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Abstract

The motivation for this diploma thesis comes from various sources such as parametric
formal verification, requirements engineering and safety analysis. In these areas, there
are often situations in which we are given a set of configurations and a property of
interest with the goal of computing all the configurations for which the property is
valid. Checking the validity of each single configuration may be a costly process.
We are thus interested in reducing the number of such validity queries. In this
work, we assume that the configuration space is equipped with a partial ordering
that is preserved by the property to be checked. In such a case, the set of all valid
configurations can be effectively represented by the set of all maximal valid (or
minimal invalid) configurations w.r.t. the ordering. We show an algorithm to compute
such boundary elements. We explain how this general setting applies to consistency
and redundancy checking of requirements and to finding minimal cut-sets for safety
analysis.

We also itroduce an algorithm tailored for more specific case where the configura-
tion space has a particular shape of hypercube. This situation, for example, arises
in the area of constraints processing where the configuration space corresponds to
the set of all subsets of a given set of constraints and the property of interest is
satisfiability of these subsets. If an unsatisfiable set of constraints is given, one may
ask for a minimal description of the reason for this unsatisfiability, i.e. for the minimal
unsatisfiable subsets (MUSes) and/or maximal satisfiable subsets (MSSes).

Keywords

Minimal unsatisfiable subsets, Maximal satisfiable subsets, Unsatisfiability analysis,
Infeasibility analysis, Requirements analysis, Safety analysis, Formal verification
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1 INTRODUCTION

1 Introduction

The motivation for this work comes from various source areas, such as parametric
formal verification, requirements engineering, safety analysis, or software product
lines. In these areas, the following situation often arises: We are given, as an input,
a set of configurations and a property of interest. The goal is to compute the set of all
the configurations that satisfy the given property. We call such configurations valid.
As a short example, one may imagine a system with tunable parameters that is to be
verified for correctness. The set of configurations, in that case, is a set of all possible
parameter values and the goal is to find all such values that ensure the correctness
of the given system. If we are given a method to ascertain the validity of a single
configuration, we could try running the method repeatedly for each configuration
to obtain the desired result. In the case of an infinite set of configurations, this
approach does not terminate, and we get at most a partial answer. However, even if
the configuration space is finite, checking configurations one by one may be too costly.
We are thus interested in reducing the number of validity checks in the finite case.

Although such reduction might be impossible in general, we focus on problems
whose configuration space is equipped with a certain structure that is preserved by
the property of interest. This may then be exploited in order to check a smaller
number of configurations and still obtain the full answer. The desired structure is
a set of dependencies of the form: “If configuration A violates the property then
configuration B does too.” Mathematically, we can either view such structure as
a directed acyclic graph of those dependencies, or as a partial ordering on the set of
all configurations induced by this graph. Viewed as an ordered set, the set of all the
valid configurations can be effectively represented by the set of all the maximal valid
(alternatively, minimal invalid) configurations.

We are interested in finding this boundary between valid and invalid configurations
while minimising the number of validity queries, i.e. the potentially costly checks
whether a given configuration satisfies the property.

We are not aware of any previous work which deals with exactly the same problem
as we do. The most related problems can be found among the Constraint Satisfaction
Problems (CSPs) where a satisfiability of a set of constraints is examined. When
a set of constraints C is infeasible (unsatisfiable) the most common analysis is the
maximum satisfiability problem (MaxSAT, MaxCSP), which asks for a satisfiable
subset of C with the greatest possible cardinality. Our problem is different from
MaxSAT and more related to the maximal satisfiable subset problem (MSS) that
considers maximality in the ordering sense instead of maximum cardinality. The goal
of MSS is to find a subset of C that is satisfiable, and that becomes unsatisfiable if
any other constraint is added to this subset. Similarly, one can define the minimal
unsatisfiable subset problem (MUS).

Both MSSes and MUSes describe the boundary between the satisfiable and
unsatisfiable subsets of C and both these problems were recently addressed in works
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1 INTRODUCTION 1.1 Outline of The Thesis

[2,5,7,25,26]. To solve the problem, the papers use different approaches like the duality
that exists between MUSes and MSSes [2,26] or parallel enumeration from bottom and
top [5]. In [25] authors unify and expand upon the earlier work, presenting a detailed
explanation of the algorithm’s operation in a framework that also enables clear
comparisons. Paper [7] describes an MUS extractor tool MUSer2 which implements a
number of MUS extraction algorithms.

Subsets of a set of constraints are naturally ordered by the subset relation, thus
our approach can be also used to solve these problems. We deal with a more general
problem as we consider arbitrary directed acyclic graphs instead of the hypercube
graphs representing subsets of constraints. Our approach is thus more general and
has a wider area of potential usage. Futhermore, we show that our approach can be
competitive with the state-of-the-art tool MARCO in the case of analysing hypercube
graphs.

On the other hand, the generality of our approach disallows it to fully exploit the
specific properties of hypercube graphs. Therefore, we also present a modification
of the general approach which is designed specially for enumeration of MUSes and
MSSes of infeasible set of constraints. As such full enumeration may be intractable in
general, we focus on building an online algorithm, which produces MUSes/MSSes in
an on-the-fly manner as soon as they are discovered. The problem has been studied
before even in its online version. However, our algorithm uses a novel approach that
is able to outperform the current state-of-the art algorithms for online MUS/MSS
enumeration. Moreover, the performance of our algorithm can be adjusted using
tunable parameters. We evaluate the algorithm on a set of benchmarks.

1.1 Outline of The Thesis

The thesis is divided into two parts. The first part is designated to the problem
of finding maximal valid (minimal invalid) configurations in systems that can be
modeled by arbitrary directed acyclic graphs. First, we motivate the need for solving
this problem on two particular examples from the areas of safety and requirements
analysis. Subsequently, the problem is formally defined and our approach for solving
this problem is presented. The first part is concluded with results of an experimental
evaluation of our approach.

In the second part we focus on the problem of online enumeration of MUSes and
MSSes of infeasible set of constraints, i.e. on the hypercube graphs. We state the
basic definitions and explain the terminology that is used in the area of constraints
processing. We give a list of existing approaches for solving the problem of MUS/MSS
enumeration and pinpoint their strengths and weaknesses. Subsequently we gradually
present our approach for solving the MUS/MSSes enumeration problem. Finally, an
experimental evaluation of our approach and comparison with other state-of-the art
algorithm is given.
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2 GENERAL APPROACH

2 General Approach

2.1 Introduction

In this part of the diploma thesis we describe our approach for finding maximal
valid and minimal invalid configurations of configuration spaces that are described
by arbitrary directed acyclic graphs. Let us, before we present the basic definitions
and preliminaries and state our problem formally, motivate the need for solving this
problem on two examples from areas of safety and requirements analysis.

Safety Analysis. The safety analysis techniques are widely used during the design
phase of safety-critical systems. Their aim is to assure that the systems provide
prescribed levels of safety via exploring the dependencies between a system-level
failure and the failures of individual components. Traditionally, the various safety
analyses are done manually and are based on an informal model of the systems. This
leads to the process being very time-consuming and the results being highly subjective.
The desire to alleviate such issues somewhat and to make the process more automated
led to the development of Model-Based Safety Analysis (MBSA) approach [21]. This
approach assumes the existence of a system model that is extended by an error model
describing the way faults may happen and propagate throughout the system. One of
the problems solved in MBSA is the computation of the so-called minimal cut-sets
for a given failure, i.e. the minimal sets of low-level faults that cause the high-level
failure to manifest in the system.

One can map the minimal cut-sets problem to our setting easily. The configurations
are the possible sets of faults that may be enabled in the extended system model, their
ordering is given by set inclusion. Note that there might be dependencies between
some of the faults, which means that not all sets of faults are considered to be possible.
The property of interest is the non-existence of failure and the valid configurations are
exactly those sets of faults that do not cause the failure to happen. Clearly, in this
case, the minimal cut-sets correspond exactly to the minimal invalid configurations.
This means that the problem can be solved using our approach.

To illustrate the application on a simple example, we consider an avionics triplex
sensor voter, described in [12]. The voter gains measurement data from three sensors
as well as information whether the sensors are operational. It computes the differences
between the sensor data and detects persistent miscompare, i.e. situations where two
sensors differ above a certain threshold for a certain amount of time. If all three
sensors are operational and two pairs of sensors have persistent miscompare, the
common sensor is marked as invalid and data is no longer received from that sensor.
If just two sensors are operational, a persistent miscompare between the two means
that the output data is considered invalid.

For simplicity, let us assume that there are two kinds of faults per sensor and
let us call these fault A and fault B. Fault A causes the sensor to transmit wrong
data while fault B causes the sensor to stop working completely. Note that we may
assume that both faults cannot occur on the same sensor, as once fault B happens,
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2 GENERAL APPROACH 2.1 Introduction

∅

A B

AA AB BB

AAA AAB ABB BBB

Figure 1: Illustration of the safety analysis example

the occurrence of fault A is irrelevant. In general, we thus have six possible faults
and 27 sets of faults to be checked, including the empty set of faults. However, as
the situation of sensors is symmetrical, we may get rid of this symmetry and simply
count the number of fault-A sensors and fault-B sensors instead. This situation is
illustrated in Fig. 1. The nodes in the graph represent the various fault configurations:
∅ represents that no faults occur, AB represents that fault A occurred on one sensor
and fault B occurred on another sensor, etc. The graph is created from the inclusion
ordering on the fault situations.

