit-code with three different levels of optimizations —
00, Os and 02. Note that each LTL benchmark is shipped with its specification
in the form of LTL formula. We have tested each LTL benchmark for its
specification and negation of the specification.

First of all, we ran SymDIVINE with different configurations (solver time-
out, simplification strategies, etc.) for both SMT data store and partial
SMT data store to find the optimal configuration for our set of benchmarks.
SMT data store performs best with the default setting (no command line
flags — advanced simplifications of the path condition and syntactic equality
optimizations are enabled). Partial SMT data store performs best with the
same setting, however, simplifications of path conditions have to be disabled,
as changing the the path condition using simplifications leads to a zero cache

35

36 CHAPTER 5. RESULTS

hit-rate.

Using the optimal settings mentioned above, we ran SymDIVINE with
partial SMT store and caching enabled on the benchmark set with a time-out
of 4 minutes for each task. Then, we ran the same set of benchmarks without
caching using the original implementation of SMT store and time-out increased
to 15 minutes. The time-out was increased in order to see improvements caused
by caching, as many benchmarks without caching time-outed and no relevant
data cannot be obtained. Simple benchmarks with no equal queries were
excluded from the final results as they are not relevant to caching.

We also verified correctness of the implementation of partial SMT store.
We implemented a so-called wvalidity test in partial SMT store. This validity
test keeps 2 multi-states — one represented by SMT store and the other one by
partial SMT store. All multi-state manipulations are performed simultaneously
on both stores. When an empty or an equal operation is performed, results of
partial SMT store are tested against SMT store. The results have to match.
We ran all benchmarks mentioned above using this test and not a single
mismatch occurred.

5.2 Evaluation

We examined the results of each category independently, to see the effects
of caching on different types of input programs. For summary results of our
measurements’, follow Table 5.1. We looked at the verification time and
number of queries to an SMT solver. A short evaluation of results for each
category is provided below:

bitvector There are many simple benchmarks in this set that contain only
the necessary constructions to produce a bug in bit-vector manipulation.
Figure 5.1 shows that caching overhead is compensated with its positive effect
on small benchmarks and therefore verification time differs only by less than
one percent. On the other hand, there are benchmarks like gcd*, where
caching saved over 50 % of verification time, as there is a sub-formula in
the path condition that causes troubles to the Z3 solver. Using caching, this
sub-formula is used only once as the result is cached. In summary, almost half
of the verification time can be saved using caching.

eca This is the single category that exploited weaknesses of our caching
approach as can be seen in Figure 5.2. Benchmarks from this set are generated
pieces of code with an enormous number of variables and non-trivial dependen-
cies and therefore the overhead of caching is noticeable. Even compilation of
these benchmarks takes an unexpected amount of time (usually a few minutes).

'Full measurements can be found in B

5.2. EVALUATION 37

locks Almost all benchmarks in this category are simple enough to be directly
solved by optimization passes in Clang— optimizations in the compiler are able
to simplify the benchmarks up to a single branching. Therefore SymDIVINE
produces only 3 multi-states, and thus, the results, which can be seen in
Figure 5.3, are not significant.

loops Many benchmarks in this category suffer from the same issue as
benchmarks in locks category — many of them can be solved by the compiler
itself. However, verification time of complicated benchmarks can be reduced
in summary by almost 30 %, see Figure 5.4. This observation is in line with
our expectations (equality of intermediate results in program run is evaluated
only once when caching is used).

recursive There are no effects of caching in programs with recursion, as can
be seen in Figure 5.5. This is due to the fact that multi-states produced in
recursion cannot be merged, as their explicit control-flow location differs.

ssh-simplified and systemc Benchmarks from this category are quite large
and feature a similar structure to loops benchmarks, therefore caching provides
a good performance and can save in average about half of the verification time
(in some benchmarks even 75 % of verification time can be saved). These
results can be seen in Figure 5.6 and Figure 5.7. Note the significant decrease
in number of solver queries.

concurrency We expected the most significant effect of caching in concur-
rency benchmarks due to the presence of diamond-shapes in multi-state space.
Even though almost half of the verification time is saved using caching, there
is systemc category, where caching performed slightly better. The reason for
such a behaviour is as follows: many equal queries on diamond-shapes can
be optimized out by the syntactic equality optimization. This optimization
does not apply to other categories, as the other benchmarks are sequential —
compare number of equal queries and solver calls in Table 5.1). Therefore there
are not as many SMT queries, which can be cached. With disabled syntactic
equality optimization, caching saves in summary 95 % of verification time and
issue only 2 % of solver queries (1769313 queries without caching compared
to 45917 queries with caching), which meets our original expectations. Also,
benchmarks in this set do not contain complicated arithmetic, so the queries
to an SMT solvers are quite simple and the benefit of caching is not significant
as in other categories.

