
Symbolic Computation via Program
Transformation?

Henrich Lauko, Petr Ročkai, and Jǐŕı Barnat

{xlauko1,xrockai,barnat}@fi.muni.cz

Abstract. Symbolic computation is an important approach in auto-
mated program analysis. Most state-of-the-art tools perform symbolic
computation as interpreters and directly maintain symbolic data. In this
paper, we show that it is feasible, and in fact practical, to use a compiler-
based strategy instead. Using compiler tooling, we propose and imple-
ment a transformation which takes a standard program and outputs
a program that performs a semantically equivalent, but partially sym-
bolic, computation. The transformed program maintains symbolic values
internally and operates directly on them; therefore, the program can be
processed by a tool without support for symbolic manipulation.
The main motivation for the transformation is in symbolic verification,
but there are many other possible use-cases, including test generation
and concolic testing. Moreover, using the transformation simplifies tools,
since the symbolic computation is handled by the program directly. We
have implemented the transformation at the level of LLVM bitcode. The
paper includes an experimental evaluation, based on an explicit-state
software model checker as a verification backend.

1 Introduction

It is common to use symbolic methods in program analysis and verification and
related disciplines. Symbolic execution has found numerous use cases in test
generation and concolic testing and is widely deployed in practice. Likewise,
many modern software verification tools are based on bounded model checking,
which combines symbolic execution with SMT solvers to successfully attack hard
problems in their problem domain.

On one hand, multiple production-quality SMT solvers are readily available
and even provide a common interface [3]. While a certain degree of integration is
required to achieve optimal performance, solvers have attained nearly commodity
status. This is in stark contrast to symbolic interpretation, which is usually
implemented ad-hoc and is not re-usable across tools at all. The only exception
may be KLEE [10], a symbolic interpreter for LLVM bitcode [20], which is used
as a backend by a few analysis tools. Undoubtedly, the fact that it is based on the
(ubiquitous) LLVM intermediate language has helped it foster wider adoption.

? This work has been partially supported by the Czech Science Foundation grant
18-02177S and by Red Hat, Inc. The final publication is available at Springer via
https://doi.org/10.1007/978-3-030-02508-3 17

Arguably, interpreters (virtual machines) for controlled program execution,
as required by dynamical analysis tools, are already complex enough, without in-
volving symbolic computation. To faithfully interpret real-world programs, many
features are required, including an efficient memory representation, support for
threads, exceptions and a mechanism to deal with system calls. Complexity is,
however, undesirable in any system and even more so in verification tools.

For these reasons, we propose to lift symbolic computation into a separate,
self-contained module with minimal interfaces to the rest of the verification
or analysis system (see Figure 1). The best way to achieve this is to make it
compilation-based, that is, provide a transformation that turns ordinary (explicit)
programs into symbolic programs automatically. The transformed program only
uses explicit operations, but it uses them to manipulate symbolic expressions
and as a result can be executed using off-the-shelf components.

Interpretation-based Compilation-based

bitcode

linked bc.

C program

libs

libs
programllvm

static dynamic

VMVM

symsym MC

smt solver

ex
tr

ac
t

transitions

ye
s/

no

sat?
bitcode

instrumentedinstrumented
bitcodebitcode

linked bc.

C program

libssymsym

symsym libs
programllvm

VM

symsym MC

smt solver

static dynamic

instrum.
ex

tr
ac

t
ye

s/
no

sat?

transitions

Fig. 1. Comparison of interpretation-based and compilation-based symbolic methods
in the context of LLVM model checking. VM stands for ‘virtual machine’, while MC
stands for ‘model checker’. The hatched boxes represent components that work with
symbolic data. In the compilation-based method, symbolic operations are instrumented
into the bitcode, and their implementation is provided in the form of a library. The
virtual machine does not need to know about symbolic values at all. The model checker,
however, extracts symbolic data and a path condition from the executed program.

The expected result is that the proposed transformation can be combined
with an existing solver and a standard explicit interpreter of LLVM bitcode.
Depending on how one combines those ingredients, one will obtain different
analysis tools. As an example, in Section 5.3, we use the transformation, an ex-
isting explicit-state model checker DIVINE and an SMT solver STP [15] to build
a simple control-explicit, data-symbolic (CEDS) [4] model checker. Building a
tool which implements symbolic execution would be even simpler.1

1 In fact, any control-explicit, data-symbolic model checker already contains a subrou-
tine (in our case about 200 lines) which effectively implements a symbolic executor.

2

1.1 Goals

Our primary goal is to design a self-contained program transformation that can
be used in conjunction with other components to piece together symbolic analysis
and verification tools. We would like the transformation to exhibit the following
properties:

1. allow mixing of explicit and symbolic computation in a single program,
2. expose a small interface to the rest of the system, and finally
3. impose minimal run-time overhead.

The first property is important because it often does not make sense to
perform all computation within a program symbolically. For instance, a symbolic
execution engine may wish to natively perform library calls requested by the
program. Therefore, it ought to be possible to request, from the outset, that a
particular value in the program is symbolic or explicit.

It is unfortunately not possible to execute the symbolised program in a con-
text that is completely unaware of symbolic computation. However, the require-
ments imposed on the execution environment can be minimised and defined
clearly (see Section 5.4). Finally, exploring all possible executions given a sin-
gle input sequence is already expensive and when used in the context of model
checking, we would like to incur as small a penalty as possible.