Let us now consider the failure to deliver data to the output. As explained above,
the voter fails to deliver output if either all sensors stopped working or have been
eliminated, or if there are just two sensors working with persistent miscompare. We
assume that the persistent miscompare situation is detected once at least one of a pair
of sensors starts transmitting wrong data, i.e. fault A occurred on that sensor. For
this reason, the minimal invalid configurations (i.e. the minimal cut-set) are AA, AB,
and BBB, while the maximal valid configurations are A and BB.

Requirements Analysis. Establishing the requirements is an important stage in
all development. Although traditionally, software requirements were given informally,
recently there has been a growing interest in formalising these requirements [19].
Formal description in a kind of mathematical logic enables various model-based
techniques, such as formal verification. Moreover, we also get the opportunity to
check the requirements earlier, even before any system model is built. This so-called
requirements sanity checking [5] aims to assure that a given set of requirements is
consistent and that there are no redundancies. If inconsistencies or redundancies
are found, it is usually desirable to present them to the user in a minimal fashion,
exposing the core problems in the requirements. As redundancy checking can be
usually reduced to inconsistency checking [4], the goal is thus to find all minimal
inconsistent subsets of requirements. Such a problem may be clearly seen as an
instance of our setting, where the configurations are sets of requirements and the
ordering is given by the subset relation.

We illustrate the inconsistency checking on an example. Assume that we are given
a set of four requirements. These requirements consider one particular component in
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2 GENERAL APPROACH 2.1 Introduction

∅

{ϕ2}{ϕ1} {ϕ3} {ϕ4}

{ϕ1,ϕ2} {ϕ1,ϕ3} {ϕ1,ϕ4} {ϕ2,ϕ3} {ϕ2,ϕ4} {ϕ3,ϕ4}

{ϕ1,ϕ2,ϕ3} {ϕ1,ϕ2,ϕ4} {ϕ1,ϕ3,ϕ4} {ϕ2,ϕ3,ϕ4}

{ϕ1,ϕ2,ϕ3,ϕ4}

Figure 2: Illustration of the requirements analysis example. The subset with dashed
outline is the maximal inconsistent one, the subsets with solid outline are the maximal
consistent ones.

a system and constrain the way the component is used. We formalise the requirements
using the branching temporal logic CTL [11]. In the formulae we use the atomic
propositions q denoting that a query has arrived, r denoting that the component
is running, and m denoting that the system is taken down for maintenance. Our
first requirement states that whenever a query arrives, the component has to become
active eventually, formally ϕ1 := AG(q → AF r). The second requirement states that
once the component is started, it may never be stopped. This may be a reasonable
requirement e.g. if the component’s initialisation is expensive, formally ϕ2 := AG(r →
AG r). The third requirement states that the system has to be taken down for
maintenance once in a while. This also means that the component has to become
inactive at that time. This is formalised as ϕ3 := AG AF (m ∧ ¬r). Our last
requirement states that after the maintenance, the system (including the component
we are interested in) has to be restarted, formally ϕ4 := AG(m→ AF (¬m∧r)). The
situation is illustrated in Fig. 2. We discover that there is one minimal inconsistent
subset of the four requirements, namely {ϕ2, ϕ3, ϕ4}, and that there are three maximal
consistent subsets of the requirements, namely {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ4}, {ϕ1, ϕ3, ϕ4}.
The consistency of the first set {ϕ1, ϕ2, ϕ3} might be surprising, as one would suspect
the pair of requirements ϕ2 and ϕ3 to be the source of inconsistency. However, the
first three requirements can hold at the same time – in systems where no queries
arrive at all. In these situations we say that the requirements hold vacuously. There
are ways of dealing with vacuity, such as employing the so-called vacuity witnesses [6].

Note that although in this example, the space of all sets of requirements had
the particular shape of a hypercube, this might not always be the case. We might
sometimes be interested in certain subsets of requirements instead of all of them.
Such a situation may arise e.g. if there are some known implications between the
requirements. Consider the example above with the added requirement that once
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2 GENERAL APPROACH 2.2 Preliminaries and Problem Statement

the component is started, it may only stop after 1 hour. This requirement is clearly
implied by ϕ2 and we would therefore omit all subsets that contain both ϕ2 and this
new requirement. Another way of obtaining a non-hypercube requirements graph is
when considering requirements for several components at once in a component-based
or software product line setting. In such cases, some of the components or product
features may be incompatible and it thus only makes sense to consider subsets of
requirements that reason about compatible components.

Outline of this part. The rest of this part of the thesis is organised as follows. In
Section 2.2 we present the basic definitions and preliminaries and state our problem
formally. In Section 2.3 we present our new algorithm to solve the problem and
discuss several variants and heuristics of it, as well as we analyse its complexity. The
algorithm is then evaluated on a set of experiments in Section 2.4.

2.2 Preliminaries and Problem Statement

In this section, we recall some basic notions that we use later in this part of the thesis.
We also introduce the formalism of annotated directed acyclic graphs that forms the
basic setting for our problem.

Definition 1. (Directed acyclic graph) A directed graph G is a pair (V,E), where
V is a finite set of vertices and E ⊆ V × V is a set of edges. An edge (u, v) is an
outgoing edge of the vertex u and an incoming edge of the vertex v. The indegree
( outdegree) of a vertex v is the number of incoming (outgoing) edges of v. A path
from a vertex u to a vertex v in G is a sequence 〈v0, v1, · · · vk〉 of vertices such that
v0 = u, vk = v, k > 0 and (vi, vi+1) ∈ E for i = 0, 1, · · · , k − 1. We say that v is
reachable from u if there is a path in G from u to v.

A directed graph G = (V,E) is called a directed acyclic graph (DAG) if there is
no path 〈v0, v1, · · · vk〉 in the graph such that v0 = vk. A DAG induces a strict partial
order relation @G on its vertices as follows: u @G v if v is reachable from u. A vertex
v is said to be a minimal vertex in G if there is no u such that u @G v. Dually,
a vertex u is a maximal vertex in G if there is no v such that u @G v.

Definition 2. (Chain cover) A chain in a DAG G with its induced relation @G is
a sequence of one or more vertices 〈v0, v1, . . . , vk〉 such that v0 @G v1 @G · · · @G vk.
A chain cover of a DAG is a set of chains C = {c1, · · · , cl} such that each vertex
is included in exactly one chain from C. A minimum chain cover is a chain cover
containing the fewest possible number of chains. Note that the minimum chain cover
is not given uniquely.

Definition 3. (Annotated DAG) An annotated directed acyclic graph (ADAG) is a
pair (G, valid), where G = (V,E) is a directed acyclic graph and valid : V → Bool is
a validation function. The validation function is monotone on V , which means that
for every pair u, v ∈ V if u @G v and valid(u) = false then valid(v) = false.

6
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Figure 3: An example of an ADAG, the dashed vertices are the invalid ones, the grey
vertices are the maximal valid ones.

The problem we are interested in can be stated as finding either a set of maximal
valid vertices or a set of minimal invalid vertices. We present an algorithm to obtain
the former. However, the algorithm can be also used to obtain the latter, as the two
formulations are dual.

Definition 4. (Maximal valid vertex and cut) Let G = ((V,E), valid) be an ADAG.
A vertex u ∈ V is a maximal valid vertex of G iff valid(u) = true and ∀v ∈ V such
that u @G v is valid(v) = false.

The maximal valid cut of G is a set of all its maximal valid vertices.

Problem Formulation. Given an ADAG G = ((V,E), valid), find the maximal
valid cut of G.

As mentioned in the introduction, evaluating the function valid on a single config-
uration (a single vertex of the ADAG) might be an expensive operation. Therefore,
our aim is to propose an algorithm minimising the number of evaluations of the valid
function even for the price of the increased complexity of the algorithm with respect
to the number of operations over the graph.

The problem formulation assumes that the graph is acyclic and that the validation
function is monotone. We might, however, be also interested in cases where one of
these preconditions is violated. We postpone the discussion of these possibilities to
Section 2.3.5.

2.3 Algorithm

A naive solution of the maximal valid cut problem for a given ADAG G would be to
evaluate the valid function on each vertex, compute the @G relation for valid vertices,
and choose the maximal ones. In this naive approach, the valid function is called
once per each vertex.

7



2 GENERAL APPROACH 2.3 Algorithm

2.3.1 Chain-Based Algorithm

Instead of dealing with each vertex of G separately we build our solution on a decom-
position of G into a set of chains and we use the fact that the validation function is
monotone. The algorithm takes as an input an ADAG G and one of its chain covers
C. Then it iteratively handles chains and removes those vertices which cannot be the
maximal valid ones.