LTL There are two kinds of benchmarks in this set; ones that are very
simple and contain almost no arithmetic, and the others, that contain a
loop, which has to be fully unrolled and therefore they cannot be verified

38 CHAPTER 5. RESULTS

by SymDIVINE in a reasonable amount of time. An interesting phenomena
appeared in these simple benchmarks — all equal queries were decided using only
syntactic equality. When a product of a multi-state space and an automaton
is generated, transition guards are pushed to the multi-states and diamond
shapes are produced. However, pushing transition guards in different order
produces a syntactically different path condition and therefore no syntactical
equality was detected. In contrast, pushing transition guards to sub-states in
different order produces syntactically equal path conditions (as the conjuncts
are not interleaved). Even though no queries were made, no speed-up occurred,
as can be seen in Figure 3.6.

Overall We observed following behaviour from all our test runs: in summary,
caching reduces verification time by 44.8 %. Caching applies mainly to the
large benchmarks, where it can save up to 75 % of verification time. If caching
does not bring a speed-up, usually only a negligible slow-down in units of
percent occurs (except benchmarks from the artificial eca set). The overall
positive results are summarized in Figure 5.10. We can conclude that the
speed-up produced by dependency-based caching is caused by several factors:

e Smaller and simpler queries to an SMT solver are issued.
e Number of queries is reduced by caching.

e Number of queries is further reduced by the fact that the syntactic
equality optimization can work even in sequential benchmarks when
multi-states are split into sub-states.

In our test case, dependency-based caching issued 5 times less queries compared
to SymDIVINE with no caching. We also managed to solve 48 more benchmarks
with Partial store compared to SMT store within timeout 4 minutes.

5.2. EVALUATION 39

Table 5.1: Summary results showing effects of Partial SMT store and caching
for each benchmark category. Equal queries denote number of state com-
parisons, solver queries denote number of state comparisons that used SMT
solver.

DN Q % & &

s §& S&ES § SE s
°s S S T§ & Ay eg
bitvector 4821.3 2531.5 —47.5% 165470 165470 6854
eca 488.9 696.1 42.4% 18695 18695 5173
loops 81.5 583 —28.4% 5755 5745 4113
locks 2439 2370 —-2.8% 2040 2040 377
recursive 16.0 16.6 4.0% 372 372 109
ssh-simplified 5172.0 3069.5 —40.7% 238280 238280 571
systemc 5059.0 1920.9 —62.0% 225906 225906 43513
concurrency 943.0 4946 —47.6% 1769313 96214 9619
1tl 297.4 297.7 0.1% 14888 14854 0

summary 17420.5 9620.0 —44.8% 2455607 782430 140658

40

CHAPTER 5. RESULTS

450
400
350
300
250
200
150
100

50

Timeout |[s]

SMT store I

Partial store

10 15 20 25 30

Benchmarks solved

Figure 5.1: Effect of caching on bitvector benchmark set. Diagram depicts
how many benchmarks could be solved within given time-out.

—_
ja]
o

Timeout s
[\) =~ (=) ©.9]
o o o o

[an)

SMT store I

Partial store

Benchmarks solved

Figure 5.2: Effect of caching on eca benchmark set. Diagram depicts how
many benchmarks could be solved within given time-out.

5.2. EVALUATION 41

140 T T T T
SMT store
120 L Partial store 1
100 | -
2
- 80 -
=
S
2 o) -
=
40 + -
20 - .
0 L & L &
0 5 10 15 20 35

Benchmarks solved

Figure 5.3: Effect of caching on locks benchmark set. Diagram depicts how
many benchmarks could be solved within given time-out.

35 T T T T
SMT store
30 L Partial store |
25 F .
iz
+~ 20 - .
=
3
25| :
=
10 + ‘ : ~ .
5 | 4
O = - e = 1
0 10 20 30 40 50 60

Benchmarks solved

Figure 5.4: Effect of caching on loops benchmark set. Diagram depicts how
many benchmarks could be solved within given time-out.