1.2 Contribution

The idea that various tasks can be shifted between compile time and run time
is as old as higher-level programming languages. In the context of verification,
there is a large variety of approaches that put different tasks at different points
between these two extremes. Symbolic computation is traditionally found near
the interpretation end of the spectrum.

Our contribution is to challenge this conventional wisdom and show that this
technique can be shifted much farther towards the compilation end. Further, by
treating symbolic computation as an abstract domain, we pave the way for other
abstract domains to be approached in this manner. Finally, all relevant source
code and benchmark data is freely available online.2

2 Related Work

Program verification techniques based on symbolic execution [18], symbolic pro-
gram code analysis [24] and symbolic approach to model checking [21] have been
the subject of extensive research.

As for symbolic execution, the approach most closely related to ours is rep-
resented by the KLEE symbolic execution engine [10] that performs symbolic

2 https://divine.fi.muni.cz/2018/sym

3

execution on top of LLVM IR [20]. Besides standalone usage as a symbolic execu-
tor, KLEE has become also a back-end tool for other types of analyses and for
verification. For example, the tool Symbiotic [12] combines code instrumentation
and slicing with KLEE to detect errors in C programs.

Besides symbolic execution, other forms of abstract interpretation, like pred-
icate abstraction, is often used in code analysis. The most successful approaches
are based either on counterexample-guided abstraction refinement (CEGAR) [13]
or lazy abstraction with interpolants [2], which are implemented in tools such
as BLAST [8] and CPAchecker [6]. There are numerous research results in this
direction, summarised in e.g. [7, 27, 28].

A verification algorithm that goes beyond static program code analysis and
combines predicate abstraction with concrete execution and dynamic analysis
has been also introduced [14]. This approach can successfully verify programs
that feature unbounded loops and recursion, unlike standard symbolic execution.

Using instrumentation (as opposed to interpretation) for symbolic verifica-
tion was proposed a few times, but the only extant implementation that works
with realistic programs is derived from the CUTE [26] family of concolic test-
ing systems, i.e. the tools CREST [9] and jCUTE [25]. In particular, CREST
uses the CIL toolkit3 to insert additional calls into the program to perform the
symbolic part of concolic execution. The approach as described in [26] is limited
to symbolic computation, unlike the present paper, which works with arbitrary
abstract domains.

A related process was proposed by Khurshid et al. [17]: in this case, hand-
annotated code was processed by Java PathFinder [16], an explicit state model
checker. Our approach, in contrast, is fully automatic and more general.

Finally, besides symbolic code analysis and symbolic execution, there are ap-
proaches that perform symbolic model checking as such. The key differentiating
aspect of symbolic model checking is the ability to decide equality of symbolically
represented states. This is important in particular for verification of parallel and
reactive programs where the state space contains diamonds or loops, respectively.
The tool SymDIVINE [22] is focused on bit-precise symbolic model checking of
parallel C and C++ programs. It extends standard explicit state space explo-
ration with SMT machinery to handle non-deterministic data values. As such,
SymDIVINE is halfway between a symbolic executor and an explicit-state model
checker. Unlike the solution presented in this paper, SymDIVINE does not sep-
arate the symbolic interpreter from the core of the model checker. In general,
symbolic model checking is more often used with synchronous systems, for ex-
ample [11].

3 CIL is short for C Intermediate Language [23], and is a simplified subset of the C
language. The toolkit can automatically translate standard C into the intermediate
(CIL) form. The CIL form can be optionally brought into the form of three-address
code and this feature is used in CREST.

4

3 Abstraction as a Transformation

While in the present work, our main goal is to transform a concrete program
into one that performs symbolic computation, it is expedient to formulate the
problem more generally. We will think in terms of an abstraction, in the sense of
abstract interpretation, which has two main components: it affects how program
states are represented and it affects the computation of transitions between those
states. There are two levels on which the abstraction operates:

1. static, concerning syntactic constructs and the type system
2. dynamic, or semantic, which concerns actual execution and values

In the rest of this section, we will define syntactic abstraction (which cov-
ers the static aspects) as means of encoding abstract semantics into a concrete
program. While it is convenient to think of the transformed program in terms
of abstract values and abstract operations, it is also important to keep in mind
that at a lower level, each abstract value is concretely represented (encoded).
Likewise, abstract operations (instructions) are realised as sequences of concrete
instructions which operate on the concrete representation of abstract values (see
Figure 4, left). Those considerations are at the core of the second, dynamic, as-
pect of abstraction. Reflecting this structure, the program transformation there-
fore proceeds in two steps:

1. the input program is (syntactically) abstracted

– concrete values are replaced with abstract values
– concrete instructions are replaced with abstract instructions

2. abstract instructions are replaced by their concrete realisation

The remainder of this section is organised as follows: in Section 3.1, we de-
scribe the expected concrete semantics of the input program. Section 3.2 then
introduces syntactic abstraction, Section 3.3 deals with representation and typ-
ing of values in the abstracted program, Section 3.6 goes on to describe the
treatment of instructions. Section 3.7 briefly discusses interactions of multiple
domains within a program and finally Section 3.8 gives an overview of relational
abstract domains.

3.1 States and Transitions

We are interested in general programs, e.g. those written in the C programming
language. Abstraction is often described in terms of states and transitions. In
case of C programs, a state is described by the content of memory (including reg-
isters). Transitions describe how a state changes during computation performed
by a given program. In this paper, we will use small-step semantics, partly be-
cause the prototype implementation is based on LLVM,4 and in part because it
is a natural choice for describing parallel programs.