From the definition, each vertex of the maximal valid cut of G belongs to exactly
one chain from C. Moreover, every chain contains at most one maximal valid vertex
of the graph and this vertex is at the same time the maximal valid vertex of the chain.
Let us note that the opposite implication does not hold generally, the maximal valid
vertex of a chain may not be a maximal valid vertex of the whole graph. Therefore,
the set of maximal valid vertices of individual chains contains the maximal valid cut
as its subset.

Let c = 〈v0, v1, · · · , vl〉 be an arbitrary chain of C. To find the maximal valid
vertex vh of this chain we use binary search. We take the middle vertex cmid of c,
cmid = vd l

2
e and evaluate the valid function on cmid. If cmid is valid, then we know

for sure that none of the lower vertices from c can be the maximal valid vertex of
this chain. In the other case, we claim that none of the higher vertices from c can be
maximal valid vertex. This allows us to reduce c into half and recursively repeat the
procedure. We finish with a chain consisting of only one vertex vi. If vi is a valid
vertex then it is the maximal valid vertex of c, otherwise c does not have any valid
vertex at all.

Once we have applied the binary search on each chain from C, we have the set H
of maximal vertices of these chains. To obtain the maximal valid cut of G from H
we just compute the @G relation for each pair from H and remove from H all those
vertices that are not maximal w.r.t. @G.

For an illustration of the chain based algorithm, assume that we are given the graph
from Fig. 3 and as a chain cover we take these chains: 〈b, c, d, e, f, g〉, 〈a, h, j, k,m〉,
〈i, o, l, p〉. The vertices e, j, o are found to be the maximal valid vertices of these
chains and the @G relation is computed for these three vertices. Vertex j is found
to be lower than e and vertices o, e are mutually unreachable, hence {e, o} is the
resulting maximal valid cut.

The number of calls to valid in this algorithm depends on the number of chains
in C and the number of calls used in the binary searches. The number of calls is
logarithmic in the length of the chain in every binary search. Therefore, the total
number of calls is O(|C| logL) where |C| is the number of chains in C and L is the
length of the longest chain in C.

Note that there are algorithms such as [10,16] that compute the minimum chain
cover of a given graph. We may thus make use of these algorithms to reduce the
number of chains that need to be processed by this algorithm.

8



2 GENERAL APPROACH 2.3 Algorithm

2.3.2 Cutoff-Based Algorithm

We now improve the efficiency of our algorithm by decreasing the chain lengths
and possibly eliminating some of the chains completely. The main idea makes use
of the fact that a vertex vi is recognised as the maximal valid vertex of a chain
c = 〈v0, v1, · · · , vi, · · · , vl〉 (if c has any). From this we can deduce that not only
vertices from c lower than vi cannot belong to the maximal valid cut, but neither do
any vertices from G lower than vi. Symmetrically, none of the vertices from G higher
than vi+1 can belong to the maximal valid cut. Therefore, we can remove all vertices
lower than vi and higher than vi+1, including vi+1, from all chains and thus reduce
their size and possibly the number of valid calls in the future.

Definition 5. (Cutoff Transformation) Let G be an ADAG and C its chain cover.
Let c = 〈v0, v1, · · · , vi, · · · , vl〉 be a chain from C and let vi be its maximal valid vertex.
Then the cutoff of G is a pair G and C generated from G and C, respectively, by
removing:

• vertices which are lower than vi,
• vertices which are higher than vi+1, and
• the vertex vi+1.

In case that c does not have a maximal valid vertex we define the cutoff of G to be a
tuple G and C created from G and C, respectively, by removing:

• vertices which are higher than v0 and
• the vertex v0.

As this vertex removal may make some chains empty, we also remove the empty
chains from C.

Theorem 1. (Cutoff Property) Let G be an ADAG, C its chain cover, and G,C be
their cutoff. Then graphs G and G have the same maximal valid cuts, C is a chain
cover of G, and |C| ≥ |C|.

Proof. None of the maximal valid vertices of G is removed from G during the cutoff
transformation. On the other hand the set of edges of G is the subset of those of G
and thus G cannot have any new maximal valid vertex.

As C is a chain cover of G we have that each vertex of G is in C. Each sequence
c from C emerges from a chain c from C by removing vertices. Due to transitivity of
@G only a prefix or postfix of c is removed and thus c is a chain again.

Theorem 2. (Maximal Cut Property) Let G be an ADAG and C its chain cover.
Let us apply step by step the cutoff transformation on all chains from C and let G
and C be the resulting graph and its chain cover respectively. Then every chain in C
is just a single vertex and C is exactly the maximal valid cut of G.

Proof. After the cutoff transformation of a chain c ∈ C, the chain has either one
element or is empty.

9
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Figure 4: Illustration of the cutoff based algorithm. The graph is covered with three
chains 〈b, c, d, e, f, g〉, 〈a, h, j, k,m〉, 〈i, o, l, p〉 and they are processed in this order.
At first, the vertex e is found to be the maximal valid vertex of the first chain and
the consequently made cutoff reduces the set of chains to 〈e〉, 〈k〉, 〈o, l, p〉. In the
next step, the chain 〈k〉 is processed and no valid vertex on this chain is found, but
the cutoff is made and the set of chains is reduced to 〈e〉, 〈o〉. In the last step, the
chain 〈o〉 is processed and o is found to be valid. The result of the third cutoff is
the maximal valid cut {e, o}. The grey nodes are nodes which have already been
determined to be valid ones.

Theorem 1 implies that G contains all vertices from the maximal valid cut of
G and so does its chain cover C. On the other hand any two vertices from C are
incomparable w.r.t. @G due to the cutoff transformation.

The algorithm based on the cutoff transformation is shown as Algorithm 1.
The algorithm assumes that the reachability relation @G is pre-computed. The relation
is used both for computing the minimum chain cover and when detecting lower and
higher vertices, however, bread-first-search can be also used for this detection. Instead
of removing vertices from the graph we just mark them with a binary flag cand (for
candidate) initially set to true. Once we have discovered that a vertex cannot be
a maximal valid one, the flag is set to false.

Contrary to the previous algorithm based on chains, once the algorithm based on
cutoffs processes the last chain from the chain cover of the original graph G, the set
C contains exactly the maximal valid cut of G and no other computation is needed.

Figure 4 illustrates the cutoff based algorithm on the graph from Fig. 3. The cutoffs
significantly reduce the space of vertices that can be maximal valid ones. After
processing of the first two chains only two vertices are left as the possible maximal
valid ones.
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1 Function MaxValid(c, IsV alid())
2 if c is empty then
3 return nil

4 middle← d l2e;
5 if IsValid(vmiddle) then
6 x← MaxValid(〈vmiddle+1, . . . , vl〉);
7 if x = nil then
8 return middle
9 else

10 return x

11 else
12 return MaxValid(〈v0, . . . , vmiddle−1〉)

1 Function Cutoff(G, c, i)
2 if i 6= nil then
3 set v.cand = false for each v ∈ V lower than vi;
4 set v.cand = false for each v ∈ V higher than vi+1;
5 set vi+1.cand = false;

6 else
7 set v.cand = false for each v ∈ V higher than v0;
8 set v0.cand = false;

1 Function ProcessChain(G, IsV alid(), c)
2 remove from c all vertices v with v.cand = false;
3 index← MaxValid(c, IsValid());
4 Cutoff(G, c, index);

1 Function MaxValidCut(G = (V,E), IsV alid())
input : graph G and a validation function IsV alid()
output : set of MSSes of G

2 set v.cand = true for each v ∈ V ;
3 compute the relation @G;
4 ChainCover ← MinimumChainCover(G);
5 for each chain ∈ ChainCover do
6 ProcessChain(G, IsValid(), chain)
7 return {v ∈ V | v.cand = true};

Algorithm 1: Maximal Valid Cut Algorithm

11
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2.3.3 Complexity

The time complexity analysis of the cutoff algorithm is given w.r.t. the size of the
graph G = (V,E) and we separately evaluate the number of valid calls and the
number of all other operations.

The number of calls to the valid function depends on the number of chains in C
and the number of calls used in the binary searches. The total number of calls is
in the worst case the same as with the algorithm based on chains, i.e. O(|C| logL)
where |C| is the number of chains in C and L is the length of the longest chain in C.
Note that the size of the minimum chain cover can be bounded due to Dilworth’s
theorem.

Theorem 3. (Dilworth’s theorem [14]) The size of the minimum chain cover of graph
G equals to the size of a maximal number of pairwise unrelated elements, where u is
unrelated to v if neither u @G v not v @G u.

To evaluate the overall complexity of the algorithm we denote by Tvalid the time
needed for one evaluation of valid .

The reachability relation @G is in fact equal to the transitive closure of the graph
and can be computed in O(|V | · |E|) with the help of, e.g., depth-first search starting
from each node of the graph.

The procedure ProcessChain first removes from the chain all vertices that have
been recognised as not maximal valid in some of the previous cutoff transformations.
When starting the MaxValidCut algorithm, each vertex is included in exactly one
chain of the chain cover. Each vertex is removed at most once, hence the overall
number of removals is bounded by the size of V and the complexity of the removals
only is O(|V |).