42 CHAPTER 5. RESULTS

SMT store
6 Partial store ———

Timeout |[s]

12
Benchmarks solved

Figure 5.5: Effect of caching on recursive benchmark set. Diagram depicts
how many benchmarks could be solved within given time-out.

350

ISMT storle
300 Partial store

250 | .

200 |

150

Timeout s

100

50 |

Benchmarks solved

Figure 5.6: Effect of caching on ssh-simplified benchmark set. Diagram
depicts how many benchmarks could be solved within given time-out.

5.2. EVALUATION

43

1000
900
800
700
600
500
400
300
200
100

Timeout |[s]

I SMT sltore
Partial store

10 20

30 40 50

Benchmarks solved

80

Figure 5.7: Effect of caching on systemc benchmark set. Diagram depicts

how many benchmarks could be solved within given time-out.

35

30

25

Timeout s

I SMT stlore
Partial store

20 40

60 80 100

Benchmarks solved

160

Figure 5.8: Effect of caching on concurrency benchmark set. Diagram depicts

how many benchmarks could be solved within given time-out.

44 CHAPTER 5. RESULTS

140

SMT store

120 L Partial store 1

100 b | | | -

Timeout s
D 0]
o o

B
(an)
T

1

[\V)
o
T

1

o

0 10 20 30 40 50 60 70 8 90 100

Benchmarks solved

Figure 5.9: Effect of caching on LTL benchmark set. Diagram depicts how
many benchmarks could be solved within given time-out.

5.2. EVALUATION 45

400 T T T T T T T
350 | - - 1
300 - | . , -
)
2
S 250 ¢ .
I
& 200 b - - .
[al
=
&
= 150 | | . -
E
=
100 8
50 L H i .
O 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time with SMT store [s]

Figure 5.10: Overall summary of caching effect. Each point represents a
single benchmark. Benchmarks under the blue line are the ones, which can be
verified faster using caching.

46

CHAPTER 5. RESULTS

Chapter 6

Conclusion

We showed that caching of queries to an SMT solver is a possible way of
speeding-up control-explicit data-symbolic model checkers. To do that, we
proposed dependency-based caching, a method for decomposition of quanti-
fied SMT queries and follow-up memorization of its results, and performed
evaluation of our implementation in the SymDIVINE model checker.

Decomposition of queries in dependency-based caching takes inspiration
from classical caching algorithms for quantifier-free SMT queries used in
symbolic execution, and extends the core idea to quantified queries in control-
explicit data-symbolic model checking while taking advantage of the way it is
constructed in these tools. It works by computing data dependencies among
variables and splitting a single multi-state into multiple so-called sub-states
according to the dependencies. This allows to split a single large SMT query
into multiple smaller ones, whose satisfiability results can be memorized, and
therefore prevent issuing the same query again.

Dependency-based caching was implemented in SymDIVINE and evaluated
using SV-COMP benchmarks for reachability and several other benchmarks
for LTL model checking. The evaluation shows that caching can save a large
amount of verification time for large benchmarks (in our experiments up to
75 %) and therefore bring verification of real-world sized parallel programs
closer to reality. Our experiments show that, in summary, verification can be
two times faster using dependency-based caching.

While working on this thesis, we improved usability and performance of
LTL model checking algorithm in SymDIVINE. We have also uncovered a bug
in the implementation, which made some runs of a verified program infeasible
and therefore SymDIVINE could provide false negative results in some cases.

6.1 Future Work

In the future, we would like to make a more detailed examination of SMT
queries in SymDIVINE. We would like to experimentally evaluate if issuing

47

48 CHAPTER 6. CONCLUSION

queries as small as possible leads to an optimal performance of an SMT solver
or if we could benefit from issuing large queries produced by merging several
sub-states together.

SymDIVINE currently supports only Z3 SMT solver. It would be interesting
to implement support for other solvers and compare the effect of caching. We
would also like to explore the possibilities of optimizations like purely syntactic
equality of state, as we have seen that these optimizations can be more effective
when issued on sub-states instead of multi-states.

Finally, there is a potential in canonization of control-flow location repre-
sentation, as we realised during the development of caching techniques. In the
current version of SymDIVINE, threads are identified by the order in which
they are created. This can lead to a production of two multi-states with
different thread naming and the same data valuation. However, due to the
naming, they are considered to be different. Canonization of control-flow
location representation would lead to merging such two states and therefore
to the reduction of the multi-state space.