4 Programs in LLVM are in a partial SSA form, a special case of three-address code [1].
Three-address code is essentially small-step semantics in an executable form.

5

In this description, the transitions between program states are given by the
effect of individual instructions on program state. Which instruction is executed
and which part of the program state it affects is governed by the source state.
Our discussion of abstract transitions will therefore focus on the effects of in-
structions: as an example, the add instruction obtains two values of a specified
bit width from some locations in the program state, computes their sum and
stores the result to a third location.

3.2 Syntactic Abstraction

The input program is given as a collection of functions, each consisting of a con-
trol flow graph where nodes are basic blocks – each a sequence of non-branching
instructions. Memory access is always explicit: there are instructions for reading
and writing memory, but memory is never directly copied, or directly used in
computation. While this further restricts the semantics of the input program,
it is not at the expense of generality: programs can be easily put in this form,
often using commodity tools.

With these considerations in mind, the goal of what we will call syntactic
abstraction is to replace some of the concrete instructions with their abstract
counterparts. The general idea is illustrated in Figure 2.

x : int ← input ()
y : int ← factorial (7)
z : int ← add(x, y)
b : bool ← leq(y, z)
assert (b)

x : a_int ← lift (*)
y : int ← factorial (7)
z : a_int ← a_add (x, y)
b : a_bool ← a_leq (y, z)
assert (b)

Fig. 2. An example of syntactic abstraction. In this example, a int and a bool rep-
resent abstract types (see also Section 3.3). We create the abstract value x with a
lift(*) operation to represent an arbitrary value of type int (see Section 3.4). Also,
notice that the concrete computation of factorial(7) remains intact.

Apart from a few special cases, an abstract instruction takes abstract values
as its inputs and produces an abstract value as its result. The specific meaning
of those abstract instructions and abstract values then defines the semantic
abstraction. The result of syntactic abstraction being performed on the program
is, therefore, that the modified program now performs abstract computation.
In other words, the transformed program directly operates on abstract states
and the effect of the program on abstract states defines the abstract transition
system.

We posit that syntactic abstraction, as explained in following sections, will
automatically lead to a good semantic abstraction – i.e. one that fits the stan-
dard definition: a set of concrete states can be mapped to an abstract state, an
abstract state can be realised as a set of concrete states and those operations
are compatible in the usual sense.

6

3.3 Abstract Values and Static Types

A distinguishing feature of the syntactic approach to abstraction is that it admits
a static type system. In other words, the variables in the program can be assigned
consistent types which respect the boundary between abstract and concrete val-
ues. While a type system is a useful consistency check, its main importance lies
in facilitating a description of how syntactic abstraction operates.5

We start by assuming existence of a set of concrete scalar types, S, and of
concrete pointer types. We define a map Γ that builds up all relevant types from
the set of scalar types. The set of all types Γ(T) derived from a set of scalars T
is defined inductively as follows:

1. T ⊆ Γ(T), that is, each scalar type is included in Γ(T)
2. if t1, ..., tn ∈ Γ(T) then also the product type (t1, ..., tn) ∈ Γ(T), n ∈ N
3. if t1, ..., tn ∈ Γ(T) then also the disjoint union t1|t2|...|tn ∈ Γ(T), n ∈ N
4. if t ∈ Γ(T) then t∗ ∈ Γ(T) (t∗ denotes a pointer type)

In other words, the set Γ(S) describes finite (non-recursive) algebraic types
over the set of concrete scalars and pointers.

A fundamental building block of the syntactic abstraction is a bijective map
αi, defined for each abstract domain separately,6 from the set of concrete scalar
types S to the set of abstract scalar types Ai = αi(S) (we let A be the union of
all the Ai: A = A1∪A2∪ ...). Each value which exists in the abstracted program
then belongs to a type in Γ(S ∪ A) – in other words, values are built up from
concrete and abstract scalars.

In particular, this means that the abstraction works with mixed types – prod-
ucts and unions with both concrete and abstract fields. Likewise, it is possible
to form pointers to both abstract values and to mixed aggregates.

3.4 Semantic Abstraction

The maps αi and α−1
i let us move from concrete to abstract scalar types (and

back) and are strictly a syntactic construct. The semantic (dynamic) counterpart
of αi are lift i and lower i: these are not maps, but rather abstract operations
(instructions). Just as αi and α−1

i translate between concrete and abstract types,
lift i goes from concrete to abstract values and lower i the other way around.
While both the αi and lift i and lower i are defined on scalar types S and scalar
values respectively, they can be all naturally extended to the set of all types
Γ(S) (and their corresponding values).

5 Additionally, since the SSA portion of the LLVM IR is already statically typed, we
can take advantage of this existing type system in the implementation. Nonetheless,
the treatment in this section does not depend on LLVM and would be applicable to
any dataflow-oriented program representation.

6 Since multiple abstract domains can co-exist in a single program, we use the lower
index i to distinguish them.

7

3.5 Representation

Besides αi, there is another type map, which we will call ρi, which maps each
abstract scalar type in Ai to a concrete type in Γ(S). This is the representation
map, and describes how abstract values are represented at runtime. This is to
emphasise that abstract values are, in the end, encoded using concrete values
that belong to particular concrete types. Moreover, in general for t ∈ Γ(S),
ρi(αi(t)) 6= t: the representation is unrelated to the original concrete type. An
abstract floating point number may be, for instance, represented by a concrete
pointer to a concrete aggregate made of two 32-bit integers.

a : pointer ← malloc (4)
y : a_int ← lift (*)
store y → a
...
z : a_int ← load a

a : pointer ← malloc (4)
y : term ← sym_lift (*)
freeze y → a
...
z : term ← thaw a

Fig. 3. Freezing and thawing of values transfers them between abstract representation
and their concrete realisation. In this case, ρ sends a int to term, which realises the
term domain described in section Section 4. The freeze and thaw operations allow term

to be bigger than the original 4-byte integer type.