The procedure MaxValid is an analogy of the binary search. It calls the validation
function on the middle vertex of the given chain c, splits the chain into two halves,
and recursively continues on one of these halves. The complexity of MaxValid is
O(Tvalid ·log |c|) where |c| is the length of c. The procedure is called once for each chain
of the chain cover C of G resulting in the overall complexity of O(Tvalid · |C| · logL)
where L is the length of the longest chain from C.

The procedure Cutoff marks those vertices which cannot be maximal valid ones.
Either bread-first-search or the @G relation can be used to detect the vertices, which
should be marked, and each vertex is marked as false at most once. Therefore all the
markings (including the initialisation) take time O(|V |).

The most time consuming part of the algorithm (excluding the valid calls) is the
computation of the minimum chain cover taking time O(|C| · |V |2). For details and
complexity analysis please refer to [10,16]. The total time complexity of the cutoff
algorithm is thus O(|V |3 + Tvalid · |C| · logL).

12
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2.3.4 Heuristics

The cutoff algorithm works with the minimum chain cover, however, the algorithm
does not prescribe the order in which individual chains are processed. Each cutoff
transformation affects the chains that have not been processed yet. Therefore the
order in which the chains are processed affects the total number of calls to the
validation function.

Cutting Power Based Heuristics. The order which minimises the number of
calls to the validation function cannot be determined without the information which
vertices are valid and which are not. Instead, for each chain c we can identify the
minimum and the maximum number of vertices that can be cut off as a result of its
processing. Let us define for each vertex vi from the chain 〈v0, v1, . . . , vl〉 its cutting
power as the number of vertices of G lower than vi plus the number of vertices higher
than vi+1 plus 1 (for vertex vi+1). Then the maximum cutting power of chain c is
the maximum of cutting powers of its vertices. Average and median cutting power of
a chain can be defined in a similar way. Cutting powers of vertices can be used to
propose several heuristics decreasing the number of calls to the validation function.

The first heuristic sorts the chains in descending order according to their maximum
cutting powers. This heuristic can lead to a large reduction of the graph while
processing the first few chains. However, this happens only if the vertices with
maximum cutting power are the maximal valid vertices of these chains.

As the second heuristic we propose to compute for each chain c its average cutting
power which equals to the arithmetic mean of the cutting powers of its vertices. The
heuristic sorts the chains in descending order according to their average cutting power.
A similar heuristic is to order the chains according to the median of the cutting
powers of its vertices. These two heuristics can speed up the average performance of
the algorithm.

Note that to compute the cutting power of a vertex we need to know the reachability
relation of the graph. The reachability relation is pre-computed when the minimum
chain cover is constructed. The only additional computation required by the heuristics
is thus the sorting which takesO(|C|·log |C|) time and does not increase the asymptotic
complexity of the cutoff algorithm.

All heuristics can be improved if we recompute the cutting powers of vertices and
sort the chains after each cutoff transformation. However, this requires recomputation
of the reachability relation which is rather expensive and increases the complexity of
the algorithm. As explained in the introduction, our goal is to minimise the number
of calls to the validation function as it is assumed to be a very expensive operation.
When choosing the appropriate heuristic we have to trade off between the number of
validation function calls and the complexity of the heuristic.

Cutting Power Approximation. Yet another possibility is to approximate the
cutting power of vertices by some easily computable characteristic. For instance, we
can take the outdegree of a vertex as a high outdegree can indicate high cutting power.

13



2 GENERAL APPROACH 2.3 Algorithm

The same holds for the indegree of a vertex. Again, we can sort chains according to
out/indegrees, average degree or median. On the one hand, this approach could be
less effective than the approaches based on cutting powers. On the other hand, it is
relatively cheap and affords to recompute the ordering after each cutoff transformation.

Online Computed Chains. As the precomputation of the minimum chain cover
is rather expensive, our last heuristic drops this precomputation. The chains are
instead computed on the fly. To construct a chain we take an arbitrary unprocessed
vertex (i.e. a vertex whose validity is not known yet) and by following its unprocessed
predecessors and successors we extend it to a chain. This chain is then processed
as described in the cutoff algorithm and we repeat this process as long as there are
some unprocessed vertices. We call this heuristic the online heuristic. Obviously,
the disadvantage of this approach is that the number of the on-the-fly constructed
chains can be much higher than the size of the minimal chain cover. However, if
we precompute the minimal chain cover, its minimality is guaranteed only before
the first cutoff transformation is made as this transformation can shorten some
chains of the cover and there can emerge some chains that can be joined together.
The online heuristic always processes a chain that cannot be extended any more.
It can thus possibly process even less chains than the original algorithm with the
minimum chain cover precomputed. Moreover, the computation of the minimal chain
cover is the most expensive operation of our algorithm besides the validation calls.
The online heuristic does not need this precomputation and hence the @G relation
does not need to be computed. The time complexity of the algorithm is reduced to
O(|V |+ |E|+ Tvalid · |C| · logL). We compare the online heuristic with the others in
the next section.

2.3.5 Relaxing the preconditions

The two main preconditions of our approach are that the graph is assumed to be
acyclic and that the validation function is monotone on this graph. A natural
question might arise whether we could relax one of these preconditions. Consider
first an arbitrary annotated graph, i.e. a directed graph with a monotone validation
function. The monotonicity implies that all vertices lying on one cycle are either all
valid or all invalid. This means that we can preprocess the graph using any standard
algorithm for decomposition into strongly connected components and work on the
resulting (acyclic!) graph of strongly connected components.

Consider now a second possibility, where we retain the acyclic property of the
graph yet relax the monotonicity precondition. If we run our algorithm on such
a graph, we might not get the maximal valid cut of the graph. Nevertheless, the
algorithm terminates and we obtain a set of vertices with the property that they are
valid and their immediate successors in the graph are all invalid. We thus obtain at
least partial evidence of the boundary between valid and invalid vertices. This can
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Figure 5: Efficiency of our algorithm with online computed chain cover (online), min-
imum chain cover (randO), and heuristics determining the order in which individual
chains are processed. The graph is in log scale.

help us identify the source of errors in application areas such as software-product
lines or in version control branches, which may not necessarily be monotone.

2.4 Experimental Evaluation

We implemented the cutoff algorithm and experimentally evaluated its behaviour on
different types of graphs. While evaluating the algorithm we focused on the number
of calls of the validation function as our aim is to minimise this number.

The first set of experiments was run on three different sets of randomly generated
ADAGs of size up to 5000 vertices. The efficiency of the algorithm strongly depends
on many factors like the relative number of pairwise unreachable vertices, the number
and lengths of chains, density of the graph, etc. We tested the variant of our algorithm
with online computed chain cover (online) and with precomputed minimum chain
cover (randO). The results are shown in boxplot in Fig. 5, the boxplot shows the
percentage of vertices which were validated. The online variant has higher third
quartile but lower median.

Moreover, we tried the five heuristics described earlier. The heuristics sort chains
from the minimum chain cover according to average cutting powers of individual
chains (aveCP), medians of cutting powers of chains (medCP), average degrees of
vertices of chains (aveD), and sum of the degrees of vertices of chains. The best
performance was achieved using the sumD heuristic which has a median of 13 percent.

Note that there are ADAGs for which almost all vertices have to be validated,
namely graphs where almost all vertices are pairwise unreachable. These types of
graphs were not included in our data sets for the experimental evaluation.
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Figure 6: A log scale graph that compares our algorithm with the MARCO algorithm.
The graph shows the percentage of subsets that were validated by the algorithms.
Our algorithm is denoted by MVC (Maximal Valid Cut).

Requirements Checking. We now evaluate the performance of the algorithm on
the graphs with the specific shape of a hypercube that represent all subsets of a set
of requirements. For n requirements the hypercube consists of 2n vertices and n2n−1

edges. We used requirements specified in propositional logic and employed the SAT
instances generator from [22] to generate experimental data. Experiments were run
on requirements sets containing up to 24 requirements and hundred instances for
each size. For these experiments we ran the online algorithm as it has shown to be
the best one for hypercubes. The minimum-chain based approach performs worse on
hypercubes as the minimal chain cover of a hypercube contains a large number of
short chains. However, the binary search approach performs better on longer chains.