Bibliography

1]

2]

3]

4]

[5]
(6]

7]

8]

9]

Hans van Maaren Armin Biere Marijn Heule and Toby Walsh. Handbook
of Satisfiability. Frontiers in Artificial Intelligence and Applications. I0S
Press, 2009. 1SBN: 978-1-58603-929-5.

Jiff Barnat, Petr Bauch, and Vojtéch Havel. “Model Checking Parallel
Programs with Inputs”. In: Parallel, Distributed and Network-Based
Processing. 2014. DOT: 10.1109/PDP.2014.44.

Jit{ Barnat, Lubos Brim, Vojtéch Havel, Jan Havli¢ek, Jan Kriho, Milan
Lenco, Petr Rockai, Vladimir Still, and Jifi Weiser. “DiVinE 3.0 — An
Explicit-State Model Checker for Multithreaded C & C-++ Programs”.
In: Computer Aided Verification. Springer, 2013. DOI: 10.1007/978-3-
642-39799-8_60.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovié, Tim King, Andrew Reynolds, and Cesare Tinelli.
“CVC4. In: Computer Aided Verification. Springer, 2011. Dor: 10.1007/
978-3-642-22110-1_14.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org. 2016.

P. Bauch, V. Havel, and J. Barnat. “LTL Model Checking of LLVM
Bitcode with Symbolic Data”. In: Mathematical and Engineering Methods
in Computer Science. Springer, 2014. DOI: 10.1007/978-3-319-14896-
0_b.

Dirk Beyer. “Software Verification and Verifiable Witnesses”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2015. por: 10.1007/978-3-662-46681-0_31.

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei
Tsitovich. “The OpenSMT Solver”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2010. DOI: 10.1007/978-
3-642-12002-2_12.

Randal E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-
decision Diagrams”. In: ACM Computing Surveys. Association for Com-
puting Machinery, 1992. DOI: 10.1145/136035.136043.

49

http://dx.doi.org/10.1109/PDP.2014.44
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-14896-0_5
http://dx.doi.org/10.1007/978-3-319-14896-0_5
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-642-12002-2_12
http://dx.doi.org/10.1007/978-3-642-12002-2_12
http://dx.doi.org/10.1145/136035.136043

50

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex Systems
Programs”. In: USENIX Conference on Operating Systems Design and
Implementation. USENIX Association, 2008. URL: http://dl.acm.org/
citation.cfm?id=1855741.1855756.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. “The nuXmv Symbolic Model Checker”. In: Computer
Aided Verification. Springer, 2014. DOI: 10.1007/978-3-319- 08867 -
9_22.

Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 1999. 1SBN: 0-262-03270-8.

Vojtéch Havel. “Generic Platform for Explicit-Symbolic Verification”.
Master Thesis. Masaryk University, Faculty of Informatics, Brno, 2014.
URL: http://is.muni.cz/th/359437/fi_m/.

Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions
on Software Engineering. Institute of Electrical & Electronics Engineers
(IEEE), 1997. DOI: 10.1109/32.588521.

IEEE Portable Applications Standards Committee. Std 1003.1¢-1995
Standard for Information Technology — Portable Operating System Inter-
face (POSIX) — System Application Program Interface (API) Amend-
ment 2: Threads Extension (C Language). Institute of Electrical &
Electronics Engineers (IEEE), 1995.

James C. King. “Symbolic Execution and Program Testing”. In: Com-
munications of the ACM. Association for Computing Machinery, 1976.
DOI: 10.1145/360248.360252.

Daniel Kroening and Michael Tautschnig. “CBMC — C Bounded Model
Checker”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2014. DOI: 10.1007/978-3-642-54862-8_26.

Chris Lattner. The LLVM Compiler Infrastructure Project. 2016. URL:
http://1lvm.org/ (visited on 05/09/2016).

Leonardo de Moura and Nikolaj Bjgrner. “Z3: An Efficient SM'T Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008. DOI: 10.1007/978-3-540-78800-3_24.

Jan Mrazek, Petr Bauch, Henrich Lauko, and Jiff Barnat. “SymDIVINE:
Tool for Control-Explicit Data-Symbolic State Space Exploration”. In:
Symposium on Model Checking of Software. Springer, 2016. DOIL: 10.
1007/978-3-319-32582-8_14.