While lift i and lower i are the value-level counterparts of the map αi, we need
another pair of operations to accompany the representation map ρi. We will call
them freezei and thaw i, and they map between t ∈ Ai and ρi(t) ∈ Γ(S). The
idea is that memory manipulation (and manipulation of any concrete aggregates)
is done entirely in terms of the representation types (using frozen values), but
abstraction operations on scalar values are defined in terms of the abstract type
(i.e. thawed values). The use of freezing and thawing is illustrated in Figure 3.

One challenge in the implementation of freezei and thaw i is that the memory
layout of a program should not change7 as a side-effect of the transformation.
This means that for many abstract domains, the freeze operation must be able
to store additional data associated with a given address, and thaw must be
able to obtain this data efficiently. While this is an implementation issue, it is
an important part of the interface between the transformed program and the
underlying execution or verification platform. However, since the program is

7 The exact layout of data (structures, arrays, dynamic memory) is normally the
responsibility of the program itself, more so in the case of intermediate or low-level
languages. For this reason, it is often the case that the program will make various
assumptions about relationships among addresses within the same memory object.
It is impractical, if not impossible, to automatically adapt the program to a different
data layout, e.g. in case the size of a scalar value would change due to abstraction.

8

transformed as a whole, there is no need to explicitly track this additional data
at runtime.8

An additional role of the freeze/thaw pair is to maintain dynamic type infor-
mation at runtime. While it is easy to assign static types to instruction operands
and results, this is not true for memory locations: different parts of the program
can load values of different static types from the same memory address. For this
reason, the type system which governs memory use must be dynamic and allow
dispatch on the runtime type of the value stored at a given memory location.

3.6 Abstract Instructions

As indicated at the start of this section, it is advantageous to formulate the
transformation in two phases, using intermediate abstract instructions. Abstract
instructions take abstract values as operands and give back abstract values as
their results. It is, however, of crucial importance that each abstract instruc-
tion can be realised as a suitable sequence of concrete instructions. This is what
makes it possible to eventually obtain an abstract program that does not actu-
ally contain any abstract instructions and execute it using standard (concrete,
explicit) methods.

In the first (abstraction) phase, concrete instructions are replaced with their
abstract versions: instruction inst with a type (t1, ..., tn)→ tr is replaced with
a inst of type (α(t1), ..., α(tn)) → α(tr). Additionally, lift, lower, freeze and
thaw are inserted as required.9 The implementation is free to decide which in-
structions to abstract and where to insert value lifting and lowering, as long as
it obeys typing constraints. The specific approach we have taken is discussed in
Section 3.7 and the implementation aspects are described in Section 5.2.

After the first phase is finished, the program may be further manipulated
in its abstract form before continuing the second phase of the abstraction. This
gives a practical, implementation-driven reason for performing the abstraction
transformation in two steps, in addition to the conceptual clarity it provides.

In the second step, all abstract operations, including lift and lower, are re-
alised using concrete subroutines. The realisation (implementation) of a inst

is of the type (ρ(α(t1)), ..., ρ(α(tn)))→ ρ(α(tr))), clearly obviating the need for
thawing and re-freezing the value.

3.7 Abstract Domains

Necessarily, in an abstracted program, the values it manipulates will come from
at least two different domains: the concrete domain and the chosen abstract do-
main, in line with the first requirement laid out in Section 1.1. This is because

8 The only way a value can be copied from one memory address to another is via a
load instruction followed by a store, both of which are instrumented and as such
also transfer the supplementary data.

9 For instance, concrete operands to abstract operations are lifted, arguments to nec-
essarily concrete functions (e.g. real system calls) are lowered. Memory stores are
replaced with freeze and loads with thaw.

9

it is usually impractical to abstract all values that appear in the program. Ad-
ditional abstract domains, therefore, do not pose any new conceptual problems.

For the sake of simplicity, we only consider instructions where all operands
come from the same domain (this holds for both the concrete and for abstract
domains). Moreover, the only instructions where the domain of the result does
not agree with the domain of the operands are cross-domain conversion opera-
tions, which take care of transitioning values from one domain to another. The
two most important instances of those operations are lift and lower10 introduced
in Section 3.3.

enum parity
even , odd , undef

parity_add (a: parity , b: parity)
if a is undef ∨ b is undef

return undef
if a is even: return b
if b is even: return a
return even # odd + odd

lifter_add (x: ?, y: ?)
if x is int ∧ y is int

return add(x, y)
if x is int

x : a_int ← lift(x)
else # y is int

y : a_int ← lift(y)
return a_add (x, y)

Fig. 4. Left: Domain implementation can be provided in a high-level language (e.g.
C++) and needs to provide a representation of abstract scalar values and operations
on them. An abstract value (of type parity) can be even, odd or in a superposition
of those (undef – unknown). The term domain described in Section 4 is constructed
analogously. Right: A lifter ensures that both arguments to an operation are in the
same domain.