To provide a better insight into the qualitative parameters of our algorithm we
compare its behaviour with two other tools solving the problem of finding the minimal
unsatisfiable subsets of a set of requirements, namely [5] and [25]. Authors of [5]
use the linear temporal logic (LTL) to specify requirements and report efficiency of
around 10 percent (i.e. 10 percent of all vertices of the hypercube were validated).
We were not able to repeat their experiments exactly as the authors do not provide
their experimental data. Moreover, LTL is hard-coded in their tool. However, in
our experiments with SAT instances the ratio of validated vertices decreases to 0.05
percent. The MARCO tool, presented in [25], is proposed to solve any constraint
sets. We compared the efficiency of our algorithm against MARCO on the same
sets of SAT instances. As can be seen in Fig. 6, our tool makes less queries to the
SAT-solver.
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3 Specialised Approach

In various areas of computer science, such as constraint processing, requirements
analysis, and model checking, the following problem often arises. We are given a set of
constraints and are asked whether the set of constraints is feasible, i.e. whether all the
constraints are satisfiable together. In requirements analysis, the constraints represent
the requirements on a given system, usually described as formulae of a suitable logic,
and the feasibility question is in fact the question whether all the requirements can
actually be implemented at once. In some model checking systems, such as those using
the counterexample-guided abstraction refinement (CEGAR) workflow, an infeasible
constraint system may arise as a result of the abstraction’s overapproximation. In
such cases where the set of constraints is infeasible, we might want to explore the
reasons of infeasability. There are basically two approaches that can be used here.
One is to try to extract a single piece of information explaining the infeasibility, such
as a minimal unsatisfiable subset (MUS) or dually a maximal satisfiable subset (MSS)
of the constraints. The other option is to try to enumerate all, or at least as many as
possible, of these sets. In this work, we focus on the second approach. Enumerating
multiple MUSes is sometimes desirable: in requirements analysis, this gives better
insight into the inconsistencies among requirements; in CEGAR-based model checking
more MUSes lead to a better refinement that can reduce the complexity of the whole
procedure [1].

The enumeration of all MUSes or MSSes is generally intractable due to the
potentially exponential number of results. It thus makes sense to study algorithms
that are able to provide at least some of those within a given time limit. An even
better option is to have an algorithm that produces MUSes or MSSes in an on-the-fly
manner as soon as they are discovered. It is the goal of this part of the thesis to
describe such an algorithm.

3.1 Related Work

The list of existing work that focuses on enumerating multiple MUSes is short as
most of the related work focused just on an extraction of a single MUS or even
a non-minimal unsatisfiable subset. For example all of [9, 27, 29] uses information
from a satisfiability solver to obtain an unsatisfiable subset but they do not guarantee
its minimality. Moreover, the majority of the algorithms which enumerate all MUSes
have been developed for specific constraint domains, mainly for Boolean satisfiability
problems.

3.1.1 Explicit Checking

The first algorithm for enumerating all MUSes we are aware of was developed by
Hou [20] in the field of diagnosis and is built on explicit enumeration of every subset
of the unsatisfiable constraint system. It checks every subset for satisfiability, starting
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from the complete constraint set and branching in a tree-like structure. The authors
presented some pruning rules to skip irrelevant branches and avoid unnecessary work.
Further improvements to this approach were made by Han and Lee [18] and also by
de la Banda et. al. [13].

3.1.2 CAMUS

A state-of-the-art algorithm for enumerating all MUSes called CAMUS by Liffiton and
Sakallah [26] is based on the relationship between MUSes and the so-called minimal
correction sets (MCSes), which was independently pointed out by [2, 8, 24]. This
relationship states that M ⊆ C is a MUS of C if and only if it is an irreducible hitting
set of MCS(C). CAMUS works in two phases, first it computes all MCSes of the
given constraint set, and then it finds all MUSes by computing all the irreducible
hitting sets of these MCSes.

Each of the two phases can be accomplished by using any algorithm for computing
MCS(C) and by using any algorithm for computing irreducible hitting sets, however
the authors provide their own approach to solve these two phases. In the first phase,
they repeatedly search for a satisfiable subsets of maximum size and blocking any
solutions found before, thus they eventually find all MSSes whose complements are
the MCSes. The second phase, computing MUSes from the MCSes, uses a recursive
branching algorithm the authors developed to efficiently compute irreducible hitting
sets, and it operates independently of the source of the MCSes.

A significant shortcoming of CAMUS is that the first phase can be intractable
as the number of MCSes may be exponential in the size of the instance and all
MCSes must be enumerated before any MUS can be produced. This makes CAMUS
unsuitable for many applications which require only a few MUSes but want to get
them quickly. To combat this intractability of the first phase, variations of the core
algorithm were proposed which can relax its completeness; however, the trade-off
between time and completeness is crude [26].

3.1.3 DAA

Another algorithm that exploits the relationship between MUSes and MCSes is the
Dualize and Advance (DAA) by Bailey and Stuckey [2]. DAA is an adaptation of
the algorithm of the same name by Gunopulos, et al., for discovering collections of
maximal frequent patterns in data mining [17]. Pseudocode for DAA is shown as
Algorithm 2. It iteratively computes MCSes by “growing” MSSes from seeds (initially
the empty set) and taking their complements. Subsequently it computes irreducible
hitting sets of the MCSes found so far and test them for satisfiability. Unsatisfiable
hitting sets are guaranteed to be MUSes and are immediately outputed, while any
satisfiable hitting set can be used as a seed for the next iteration. The algorithm
termines once there is no more satisfiable irreducible hitting set.
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input : a set of constraints C
output : all MSSes and MUSes of C

1 MCSes,MUSes← ∅;
2 seed← ∅;
3 repeat
4 MSS ← Grow(seed, C);
5 yield MSS;
6 MCSes←MCSes ∪ {C \MSS};
7 seed← ∅;
8 for candidate ∈ (HittingSets(MCSes) \MUSes) do
9 if candidate is satisfiable then

10 seed← candidate ; // if sat., candidate is new seed

11 break;

12 else
13 yield candidate ; // otherwise, candidate is MUS

14 MUSes←MUSes ∪ {candidate};
15 until seed = ∅;

Algorithm 2: DAA algorithm

Contratry to CAMUS, DAA outputs both MUSes and MCSes (MSSes) throughout
its execution, i.e., it can procude some MUSes ”early”. However, DAA suffers from
another intractability; the number of irreducible hitting sets of a set of MCSes can
be exponentially large which means that DAA can run out of memory in an early
phase of its execution.

3.1.4 MARCO

The desire to enumerate at least some MUSes even in the generally intractable
cases led to the development of two independent but nearly identical algorithms:
MARCO [23] and eMUS [28]. Both algorithms were later joined and presented in [25]
under the name of MARCO. MARCO is able to produce individual MUSes during
its execution and it does it in a relatively steady rate. To obtain each single MUS,
MARCO first finds a subset U whose satisfiability is not known yet (i.e. an unexplored
subset), checks it for satisfiability and if it is unsatisfiable, it is “shrunk” to a MUS.
In the case that U is satisfiable, it is in a dual manner “grown” into a MSS. MARCO
is thus suitable for both MUS and MSS online enumeration. Pseudocode for the
basic variant of MARCO is shown as Algorithm 3. The algorithm can be supplied
with any appropriate shrink and grow procedures; this makes MARCO applicable
to any constraint satisfaction domain in general. There is also a variant of MARCO
optimized for MUS enumeration; we describe this variant later in section 3.5.
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input : a set of constraints C
output : all MSSes and MUSes of C

1 while there is an unexplored subset do
2 N ←some unexplored subset;
3 if N is satisfiable then
4 MSS ← Grow(N);
5 yield N ;
6 block all subsets of MSS

7 else
8 MUS ← Shrink(N);
9 yield MUS;

10 block all supersets of MUS

Algorithm 3: The basic variant of the MARCO algorithm

CAMUS and MARCO were experimentally compared in [25] and the former has
shown to be faster in enumerating all MUSes in the tractable cases. However, in the
intractable cases, MARCO was able to provide at least some MUSes while CAMUS
often provided none. DAA was also evaluated in these experiments; it has shown to
be substantially slower than CAMUS in the case of complete MUSes enumeration
and also slower than MARCO in the partial enumeration.

3.1.5 Our Contribution

In this part of the thesis, we present our own algorithm for online enumeration of
MUSes and MSSes in general constraint satisfaction domains that is able to outperform
the current state-of-the-art MARCO algorithm. The core of the algorithm is based on
a novel binary-search-based approach. Similarly to MARCO, the algorithm is able to
directly employ arbitrary shrinking and growing procedures. Moreover, our algorithm
contains certain parameters that govern in which cases the shrinking and growing
procedures are to be used. We evaluate our algorithm on a variety of benchmarks
that show that the algorithm indeed outperforms MARCO.

Outline of this part. In Section 3.2 we state the problem we are solving in a formal
way, defining all the necessary notions. In Section 3.3 we describe the algorithm
in an incremental way, starting with the basic schema of MUS/MSS computation
and gradually explaining the main ideas of our algorithm. Section 3.5 provides an
experimental evaluation on a variety of benchmarks, comparing our algorithm against
MARCO.
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3.2 Preliminaries

Our goal is to deal with arbitrary constraint satisfaction system. The input is given
as a finite set of constraints C = {c1, c2, . . . , cn} with the property that each subset
of C is either satisfiable or unsatisfiable. The definition of satisfiability may vary in
different constraint domains, we only assume that if X ⊆ C is satisfiable, then all
subsets of X are also satisfiable. The subsets of interest are defined in the following.

Definition 6 (MSS, MCS, MUS). Let C be a finite set of constraints and let N ⊆ C.
N is a maximal satisfiable subset (MSS) of C if N is satisfiable and ∀c ∈ C \N :
N ∪{c} is unsatisfiable. N is a minimal correction set (MCS) of C if C \N is a MSS
of C. N is a minimal unsatisfiable subset (MUS) of C if N is unsatisfiable and
∀c ∈ N : N \ {c} is satisfiable.

