SymDIVINE: Tool for Control-Explicit
Data-Symbolic State Space Exploration*

Jan Mrazek, Petr Bauch, Henrich Lauko and Jifi Barnat

Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic
{xmrazek7,bauch,xlauko,barnat }@Qfi.muni.cz

Abstract. We present SymDIVINE: a tool for bit-precise model checking
of parallel C and C++ programs. It builds upon LLVM compiler infras-
tructure, hence, it uses LLVM IR as an input formalism. Internally, Sym-
DIVINE extends the standard explicit-state state space exploration with
SMT machinery to handle non-deterministic data values. As such, Sym-
DIVINE is on a halfway between a symbolic executor and an explicit-state
model checker. The key differentiating aspect present in SymDIVINE is
the ability to decide about equality of two symbolically represented states
preventing thus repeated exploration of the state space graph. This is cru-
cially important in particular for verification of parallel programs where
the state space graph is full of diamond-shaped subgraphs.

1 Introduction

Automatic program analysis, e.g. detection of use of invalid memory or division
by zero, is commonly used by both academia and industry for some time now. On
the other hand, automatic program verification has not been widely accepted by
the industry and remains mostly exclusively within the academic interest. This
situation did not change even after the arrival of modern multi-core CPUs that
made the concurrency related problems such as data races quite common, yet
difficult to detect and solve by humans — an ideal opportunity for automated
formal verification. The reasons for failure are numerous, however, the most
tampering factor is the need for remodeling the input program in a modeling
language of the model checker [1].

To address this specific issue, we present SymDIVINE- a tool for verification
of real parallel C and C++ programs with non-deterministic inputs. The tool
is built on top of the LLVM framework in order to avoid the need of modeling
and, at the same time, to achieve precise semantics of C and C++ programming
languages. SymDIVINE is motivated as an extension of our purely explicit model
checker DIVINE [3] that is capable of handling full parallel C/C++ programs
without inputs. To properly handle programs with inputs, SymDIVINE relies on
Control-Explicit Data-Symbolic approach [2], which we detail below.

* This work has been partially supported by the Czech Science Foundation grant
No. 15-08772S.



2 Control-Explicit Data-Symbolic Approach

In the standard explicit state model checking, the state space graph of a program
is explored by an exhaustive enumeration of its states. SymDIVINE basically fol-
lows the same idea, but it employs a control-explicit data-symbolic approach to
alleviate the state space explosion caused by the non-deterministic input val-
ues. While a purely explicit-state model checker has to produce a new state for
each and every possible input value, in SymDIVINE a set of states that differ
only in data values is represented with a single data structure, the so called
multi-state. Multi-state is composed of explicit control location and a set of pro-
gram’s memory valuations. The model checking engine in SymDIVINE operates
on multi-states, which is the key differentiating factor of SymDIVINE if compared
to other, purely explicit approaches. Relying on multi-states is computationally
more demanding, but may bring up to exponential time and memory savings.
See Figure 1. Moreover, with an equality check for multi-states, we can easily
mimic most explicit-state model checking algorithms — from simple reachability
of error states to full LTL model checking [6].

2.1 Representation of Multi-States

To perform verification of a program of size that is interesting from an indus-
trial point of view, an efficient data structure for representation of multi-states is
needed. While the representation of the explicit control-flow location is straight-
forward and easy, the representation of the set of program’s variable valuations
(the symbolic part) is rather challenging. We have tested several different rep-
resentations during the development of SymDIVINE. Since our aim was to stick
with a bit-precise verification, we only considered representations that were suit-
able for that. In particular, we dealt with binary decision diagrams, integer in-
tervals and SMT formulae [4]. For the rest of the paper, we refer to the symbolic
part as symbolic data.

In the current version of SymDIVINE, only quantified bit-vector SMT formu-
lae are supported to represent symbolic data. The tool does not support dynamic
memory allocation and manipulation at the moment, which makes the represen-
tation of symbolic data much simpler. Nevertheless, an unambiguous program
variable naming scheme needs to be established so that different local variables
with the same name are uniquely identified. Note that identifying variables with
the index of a function they belong to, and an offset within the function in the
LLVM bitcode is not satisfactory for the purpose of verification. In such scheme,
we cannot differentiate the individual instances of the same variable within dif-
ferent function calls during recursion or in the presence of parallel threads. To
deal with that we adopted the natural way the program’s memory is organized
— a stack divided into segments. Each function call made is linked with the cor-
responding segment on the stack, and so is every live instance of a variable.
Therefore, individual instances can be identified by the index of the stack seg-
ment and an offset within that segment. Note that the first segment on the stack
is reserved for global variables.