Even though cross-domain conversions are necessary in the program, it is a
major task of the proposed transformation to minimise their number. A natural
approach that would minimise unwanted domain transitions is to propagate
abstract domains along the data flow of the program. That is, if an abstract
instruction a inst is already in the program and its result a is also used as an
operand elsewhere, we prefer to lift all the users of a into the abstract domain of
a inst (cf. Figure 4, right), instead of lowering a into a set of concrete values.
This simple technique, which we call value propagation, forms the core of our
entire approach (see also Figure 2). It is worth noting that this is particularly
simple to do for programs in (partial) SSA form11, although the variables which
are not part of SSA are still somewhat challenging. Those are covered by the
freeze and thaw operations, which are discussed in more detail in Section 5.1.

10 The names lift and lower allude to the relationship of the abstract and the concrete
domain. In applications with multiple abstract domains, it may be expedient to
include additional instructions that convert directly from one abstract domain to
another, although in theory it is always possible to go through the concrete domain.

11 Again, this is true of LLVM bitcode – it is already in a partial SSA form. This
simplifies our prototype implementation somewhat.

10

Given the above, a logical starting point is to pick an initial set of instruc-
tions that we wish to lift into an abstract domain. Those could be explicit lift
instructions placed in the program by hand, they could be picked by static anal-
ysis, or could be the result of abstraction refinement. The abstract program can
then be obtained by applying value propagation to this initial set of abstract
instructions.

3.8 Constraints and Relational Domains

The last important aspect of abstraction is its effect on control flow of the pro-
gram. It is often the case that the control flow depends on specific values of
variables via conditional branching. The condition on the branch is typically a
predicate on some value, or a relationship among multiple values that appear
in the program. If the involved values are, in fact, abstract values, it is quite
possible that both results of the predicate or comparison are admissible and that
the conditional branch can therefore go both ways. The way we deal with this
in the transformation is that the program makes a nondeterministic choice on
the direction of the branch. How this nondeterministic choice is implemented is
again deferred to the execution environment. In any case, the choice of direction
provides additional information – constraints – on the possible values of variables
(cf. Figure 6).

We encode those constraints into assume instructions: given an abstract value
and the constraint, assume computes the constrained value. Additionally, de-
pending on the abstract domain, it may be desirable to constrain values other
than those directly involved in the comparison. Alternatively, relational domains
may be able to encode constraint information themselves: this is in particular
the case in the term domain which realises symbolic computation. Therefore, for
the purposes of the present paper, simply inserting a single assume instruction
on each outgoing edge of the conditional is sufficient.

3.9 Summary

In the above, we have set up abstraction in such a way that it fits into a
transformation-based approach. In particular, we have separated syntactic and
semantic abstraction and shown how the former induces the latter. The proposed
syntactic abstraction captures how the program is changed, while semantic ab-
straction captures the dynamic (execution) aspects of abstract interpretation.

4 Symbolic Computation

Now that we have described how to perform program abstraction as a transfor-
mation, the remaining task is to re-cast symbolic computation as an abstract
domain. Fortunately, this is not very hard: the abstract values in the domain
are terms, while the abstract instructions simply construct corresponding terms
from their operands. In other words, symbolic computation is realised by a free

11

algebra (that is, the term algebra). The input values of the program correspond
to nullary symbols – in practice, a unique nullary symbol is created each time
the program obtains a value from its input. All the remaining values are built
up as terms of bit-vector operations and constants. We will refer to the abstract
domain thus formed as the term domain.

It is not hard to see that a program transformed this way will simply perform
part of its computation symbolically in the usual sense. Additionally, as the
computation progresses, assume instructions impose a collection of constraints
on the nullary symbols of the abstract algebra (i.e. the input values). Each
constraint takes the form of a term with a relational symbol in the root position.
These constraints become part of the abstract state, effectively ensuring that
the term domain is fully relational.12

It is a requirement of abstract interpretation that it is possible to construct
an abstract state from a set of concrete states. In the term domain this can
be achieved by assigning, to each memory location that differs in some of the
concrete states13, a fresh nullary symbol. We then impose constraints that ensure
that exactly the input set of concrete states is represented by the resulting
abstract state. For instance, if the input set of concrete states differs by the
value of a single variable a, and this variable takes values 1, 2, 3 and 4 in the 4
input states, a suitable constraint would be a ≥ 1 ∧ a ≤ 4.

In some cases, it is impossible to construct the requisite constraints using only
conjunction and relational operators. To ensure that the term domain forms a
lattice (in particular that a least upper bound always exists), it is necessary to
allow the constraints to use logical disjunction.

While the above considerations regarding constraints are an important part
of the theoretical underpinnings of the approach, it is almost always entirely
impractical to shift back and forth between concrete and abstract states. In
practice, therefore, the constraints described in this section simply arise through
the assume mechanism described in Section 3.8. As such, the constraints that
appear in a given state form a path condition. Finally, we note that the least
upper bound of abstract states defined above corresponds to path conditions
which arise from path merging in symbolic execution.

5 Implementation

We have implemented the proposed program transformation on top of LLVM,
using its C++ API. Both the transformation and all additional code (model
checker and solver integration) was done in C++. The transformation itself is
the largest component, totalling 3200 lines of code.

12 An abstract domain is called relational when it is capable of preserving information
about relationships among various abstract values that appear in the program.

13 In the present paper, we only deal with abstract (symbolic) values. The structure of
the program state, that is, the arrangement of the program memory, is taken to be
always represented explicitly, i.e., it belongs squarely to the concrete domain.