Note that the maximality concept used here is set maximality, not maximum
cardinality as in the MaxSAT problem. This means that there can be multiple MSSes
with different cardinality. We use MUS(C), MCS(C), and MSS(C) to denote the set
of all MUSes, MCSes, and MSSes of C, respectively. The formulation of our problem
is the following: Given a finite set of constraints C, enumerate (all or at least as many
as possible) members of MUS(C) and MSS(C). Note that due to the complementarity
of MSS and MCS, this also enumerates all MCS(C).

To describe the ideas of our algorithm and illustrate its usage, we shall use Boolean
satisfiability constraints in the following. In the examples, each of the constraints ci
is going to be a clause (a disjunction of literals). The whole set of constraints can be
then seen as a Boolean formula in conjunctive normal form.

Example 1. We illustrate the concepts on a small example. Assume that we are
given a set C of four Boolean satisfiability constraints c1 = a, c2 = ¬a, c3 = b, and
c4 = ¬a ∨ ¬b. Clearly, the whole set is unsatisfiable as the first two constraints are
negations of each other. There are two MUSes: {c1, c2}, {c1, c3, c4}, three MSSes:
{c1, c4}, {c1, c3}, {c2, c3, c4} and three MCSes: {c2, c3}, {c2, c4}, {c1}.

The powerset of C, i.e. the set of all its subsets, forms a lattice ordered via subset
inclusion and denoted by P(C). In our algorithm we are going to deal with the
so-called chains of the powerset and deal with local MUSes and MSSes, defined as
follows.

Definition 7. Let C be a finite set of constraints. The sequence K = 〈N1, . . . Ni〉
is a chain in P(C) if ∀j : Nj ∈ P(C) and N1 ⊂ N2 ⊂ · · · ⊂ Ni. We say that Nk is
a local MUS of K if Nk is unsatisfiable and ∀j < k : Nj is satisfiable. Similarly, we
say that Nk is a local MSS of K if Nk is satisfiable and ∀j > k : Nj is unsatisfiable.

Note that there is no local MUS if all subsets on the chain are satisfiable, and
there is no local MSS if all subsets on the chain are unsatisfiable.

21



3 SPECIALISED APPROACH 3.3 Algorithm

3.3 Algorithm

In this section, we gradually present an online MUS/MSS enumeration algorithm.
Consider first a naive enumeration algorithm that would explicitly check each subset of
C for satisfiability, split the subsets of C into satisfiable and unsatisfiable subsets, and
choose the maximal and minimal subsets of the two groups, respectively. The main
disadvantage of this approach is the large number of satisifiability checks. Checking
a given subset of C for satisfiability is usually an expensive task and the naive solution
makes an exponentially many of these checks which makes it unusable.

Note that the problem of MUS enumeration contains the solution to the problem of
satisfiability of all subsets of C as each unsatisfiable subset of C is a superset of some
MUS. This means that every algorithm that solves the problem of MUS enumeration
has to make several satisfiability checks during its execution. These checks are usually
done employing an external satisfiability solver. Clearly, the number of such external
calls corresponds with the efficiency of the algorithm. It is therefore our goal to
minimise the number of calls to the solver.

3.3.1 Basic Schema

Recall that the elements of P(C) are partially ordered via subset inclusion and each
element is either satisfiable or unsatisfiable. The key assumption on the constraint
domain, as declared above, is that the partial ordering of subsets is preserved by the
satisfiability of these subsets. If we thus find an unsatisfiable subset Nu of C then all
supersets of Nu are also unsatisfiable; dually, if we find a satisfiable subset Ns of C
then all subsets of Ns are also satisfiable. Moreover, none of the supersets of Nu can
be a MUS and none of the subsets of Ns can be a MSS. In the following text we refer
to this property as to the monotonicity of P(C), and to the elements of P(C) as to
nodes.

Our basic algorithm is described in pseudocode as Algorithm 4. The algorithm
consists of two phases. In the first phase it determines the satisfiability of all nodes
and extracts from P(C) a set of MSS candidates MSScan and a set of MUS candidates
MUScan ensuring that MSS(C) ⊆MSScan and MUS(C) ⊆MUScan. In the second
phase it reduces MSScan to MSS(C) and MUScan to MUS(C).

During the execution of the first phase the algorithm maintains a classification of
nodes; each node can be either unexplored or explored and some of the explored nodes
can belong to MSScan or to MUScan. Explored nodes are those, whose satisfiability
the algorithm already knows and unexplored are the others. The algorithm stores
the unexplored nodes in the set Unex which initially contains all nodes from P(C).
The first phase is iterative, the algorithm in each iteration selects some unexplored
nodes Nodes, determines their satisfiability using an external satisfiability solver, and
exploits the monotonicity of P(C) to deduce satisfiability of some other unexplored
nodes. At the end of each iteration the algorithm updates the set Unex by removing
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input : a set of constraints C
output : all MUSes and MSSes of C

1 Unex← P(C);
2 MSScan,MUScan ← ∅;
3 while Unex is not empty do
4 Nodes← some unexplored nodes;
5 for each N ∈ Nodes do
6 if N is satisfiable then
7 MSScan ←MSScan ∪ {N};
8 Unex← Unex \ Sub(N) ; // alternatively Unex ∩ Sub(N)

9 else
10 MUScan ←MUScan ∪ {N};
11 Unex← Unex \ Sup(N) ; // alternatively Unex ∩ Sup(N)

12 extract MSSes from MSScan;
13 extract MUSes from MUScan;

Algorithm 4: The basic schema of our algorithm

from it the nodes whose satisfiability was decided in this iteration. Based on its
satisfiability, every node from the set Nodes is added either into MSScan or MUScan.

In the pseudocode, we use Sup(N) to denote the set of all unexplored supersets
of N including N and Sub(N) to denote the the set of all unexplored subsets of N
including N . The notation Sup(N), Sub(N) is used to denote the complements of
Sup(N) and Sub(N).

Clearly, the schema converges as the set of unexplored nodes decreases its size
in every iteration. The schema also ensures that after the last iteration it holds
that MUS(C) ⊆MUScan and MSS(C) ⊆MSScan. This is directly implied by the
monotonicity of P(C) as no node whose satisfiability was deduced can be a MSS and
dually no node whose unsatisfiability was deduced can be a MUS.

In the second phase our algorithm extracts all MUSes and MSSes from MUScan

and MSScan. Both these extractions can be done by any algorithm that extracts the
highest and the lowest elements from any partially ordered set. A trivial algorithm
can just test each pair of elements for the subset inclusion and remove the undesirable
elements, which can be done in time polynomial to the number of constraints in C
and the size of the sets of candidates. We assume that this part of our algorithm is
not as expensive as the rest of it, especially when each check for a satisfiability of a
set of constraints may require solving an NP-hard problem. We therefore omit the
discussion of the second phase in the following and focus solely on the way the set
Nodes is chosen in each iteration and the way the unexplored nodes are managed.
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3 SPECIALISED APPROACH 3.3 Algorithm

3.3.2 Symbolic Representation of Nodes

Our algorithm highly depends on an efficient management of nodes. In particular
it needs to reclassify some nodes from unexplored to explored and build chains
from the unexplored nodes. Probably the simplest way of managing nodes would
be their explicit enumeration; however, there are exponentially many subsets of
C = {c1, · · · , cn} and their explicit enumeration is thus intractable for large instances.
We thus use a symbolic representation of nodes instead.

We use the fact that the powerset lattice P(C) can be seen and manipulated as
a Boolean algebra. We thus encode the set of constraints C = {c1, . . . , cn} using
a set of Boolean variables X = {x1, . . . , xn}. Each subset of C (i.e. each node in our
algorithm) is then represented by a valuation of the variables of X. This allows us to
represent sets of nodes using Boolean formulae over X. We use f(Nodes) to denote
the Boolean formula representing the set Nodes in the following.

As an example, consider a set of constraints C = {c1, c2, c3} and let Nodes =
{{c1}, {c1, c2}, {c1, c3}} be a set of three nodes. Using the Boolean variables repre-
sentation of C, we can encode the set Nodes using the Boolean formula f(Nodes) =
x1 ∧ (¬x2 ∨ ¬x3).

The advantage of this representation is that we can efficiently perform set opera-
tions over sets of nodes. The union of two sets of nodes NodesA,NodesB is carried
out as a disjunction and their intersection as a conjunction. To get an arbitrary node
from a given set, say Unex, we use an external SAT solver (more details in the next
subsection). Note that this means that our algorithm employs two external solvers:
One is the constraint satisfaction solver that decides satisfiability of the nodes, one is
the SAT solver that works with our Boolean description of the constraint set and is
employed to produce unexplored nodes. To clearly distinguish between these two we
shall in the following use the phrases “constraint solver” and “SAT solver” rigorously.