%a = call 132 @__VERIFIER_nondet_int()
%b = icmp sge i32 %a, 65535
br i1 %b, label %5, label %6

The code represents a simple LLVM program, where a is initialized with a non-
deterministic 32-bit integer, then it is checked whether it is greater or equal to 65535.
The result of the check is stored to b and used for branching.

DIVINE

call : icmp
e
e iy

call icmp

[
[}
(<))
()]
w
o
o

([
-

[}
N
)
w
N
o

[}
-

R

SymDIVINE
icmp a ={0,...,65534} .
Cae R P
1CMP | a4 = {65535,...,2°32}
b= {1}

Fig. 1. The figure compares state exploration in the explicit approach of DIVINE and in
the control-explicit data-symbolic approach of SymDIVINE on LLVM program example.
From init state DIVINE explores states for every possible value of a (232 values), hence
exponentially expands state space. In contrast SymDIVINE approach of symbolic rep-
resentation generates only two different states. One where the condition on branching
(a > 65535) is satisfied and the other one where the condition is violated.

Another issue the model checker has to deal with is the fact that for some
variables, old values have to be remembered. To that end, SymDIVINE maintains
the so called generations of variables. These are used to keep previous values of
variables that have been redefined since the beginning of the execution of the
program. Basically, each assignment to a variable generates a new generation
of it. Consider, for example, the following C code: int x = 5; int y = x; x
= 42; after execution of which the model checker have to remember that the
variable y equals to an old value stored at the variable x.

Symbolic data part of a multi-state itself is further structured. In particular,
it contains two sections — the so called path condition and definitions. The path
condition is a conjunction of formulae that represents a restriction of the data
that have been collected during the branching along the path leading to the



current location. Definitions, on the other hand, are made of a set of formulae in
the form variable = expression that describe internal relations among variables.
Definitions are produced as a result of an assignment and arithmetic instructions.
The structure of symbolic data representation allows for a precise description of
what is needed for the model checking, but it lacks the canonical representation.
As a matter of fact, the equality of multi-states cannot be performed as a syntax
equality, instead, SymDIVINE employs an SMT solver and quantified formulae
to check the satisfiability of a path condition and to decide the equality of two
multi-states. For more details, we kindly refer to [2].

2.2 State Space Generation

SymDIVINE is built on top of the LLVM framework to simplify interpretation of
complicated C/C++ semantics. To generate successors of a given multi-state we
have implemented an interpreter of a subset of LLVM instructions. When gen-
erating new multi-states, the interpreter first checks if the input multi-state has
a satisfiable path condition. If not, no successors are generated and the multi-
state is marked as empty (invalid state). In the other case, the control location
is systematically advanced for one of the threads, the corresponding instruction
is executed and a new multi-state is emitted. After that the input multi-state is
restored and the procedure is repeated for other threads. In this way, all thread
interleavings are generated at the very fine-grained level of individual LLVM in-
structions. This would result in an enormous state space explosion unless SymDI-
VINE employed 7-reduction [7] to avoid emitting of invisible multi-states. With
T-reduction the penalty for fine-grained parallelism is eliminated. Moreover, to
avoid repeated exploration of already visited states, a set of already seen sym-
bolic data is maintained for each control location. Only new multi-states are
further explored. Note that since there is no canonical representation for the
symbolic data part, linear search is used to check for the presence of a multi-
state in the list. At the moment, SymDIVINE relies on the Z3 SMT solver. To
further reduce the length of symbolic data lists associated with the individual
control-flow locations, SymDIVINE employs the so called explication [2]. If the
definition part for a single variable leads to one single possible data value, the
variable is removed from the symbolic data part of the multi-state and is treated
as a regular explicit value. The process of explication is rather expensive, but
it pays off, as it reduces the number of SMT calls made due to the multi-state
equality tests.

As for interpretation of LLVM bitcode, most instructions (including arith-
metic instructions) are implemented with the corresponding formula manipu-
lation in the definitions section of a multi-state. Branching instructions for a
condition ¢ always produce two succeeding states, where ¢ is conjuncted with
the path condition of the first successor, and —p with the condition of the sec-
ond successor. Function calls result in a initialization of a new stack segment,
upon function return, the variables in the stack segment from where the function
was called are substituted with the returned values and the corresponding stack



segment is deleted. To support parallel C/C++ programs, SymDIVINE contains
its own limited implementation of PThread library.