Hristina Palikareva and Cristian Cadar. “Multi-solver Support in Sym-
bolic Execution”. In: Computer Aided Verification. Springer, 2013. DOI:
10.1007/978-3-642-39799-8_3.

http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://is.muni.cz/th/359437/fi_m/
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://llvm.org/
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-642-39799-8_3

[22]

[23]

[24]

[25]

[26]

[27]

o1

LLVM Project. LLVM Language Reference Manual. 2016. URL: http:
//1lvm.org/docs/LangRef .html (visited on 05/09/2016).

Petr Rockai, Jifi Barnat, and Lubos Brim. “Improved State Space Re-
ductions for LTL Model Checking of C & C++ Programs”. In: NASA
Formal Methods. Vol. 7871. Springer, 2013.

Nikolai Tillmann and Jonathan de Halleux. “Pex: White Box Test Gener-
ation for .NET”. In: Tests and Proofs. Springer, 2008. DOI: 10.1007/978-
3-540-79124-9_10.

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. “Green: Re-
ducing, Reusing and Recycling Constraints in Program Analysis”. In:
Symposium on the Foundations of Software Engineering. Association for
Computing Machinery, 2012. DOI: 10.1145/2393596.2393665.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. “SPASS Version 3.5”. In: Au-
tomated Deduction. Springer, 2009. DOI: 10.1007/978-3-642-02959-
2_10.

Josef Weidendorfer. Callgrind, Part of Valgrind Project. 2016. URL:
http://valgrind.org/ (visited on 05/09/2016).

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1145/2393596.2393665
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://valgrind.org/

92

Appendix A

Archive Structure and Running
SymDIVINE

A.1 Archive Structure

The archive submitted with this thesis contains a snapshot of the git repository’
with SymDIVINE source code and sources of the thesis itself with all the
measurements we have used to evaluate dependency-based caching.

The repository maps whole development of SymDIVINE during writing of
this thesis including re-implementation of LTL algorithm, extension of LLVM
interpreter to support two new instructions, implementation of naive caching,
implementation of dependency-based caching and several bug-fixes and small
improvements of the tool.

A.2 Running SymDIVINE

SymDIVINE can be either compiled from source or obtained in binary form
repository release page’. Runtime dependencies of SymDIVINE are Z3 and
1t12tgb, libboost-graph1.54.0, gce-4.9 (or higher) and g+-+-4.9 (or higher).

To compile SymDIVINE, following dependencies has to be installed on the
target system: CMake 2.8 (or higher), make, llvin-3.4, boost, flex and bison.
SymDIVINE then can be compiled by:

./configure
cd build
make

Final binary file is located in the bin directory. SymDIVINE then can
be run using following commands (first one runs reachability algorithm, the
second one run LTL algorithm):

"https://github.com/yaqwsx/SymDivine
’https://github.com/yaqusx/SymDIVINE/releases

53

https://github.com/yaqwsx/SymDivine
https://github.com/yaqwsx/SymDIVINE/releases

54 APPENDIX A. ARCHIVE STRUCTURE AND RUNNING SYMDIVINE

bin/symdivine reachability <model.1ll> [options]
bin/symdivine 1tl <property> <model.ll> [options]

See bin/symdivne help for more info. It is also possible to use helper
script scripts/run_symdivine.py, which takes a C a C++ file, compiles it
and runs SymDIVINE;, to easily start verification of a C or C++ benchmark.

Appendix B

Measurements

All our measured and processed data can be found in the electronic archive in
the experiment_results directory.

95

	Introduction
	Preliminaries
	Explicit-State Model Checking
	Symbolic Execution
	LLVM
	Satisfiability Modulo Theories

	SymDIVINE
	About the Tool
	Input Language Overview

	Control-Explicit Data-Symbolic Approach
	Internal Architecture
	LLVM Interpreter
	Data Store
	Exploration Algorithms

	Store
	Theoretical Model
	Implementation

	SMT Queries Caching
	Motivation
	Classical Approaches In Other Tools
	Naive Approach
	Dependency-Based Caching
	Implementation of Partial Store

	Results
	Benchmark Set and Environment
	Evaluation

	Conclusion
	Future Work

	Bibliography
	Archive Structure and Running SymDIVINE
	Archive Structure
	Running

	Measurements