12

5.1 Freeze and Thaw

As mentioned in Section 3.7, our implementation is based on the simple idea of
maximum propagation of abstract values along the data flow of the program.
While the SSA part of the algorithm is essentially trivial, storing abstract values
in program memory is slightly more challenging. The purpose of freeze and thaw
is to overcome this issue.

While the dynamic type system that freeze and thaw provide to the trans-
formed program and the ability to store additional data associated with a given
memory address are largely orthogonal at the conceptual level, they are closely
related at the level of implementation. This is because in principle, a dynamic
type system only requires that additional information is attached to values ma-
nipulated by the program, and that this information is correctly propagated.
Since apart from memory access, the program is statically typed, it is sufficient
to perform dynamic type checks (and dispatch) when a value is thawed, while
freeze simply stores the incoming static type.

Implementation-wise, our target platform is a virtual machine with provisions
for associating user-defined metadata to arbitrary memory addresses. This makes
the implementation of freeze and thaw simple and efficient. However, in case such
a mechanism is not available, it is sufficient to implement an associative map,
using addresses as keys, inside the program.

5.2 Domains

In real-world programs, there are often variables which do not benefit from
abstraction or from symbolic treatment, and are best represented explicitly.
For this reason, the toplevel abstract domain that we use is the disjoint union
(i.e. the type-level sum) of the concrete domain and the term domain. If we
denote the concrete domain with C and the symbolic (term) domain with S, the
type toplevel type is C t S.

Since the freeze and thaw operations maintain dynamic type information in
the executing program, it is possible to quickly compute operations for which
both operands are concrete (explicit). If both operands are symbolic, a symbolic
operation is directly invoked, while in the remaining case – one symbolic and
one concrete argument – the concrete argument is lifted into the symbolic (term)
domain. The procedure is called a lifter and is automatically synthesized for each
abstract operation that appears in the program. An example of a lifter is given
in Figure 4 (right).

It is also possible to use the domain Ct(C×S), which corresponds to concolic
execution (i.e. it maintains both a concrete and a symbolic value at the same
time). This requires the additional provision that assume instructions obtain
concrete values that satisfy the symbolic constraints on their abstract counter-
parts (an SMT solver will typically provide a model in case the assumptions were
feasible, which can then be used to reconstruct the requisite concrete values).

13

a : pointer ← malloc (4)
w : a_int ← lift (*)
x : a_int ← lift (*)
y : a_int ← a_add (w, x)
z : a_int ← a_mul (y, 7)
freeze z → a

×

7+

?1?2x

y

z a

w

Fig. 5. Example of a formula tree as generated by the term domain. The boxes corre-
spond to abstract variables, while the circles are the concrete representation of terms.
Question marks denote unconstrained nullary symbols.

x : a_int ← lift (*)
if nondet ()

x’: a_int ← assume (x < 10)
y : a_int ← a_add (x’, 1)

else
x’: a_int ← assume (x >= 10)
y : a_int ← a_sub (x’, 1)

y1

x

y2

+

−

x < 10

x ≥ 10

true

1

1

?

Fig. 6. The program on the left arises from instrumentation of conditional branching,
in this case if x < 10. The formula tree on the right includes constraints arising from
the assume instructions. Note that on any given path through the program, only one
of the subtrees rooted in y1 or y2 can exist.

5.3 Execution & Model Checking

We represent the terms described in Section 4 by a simple tree data structure.
The abstract instructions that correspond to operations on values construct a
tree representation of the requisite term by joining their operands to a new root
node, where only the operation in the root node depends on the specific abstract
instruction. The approach is illustrated in Figure 5, 6, 7.

This arrangement makes it easy to extract the terms from program state
and convert them to a form appropriate for further processing by the analysis
tool. Recall that one of the motivating applications of the proposed approach
was symbolic model checking. In this case, the state space is explored by an
explicit-state model checker and the extracted terms are converted into SMT
queries. To this end, the model checker must be slightly extended and coupled
to an SMT solver, since:

1. transitions of the program must be checked for feasibility,
2. the state equality check must compare terms semantically, not syntactically.

Of course, the hitherto extracted terms must be left out of byte-wise compar-
ison that is performed on the remaining (concrete) parts of program states. In
our case, the required changes in the model checker were quite minor, amounting
to about 1200 lines of code.

14

x : a_int ← lift (*)
for i : int ← 1 .. 2

x : a_int ← a_add (x, 1)

x3

x2

x1

+

+

?

1

1

Fig. 7. An example of a formula tree arising from a for loop. Versions of the variable
x which exist in different iterations of the loop are distinguished by an index in the
picture.

5.4 Interfaces

One of the goals of the proposed approach was to minimise interfaces between
the abstracted program and the verification or execution environment (recall
goal 2 set in Section 1.1). In total, there are four interactions at play:

1. non-deterministic choice: under abstraction, conditionals in the program may
be undetermined, and both branches may need to be explored; the abstrac-
tion uses a non-deterministic choice operator to capture this effect and defers
an exploration strategy to the verifier

2. freeze and thaw must be provided as an interface for storing abstract values
in program memory

3. enumeration of enabled (feasible) transitions must take the abstract values
into account, if required by the domain(s) used in the program

4. state equality (if applicable in the verification approach) must be extended
to take the employed abstract domains into account

The latter two points depend on the chosen abstract domains. For the term
domains, both interfaces reduce to extracting abstract values (terms) from pro-
gram state and executing an SMT query.