3 Using SymDIVINE

Given a C/C++ program, its verification using SymDIVINE is quite straight-
forward and simple. We adopted SV-COMP notation [5] to mark a non-
deterministic input of the verified program. Using this notation a user can bring
the input to the program by calling __VERIFIER nondet_{type} function. We
also support input assumptions, atomic sections, and asserts from SV-COMP
notation. Beside this denotation of non-deterministic inputs, no other annota-
tion is needed. To verify the annotated program, it has to be first compiled into
the LLVM bitcode using Clang. The user can either do it manually with any
compiler flags needed, or may use our script compile_to_bitcode to compile
the program source code with the default compiler flags. After that the user has
to choose if the program should be verified for an assertion safety or against
an LTL property. To verify the program for the assertion safety, the user has to
run ./symdivine reachability {program.11}. Optional arguments verbose
or vverbose can be used to track the progress of verification. If there is no run
violating any assertion (both C and SV-COMP style) SymDIVINE responds that
the model is safe. Otherwise, it outputs a single state in which the assertion is
violated.

To verify the program against an LTL property, the user has to run
./symdivine 1tl {property} {program.ll}. The LTL formula is passed as a
plain text and is parsed by SymDIVINE internally. The format follows the stan-
dard LTL syntax. Atomic propositions are embedded into the formula and are
bounded within square brackets. An atomic proposition can refer to any global
variable in the verified program or a constant with a given bit-width. Since the
support for debugging information in the bit code is not fully implemented yet,
the global variables are referred to using their offset in a global segment (this
offset can be read in the bitcode file). Note that for a bitcode file, Clang keeps
the same order of variables as is the order of the variables in the source file.
An example of LTL formula for SymDIVINE is as follows: !F(G[segl off0 =
0(32)1).

SymDIVINE does not currently support the debug information stored in bit
code files, so all counterexamples are in the form of internal representation and
with no link to the original source code file. However, since the internal repre-
sentation follows strict and simple rules and the information obtained from the
path condition is clearly readable, it is possible for a user to reconstruct the
counterexample simply by following it in the source code file. This is currently
the weakest part of SymDIVINE user interface.



4 Conclusions and Future Work

The main advantage of SymDIVINE is the fact that it performs a direct bit-precise
verification of C/C++ programs with no need for modeling. Using a bit-vector
theory, SymDIVINE can be bit-precise and handle bit-shifts, unsigned overflows,
etc. Unlike symbolic executors or bounded model checkers, SymDIVINE also han-
dles programs with infinite behavior, provided that the semi-symbolic state space
is finite. The LLVM approach allows us to reflect compiler optimizations and ar-
chitecture specific issues such as bit-width of variables. With a proper LLVM
frontend, SymDIVINE is also applicable to various programming languages.

In the current state SymDIVINE is able to verify pieces of real world code.
These pieces are, however, limited by the subset of LLVM instructions that is
supported by our tool. The most limiting factor for SymDIVINE is the lack of
support for dynamic memory. Besides that, our tool also misses advanced tech-
niques that reduce resource usage and are incorporated within other tools, such
as efficient memory compression. Absence of these techniques makes our tool
more resource wasteful compared to the others. However, majority of the limi-
tations are purely of technique nature and will be solved in the future. From the
conceptional point of view, SymDIVINE approach does not deal well with cycles
whose number of iterations depends on an input. SymDIVINE also cannot handle
programs that run an infinite number of threads. However, this is not a limiting
factor for real world use.

On the other hand, SymDIVINE demonstrates that the Control-Explicit Data-
Symbolic approach can be used for verification of parallel programs with nonde-
terministic inputs, and we plan to further support it. SymDIVINE source code
can be found at https://github.com/yaqwsx/SymDIVINE.

References

1. J. Alglave, A. Donaldson, D. Kroening, and M. Tautschnig. Making Software Veri-
fication Tools Really Work. In ATVA, pages 28-42, 2011.

2. J. Barnat, P. Bauch, and V. Havel. Model Checking Parallel Programs with Inputs.
In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, pages 756-759, 2014. 3

3. J. Barnat, L. Brim, V. Havel, J. Havlicek, J. Kriho, M. Lenco, P. Ro¢kai, V. Still,
and J. Weiser. DiVinE 3.0 — An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In Computer Aided Verification (CAV 2018), volume 8044 of
LNCS, pages 863—-868. Springer, 2013.

4. P. Bauch, V. Havel, and J. Barnat. LTL Model Checking of LLVM Bitcode with
Symbolic Data. In MEMICS, volume 8934 of LNCS, pages 47-59. Springer, 2014.

5. D. Beyer. Software verification and verifiable witnesses. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 9035 of Lecture Notes in
Computer Science, pages 401-416. Springer Berlin Heidelberg, 2015.

6. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

7. P. Rockai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL Model
Checking of C & C++ Programs. In NASA Formal Methods (NFM 2013), volume
7871 of LNCS, pages 1-15. Springer, 2013.