3.3.3 Unexplored Nodes Selection

Let us henceforth denote one specific call to the constraint solver as a check. We
now clarify which nodes our algorithm chooses in each of its iterations to be checked
and which nodes it adds into the sets of candidates on MUSes and MSSes. We also
extend the basic schema which was presented as Algorithm 4. We want to minimise
the ratio of performed checks to the number of nodes in P(C). Every algorithm for
solving the problem of MUSes enumeration has to perform at least as many checks as
there are MUSes, so this ratio can never be zero. Also, it is impossible to achieve the
ratio with a minimal value without knowing which nodes are satisfiable and which
are not and this information is not a part of the input of our algorithm. Instead of
minimising this overall ratio, our algorithm tends to minimise this ratio locally in
each of its iterations.

In order to select the nodes which are checked in one specific iteration, our
algorithm at first constructs an unexplored chain. An unexplored chain is a chain
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K = 〈N1, . . . , Nk〉 that contains only unexplored nodes and that cannot be extended
by adding another unexplored nodes to its ends, i.e. N1 has no unexplored subset and
Nk has no unexplored superset. The monotonicity of P(C) implies that either (i) all
nodes of K are satisfiable, (ii) all nodes of K are unsatisfiable, or (iii) K has a local
MSS and a local MUS, i.e. there is some j such that ∀0 ≤ i ≤ j : Ni is satisfiable
and ∀k ≥ l > j : Nl is unsatisfiable. This allows us to employ binary search to find
such j performing only logarithmically many checks in the length of the chain. Let
us analyse the three possible cases:

(i) all nodes of K are satisfiable, hence our algorithm deduces that all proper
subsets of Nk are satisfiable and none of them can be a MSS, and it marks Nk

as a MSS candidate;

(ii) all nodes of K are unsatisfiable, hence our algorithm deduces that all proper
supersets of N1 are unsatisfiable and none of them can be a MUS, and it marks
N1 as a MUS candidate; or

(iii) Nj is the local MSS of K and Nj+1 is its local MUS, hence our algorithm
deduces that all proper subsets of Nj are satisfiable, all proper supersets of Nj+1

are unsatisfiable, and it marks Nj as a MSS candidate and Nj+1 as a MUS
candidate.

Algorithm 5 shows the extended schema of our algorithm which implements the
above method for choosing nodes to be checked. At the beginning of each iteration
the algorithm finds an unexplored chain K which is subsequently processed by the
processChain method. This method finds the local MUS and local MSS of K
(possibly only one of those) using binary search and returns them.

To construct an unexplored chain, our algorithm first finds a pair of unexplored
nodes (N1, Nk) such that N1 ⊆ Nk and then builds a chain 〈N1, N2, . . . , Nk−1, Nk〉
by connecting these two nodes. The intermediate nodes N2, . . . , Nk−1 are obtained
by adding one by one the constraints from Nk \N1 to the node N1. We refer to each
such pair of unexplored nodes (N1, Nk) that are the end nodes of some unexplored
chain as to an unexplored couple.

Lemma 1. (Unexplored chain construction) Let (N1, Nk) be an unexplored couple and
〈N1, N2, . . . , Nk−1, Nk〉 be a chain that emerges from this couple using the construction
described above. Then Ni is an unexplored node for each 1 ≤ i ≤ k.

Proof. Assume that there is 1 ≤ i ≤ k such that Ni is explored, i.e. there exists node
N such that either N ∈MUScan ∧Ni ⊇ N or N ∈MSScan ∧Ni ⊆ N . As N1 ⊆ Ni

and Nk ⊇ Ni, then either N1 ⊆ N or Nk ⊇ N which contradicts the assumption that
(N1, Nk) is an unexplored couple.

In order to find an unexplored couple our algorithm asks for a member of Unex by
employing the SAT solver (by asking for a model of the formula f(Unex)). Besides
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input : a set of constraints C
output : all MUSes and MSSes of C

1 Unex← P(C);
2 MSScan,MUScan ← ∅;
3 while Unex is not empty do
4 K ← some unexplored chain;
5 Nodes← ProcessChain(K);
6 for each N ∈ Nodes do
7 if N is satisfiable then
8 MSScan ←MSScan ∪ {N};
9 Unex← Unex \ Sub(N) ; // alternatively Unex ∩ Sub(N)

10 else
11 MUScan ←MUScan ∪ {N};
12 Unex← Unex \ Sup(N) ; // alternatively Unex ∩ Sup(N)

13 extract MSSes from MSScan;
14 extract MUSes from MUScan;

Algorithm 5: The extended schema of our algorithm

the capability of finding an arbitrary member of Unex, we require the following
capability: For a given member Np ∈ Unex, the SAT solver should be able to produce
a minimal Nq ∈ Unex such that Nq ⊆ Np, where minimal means that there is no
other Nr ∈ Unex with Nr ⊂ Nq. Similarly, we require the SAT solver to be able to
produce maximal such Nq. One of the SAT solvers that satisfies our requirements
is miniSAT [15] that allows the user to fix values of some variables and to select a
default polarity of variables at decision points during solving. To obtain a minimal
Nq which is a subset of Np, we set the default polarity of variables to False and fix
the truth assignment to the variables that have been assigned False in Np. Similarly
for the maximal case.

We now describe two approaches of obtaining unexplored couples, assuming that
we employ a SAT solver satisfying the above requirements.

Basic approach The Basic approach consists of two calls to the SAT solver.
The first call asks the SAT solver for an arbitrary minimal member of Unex. If
nothing is returned then there are no more unexplored nodes. Otherwise we obtain
a node Nk which is minimal in Unex. We then ask the SAT solver for a maximal
node Nl ∈ Unex such that Nl is a superset of Nk. The pair (Nk, Nl) is then the new
unexplored couple.

Pivot based approach Supposing that the SAT solver works deterministically,
a series of calls for maximal (minimal) nodes of Unex may return nodes from some
local part of the search space that may lead to construction of unnecessarily short
chains. In order to alleviate this disadvantage of the Basic approach we propose
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1 Function Shrink(C,Nu)
input : set of constraints C
input : unsatisfiable node Nu

output : an MUS of C

2 for c ∈ Nu do
3 if Nu \ {c} is unsatisfiable

then
4 Nu ← Nu \ {c}
5 return Nu

Algorithm 6: A simple implementa-
tion of the shrink procedure

1 Function Grow(C,Ns)
input : set of constraints C
input : satisfiable node Ns

output : an MSS of C

2 for c ∈ C \Ns do
3 if Ns ∪ {c} is satisfiable

then
4 Ns ← Ns ∪ {c}
5 return Ns

Algorithm 7: A simple implemen-
tation of the grow procedure

to first choose a pivot Np, an unexplored node which may be neither maximal nor
minimal and which should be chosen somehow randomly. As the next step this
approach asks the SAT solver for a minimal node Nk such that Nk ⊆ Np and for a
maximal node Nl such that Np ⊆ Nl. The new unexplored couple is then (Nk, Nl).
The randomness in choosing the node Np is expected to ensure that we hit a part of
Unex with large chains.

To get the pivot, we create a random partial valuation by randomly fixing values
of some variables and ask the SAT solver for a node that complies with this partial
valuation. If the solver returns a node, we use it as the pivot. Clearly, giving the SAT
solver a partial valuation may make it fail to find a node despite the fact that there
still are some. Therefore, if the solver return nothing, we try to get the unexplored
couple using the Basic approach.

3.3.4 Online MUS/MSS Enumeration

The algorithm as presented until now is only able to provide MUSes and MSSes in the
second phase, after it finished exploring all the nodes. We now describe the last piece
of our final algorithm, namely the way of producing MUSes and MSSes during the
execution of the first phase. To do so, we need to employ two procedures: The shrink
procedure is an arbitrary method that can turn an unsatisfiable node Nu into a MUS.
Dually, the grow procedure is a method that can turn a satisfiable node into MSS Ns.
A simple variant of these two procedures is shown in Algorithms 6 and 7. The simple
shrink (grow) method iteratively attempts to remove (add) constraints from Nu (Ns),
checking each new set for satisfiability and keeping any changes that leave the set
unsatisfiable (satisfiable). These simple variants serve just as illustrations, there
are known efficient implementations of both shrink and grow for specific constraint
domains; as an example see MUSer2 [7] which implements the shrink method for
Boolean constraints systems.
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1 Function ProcessChain(C,K = 〈N1, . . . , Nk〉)
input : unexplored chain K = 〈N1, · · · , Nk〉
output : set of (unexplored) nodes

2 find local MSS Ns and MUS Nu of K using binary search;
3 if u < S(|K|) then
4 Nu ← Shrink(Nu);
5 yieldMUS(Nu)

6 if s > |K| −G(|K|) then
7 Ns ← Grow(Ns);
8 yieldMSS(Ns)

9 return {Nu, Ns} ; // Note that Nu or Ns may not exist

Algorithm 8: Extended version of the processChain method

Recall that as a result of a processing a single chain K, our algorithm finds either
a local MUS Nu, or a local MSS Ns, or both of them. To get a MUS (MSS) we
propose to employ the shrink (grow) method on this local MUS (MSS). However,
performing shrink (grow) on each local MUS (MSS) can be quite expensive and can
significantly slow down our algorithm. The amount of time needed for performing
one specific shrink (grow) of Nu (Ns) correlates with the position of Nu (Ns) on K;
the closer Nu (Ns) is to the start (end) of K the bigger amount of time needed for
the shrink (grow) can be expected.