6 Evaluation

First of all, we have checked the performance of the transformation itself. On C
programs from the SV-COMP suite, the transformation time was negligible. On
more complex C++ programs, it took at most a few seconds, which is still fast
compared to subsequent analysis.

As described in Section 5, we have built a simple tool which integrates
the proposed transformation with an explicit-state model checker and an SMT
solver. The experimental evaluation was done using this prototype integration
(denoted ‘DIVINE*’ in summary tables).

6.1 Code Complexity

One of our criteria for the approach presented in this paper was reduced code
complexity. While counting lines of code is not a very sophisticated metric, it is

15

a reasonably good proxy for complexity and is easily obtained.14 The results are
summarised in Table 1.

Table 1. Summary of component sizes (thousands of lines of code) in a few
symbolic verification and symbolic execution tools. Numbers in parentheses rep-
resent shared code (i.e. code not specific to the given approach to symbolic
computation).

component DIVINE* KLEE SymDIVINE CBMC

transformation 3.2 0 0 (22)
virtual machine (10) 15 6 7.5
exploration (1.5) 1.2 1 2.3
solver integration 1.2 8 0 14
SAT solver (45) (45) (23) (5.5)
SMT solver (80) (80) (400) 16
runtime support 1 0 0 0
total unique 5.4 24.2 7 39.8
total shared 136.5 125 423 27.5

6.2 Benchmarks

For benchmarking, we have used a subset of the SV-COMP [5] test cases, namely
7 categories, summarised in Table 2, along with statistics from our prototype
tool. We have only taken examples with finite state spaces since the simple
approach outlined in Section 5.3 cannot handle infinite recursion or infinite ac-
cumulation loops. In total, we have selected 1160 SV-COMP inputs. In many
cases (especially in the array category), the benchmarks are parametric: we have
included both the original SV-COMP instance and smaller instances to check
that the approach works correctly, even if it takes a long time or exceeds the
memory limit on the instances included in SV-COMP.

In all cases, the time limit, for each test case separately, was 10 minutes (wall
time) and the memory limit was 10 GiB. The test machines were equipped with
4 Intel Xeon 5130 cores clocked at 2 GHz and 16 GiB of RAM.

In addition to the present approach, we have measured two additional tools:
CBMC 5.8 and SymDIVINE, both of which are symbolic model checkers targeting
C code. The overall results of the comparison, in terms of the number of cases
solved, are presented in Table 3.

6.3 Comparison 1: CBMC

The results from CBMC 5.8 were obtained using the tool’s default configuration.
CBMC [19] is a mature bounded model checker for C programs with a good

14 We have used the utility sloccount to get estimates of module size in terms of lines
of code.

16

track record in SV-COMP and is built around a symbolic interpreter for ‘goto
programs’, its own intermediate form, not entirely dissimilar to CIL or LLVM
in its spirit. Besides KLEE, the CBMC toolkit is among the best established
members of the interpretation-based school of symbolic computation.

Table 2. Summary of test cases from SV-COMP. The time limit was 10 minutes
and memory limit was 10 GiB. The ‘oot/oom’ column is the number of test
cases that did not finish within the limits, while ‘solved’ are those that gave
the expected result; ‘states’ gives the number of states stored, ‘search’ gives the
state space exploration time and ‘ce’ gives the counterexample generation time.

tag solved oot/oom states search ce

array 96 94 170.3 k 52:00 54:15
bitvector 17 15 3166 3:12 2:33
loops 72 106 14.0 k 53:52 11:40
product-lines 336 239 20.2 M 4:36:44 43:11
pthread 9 36 609.4 k 3:31 0:54
recursion 47 34 3955 16:16 7:41
systemc 14 45 25.0 k 3:29 1:34
total 591 569

Table 3. The number of benchmarks correctly solved by each of the evaluated
tools. The best result in each category is rendered in boldface.

tag total DIVINE* SymDIVINE CBMC

array 190 96 68 93
bitvector 32 17 9 2
loops 178 72 67 9
product-lines 575 336 411 234
pthread 45 9 0 1
recursion 81 47 43 22
systemc 59 14 27 0
total 1160 591 625 361

Besides the total number of test cases solved (within the 10 minute limit),
we were interested in comparing the time required to do so. Time requirements
are summarised in Table 4.

With regards to its state space exploration strategy, CBMC can be thought
of as the middle ground between the approach taken by KLEE and that of our
proposed tool. On one hand, KLEE, being a symbolic executor, does not attempt
to identify already-visited program states. CBMC is a bounded model checker,
which means it stores a single formula representing the entire set of reachable
states. Our present approach, being based on an explicit-state model checker,

17

stores sets of program states and compares them for equality using an SMT
solver.

Table 4. Speed comparison: the columns ‘models1’ and ‘models2’ show the
number of models which the respective pair of tools finished in common. In
most cases, CBMC is substantially faster than the proposed approach, while
SymDIVINE is significantly slower. The time shown is a sum across all the models
in a given category.

tag models1 DIVINE* CBMC models2 DIVINE* SymDIVINE

array 73 34:16 13:58 58 3:18 42:54
bitvector 2 0:37 0:01 9 0:55 2:30
loops 4 0:03 0:02 62 22:25 19:04
product-lin. 182 4:08:24 7:25 183 0:30 28:33
pthread 0 0 0 0 0 0
recursion 22 0:01 0:13 43 4:02 13:58
systemc 0 0 0 14 3:29 6:43

6.4 Comparison 2: SymDIVINE

SymDIVINE [22] is a pre-existing, interpretation-based symbolic model checker
which also works with LLVM bitcode. Similar to our approach, SymDIVINE relies
on a state equality checker, in this case based on quantified bitvector formulae.
In theory, this yields coarser state equivalence and consequently smaller state
spaces, but we could not confirm this in our set of benchmarks: the total number
of states stored across the benchmarks that finished using both tools was 802
thousand for SymDIVINE and 93 thousand with the approach described in this
paper. Additionally, QBV satisfiability queries are typically much more expen-
sive than those used by our prototype tool, which can help explain the speed
difference between the tools.

7 Conclusion

We have presented an alternate approach to symbolic execution (and abstract
interpretation in general), based on compilation-based techniques, instead of re-
lying on the more traditional interpreter-based approach. We have shown that
the proposed approach has important advantages and no serious drawbacks.
Most importantly, our technique is modular to a degree not possible with sym-
bolic or abstract interpreters. This makes implementation of software analysis
and verification tools based on symbolic execution almost trivial. An impor-
tant side benefit is that the approach allows for abstract domains other than
the term domain, leading to a different class of verification algorithms with a
comparatively small investment.

18

Bibliography

[1] Alfred V. Aho. Compilers: Principles, Techniques, & Tools. Addison-
Wesley series in computer science. Pearson/Addison Wesley, 2007. ISBN
9780321486813.

[2] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From Under-
Approximations to Over-Approximations and Back. In Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 7214 of LNCS,
pages 157–172, Berlin, Heidelberg, 2012. Springer.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[4] Petr Bauch, Vojtech Havel, and Jiri Barnat. Control explicit-data symbolic
model checking. ACM Trans. Softw. Eng. Methodol., 25(2):15:1–15:48, 2016.
doi: 10.1145/2888393.

[5] Dirk Beyer. Reliable and reproducible competition results with BenchExec
and witnesses report on SV-COMP 2016. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 887–904. Springer,
2016. ISBN 978-3-662-49673-2. doi: 10.1007/978-3-662-49674-9 55.

[6] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for config-
urable software verification. In Computer Aided Verification, volume 6806
of LNCS, pages 184–190. Springer, 2011. ISBN 978-3-642-22110-1.

[7] Dirk Beyer and Stefan Löwe. Interpolation for Value Analysis. In Software
Engineering & Management, volume 239 of LNI, pages 73–74. GI, 2015.

[8] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker BLAST. International Journal on Software
Tools for Technology Transfer, 9(5):505–525, Oct 2007. ISSN 1433-2787.
doi: 10.1007/s10009-007-0044-z.

[9] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Automated Software Engineering, ASE ’08, pages 443–446, Washington,
DC, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2187-9. doi:
10.1109/ASE.2008.69.

[10] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems pro-
grams. In Operating Systems Design and Implementation, pages 209–224.
USENIX Association, 2008.

[11] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Ste-
fano Tonetta. The nuXmv symbolic model checker. In Computer Aided
Verification, volume 8559 of LNCS, pages 334–342. Springer, 2014.

[12] Marek Chalupa, Martina Vitovská, Martin Jonáš, Jǐŕı Slabý, and Jan
Strejček. Symbiotic 4: Beyond reachability. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 10206 of LNCS,
pages 385–389. Springer, 2017. ISBN 978-3-662-54580-5.

[13] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement. In Computer Aided Ver-
ification, volume 1855 of LNCS, pages 154–169. Springer, 2000.

19

[14] Jakub Daniel and Pavel Paŕızek. PANDA: Simultaneous predicate abstrac-
tion and concrete execution. In Hardware and Software: Verification and
Testing, volume 9434 of LNCS, pages 87–103. Springer, 2015. ISBN 978-3-
319-26287-1.

[15] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, volume 4590 of LNCS, pages 519–
531. Springer, 2007. ISBN 978-3-540-73368-3.

[16] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
using JAVA PathFinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[17] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), LNCS, pages 553–
568. Springer, 2003.

[18] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976. ISSN 0001-0782.

[19] Daniel Kroening and Michael Tautschnig. CBMC – C bounded model
checker. In Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), pages 389–391. Springer, 2014. ISBN 978-3-642-54862-8.
doi: 10.1007/978-3-642-54862-8 26.

[20] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California,
Mar 2004.

[21] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993. ISBN 0792393805.

[22] Jan Mrázek, Petr Bauch, Henrich Lauko, and Jǐŕı Barnat. SymDIVINE:
Tool for Control-Explicit Data-Symbolic State Space Exploration. In Model
Checking Software, volume 9641 of LNCS, pages 208–213. Springer, 2016.

[23] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. In Compiler Construction, pages 213–228, Berlin, Heidelberg,
2002. Springer. ISBN 978-3-540-45937-8.

[24] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin, editors. Prin-
ciples of program analysis, 1999. Springer. ISBN 978-3-540-65410-0. doi:
10.1007/978-3-662-03811-6.

[25] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools. In Computer Aided Verification, pages
419–423, 2006.

[26] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing
engine for C. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[27] Marcelo Sousa, César Rodŕıguez, Vijay D’Silva, and Daniel Kroening. Ab-
stract interpretation with unfoldings. In Computer Aided Verification, vol-
ume 10427 of LNCS, pages 197–216. Springer, 2017.

[28] Georg Weißenbacher. Program Analysis with Interpolants. PhD thesis,
University of Oxford, 2010.

20