Therefore, we propose to shrink (grow) only some of the local MUSes (MSSes)
based on their position on K. Let |K| be the length of K, u the index of Nu in K,
and S : N→ N be an arbitrary user defined function. Our algorithm shrinks Nu into
a MUS if and only if u < S(|K|). As an example, consider S(x) = x

2 ; in such case Nu

is shrunk only if it is contained in the first half of K. Similarly, let s be the index
of local MSS Ns of chain K and G : N → N. The local MSS Ns is grown only if
s > |K|−G(|K|), which for example for G(x) = x

2 means that Ns is grown only if it is
contained in the second half of K. The complexity of performing shrinks (and grows)
also depends on the type of constrained system that is being processed, therefore
the concrete choice of S and G is left as a parameter of our algorithm. Algorithm 8
shows an extended version of the method processChain which is able to produces
MUSes and MSSes during its execution based on the above mechanism.

3.4 Example

The following example explains the execution of our algorithm on a simple set of
constraints C = {c1 = a, c2 = ¬a, c3 = b, c4 = ¬a ∨ ¬b} and with the S,G functions
set to S(x) = x, G(x) = x. The example is illustrated in Fig. 7.
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I. iteration
– Unex. couple 〈0000, 1111〉
– Unex. chain 〈0000, 1000, 1100, 1110, 1111〉
– A local MSS 1000 and local MUS 1100
are found
– 1000 is grown to the MSS 1010
– 1100 is shrunk to the MUS 1100
– MSScan = ∅ is updated to {1010}
– MUScan = ∅ is updated to {1100}
– f(Unex) is set to (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∅

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

II. iteration
– Unexplored couple 〈0001, 1011〉
– Unexplored chain 〈0001, 1001, 1011〉
– Local MSS 1001, local MUS 1011
– 1001 is grown to the MSS 1001
– 1011 is shrunk to the MUS 1011
– MSScan ←MSScan ∪ {1001}
– MUScan ←MUScan ∪ {1011}
– f(Unex) ≡ (x2 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x1 ∨
¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∅

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

III. iteration
– Unexplored couple 〈0011, 0111〉
– Unexplored chain 〈0011, 0111〉
– Local MSS 0111, local MUS undefined
– 0111 is grown to the MSS 0111
– MSScan ←MSScan ∪ {0111}
– f(Unex) ≡ (x2∨x4)∧(x2∨x3)∧(x1)∧(¬x1∨
¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

∅

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 7: An example execution of our algorithm

Initially MSScan = ∅, MUScan = ∅ and all nodes are unexplored, i.e. f(Unex) =
True. Figure 7 shows the values of control variables in each iteration and also
illustrates the current states of P(C). In order to save space we encode nodes as
bitvectors, for example the node {c1, c3, c4} is written as 1011.

After the last iteration of the first phase of our algorithm there is no model
of f(Unex) (this means that Unex is empty), MSScan = {1010, 1001, 0111} and
MUScan = {1100, 1011}. Because functions S and G were stated in this example as
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S(x) = x,G(x) = x, each candidate on MUS or MSS has been already shrunk or grown
to MUS or MSS, respectively, therefore MSS(C) = MSScan, MUS(C) = MUScan

and the second phase of our algorithm can be omitted.

Note that in the first iteration the node 1010 was found to be a MSS, which means
(due to the definition of MSS) that all its supersets are unsatisfiable. One would use
this fact to mark all supersets of 1010 as explored, however our algorithm does not
do this because some of these subsets can be MUSes (1011 in this example). If we
were interested only in MSS enumeration we could mark all supersets of each MSS as
explored; dually in the case of only MUS enumeration.

3.5 Experimental Evaluation

We now demonstrate the performance of several variants of our algorithm on a variety
of Boolean CNF benchmarks. In particular, we implemented in C++ both the
Basic and the Pivot Based approach for constructing chains and we evaluated both
these approaches using several variants of the functions S and G1. We also give a
comparison with the MARCO algorithm [25].

The MARCO algorithm was presented by its authors in two variants, the basic
variant and the optimised variant which is tailored for MUS enumeration. Both
variants are iterative. The basic variant finds in each iteration an unexplored node,
checks its satisfiability and based on the result the node is either shrunk into a MUS or
grown into a MSS. Subsequently, MARCO uses the monotonicity of P(C) to deduce
satisfiability of other nodes in the same way our algorithm does. The optimised
variant differs from the basic variant in the selection of the unexplored node; it always
selects a maximal unexplored node. If the node is unsatisfiable it is shrunk into a
MUS, otherwise it is guaranteed to be a MSS. We used the optimised variant in our
experiments. The pseudocode of the optimised variant is shown as Algorithm 9

Note that both compared algorithms (MARCO and our algorithm) employ several
external tools during their execution, namely a SAT solver for finding the unexplored
nodes, a constraint solver to decide the satisfiability of constraint sets, and the two
procedures shrink and grow mentioned above. The list of external tools coincides
for both algorithms. Therefore, we reimplemented the MARCO algorithm in C++
to ensure that the two algorithms use the same implementations of the shrink and
grow methods and the same solvers (the original MARCO is implemented in Python
and has shown to be slightly slower than our reimplementation). As both the SAT
solver and constraint solver we used the miniSAT tool [15] and we used the simple
implementation of the shrink and grow methods as described earlier. Note that
there are some efficient implementations of the shrink and grow methods for Boolean
constraints, however, in general there might be no effective implementation these
methods. That is why we used the simple implementations.

1The implementation is available at http://www.fi.muni.cz/~xbendik/mvc/
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input : a set of constraints C
output : all MSSes and MUSes of C

1 while Unex is not empty do
2 N ←some maximal unexplored node;
3 if N is satisfiable then
4 yield N ;
5 Unex← Unex \ Sub(N)

6 else
7 MUS ← Shrink(N);
8 yield MUS;
9 Unex← Unex \ Sup(N)

Algorithm 9: An optimized MARCO using maximal unexplored nodes

As an experimental data we used a collection of 294 unsatisfiable Boolean CNF
Benchmarks that were taken from the MUS track of the 2011 SAT competition2. The
benchmarks range in their size from 70 to 16 million constraints and from 26 to 4.4
million variables and were drawn from a variety of domains and applications. All
experiments were run with a time limit of 60 seconds.

Due to the potentially exponentially many MUSes and/or MSSes in each instance,
the complete MUS and MSS enumeration is generally intractable. Moreover, even
outputting a single MUS/MSS can be intractable for larger instances as it naturally
includes solving the satisfiability problem, which is for Boolean instances NP-complete.
Table 1 shows in how many instances the variants of our algorithm were able to
output at least one MUS or MSS. MARCO was able to output at least one MUS and
one MSS in 51 instances whereas several variants of our algorithm were able to output
some MSSes in about 150 instances and some MUSes in up to 60 instances. Some of
the 296 instances are just intractable for the solver which is not able to perform even
a single consistency check within the used time limit. The other significant factor
that affected the results is the complexity of the shrink method. MARCO in every
iteration either ”hits” a satisfiable node and directly outputs it as an MSS or waits
till the shrink method shrinks the unsatisfiable node into a MUS. Therefore, each call
of the shrink method can suspend the execution for a nontrivial time.

One can see that our algorithm also suffers from the possibly very expensive shrink
calls and performs very poorly when the S function is set to S(x) = x. On the other
hand, the variants that perform only the “easier” shrinks by setting S to be S(x) < x
achieved better results. The grow method is generally cheaper to perform than the
shrink method as checking whether an addition of a constraint to a satisfiable set
of constraints makes this set unsatisfiable is usually cheaper than the dual task. No

2http://www.cril.univ-artois.fr/SAT11/
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Table 1: The number of instances in which the algorithms output at least one MSS
(the first number in each cell) or MUS (the second number).

G(x)

S(x)
x 0.8x 0.6x 0.4x 0.2x 0x

B
as

ic
ap

p
ro

ac
h

x 56 | 56 151 | 40 150 | 33 144 | 12 149 | 16 151 | 0

0.8x 56 | 60 149 | 44 151 | 37 144 | 16 150 | 20 152 | 0

0.6x 56 | 60 149 | 44 144 | 35 144 | 18 151 | 22 151 | 0

0.4x 54 | 60 149 | 45 140 | 36 143 | 32 150 | 30 151 | 0

0.2x 53 | 60 148 | 45 138 | 43 138 | 40 144 | 35 145 | 0

0x 0 | 60 0 | 47 0 | 46 0 | 44 0 | 37 0 | 0

P
iv

ot
b
as

ed
ap

p
ro

ac
h x 56 | 56 151 | 40 151 | 32 151 | 14 151 | 12 144 | 0

0.8x 56 | 60 151 | 43 151 | 36 150 | 18 149 | 16 145 | 0

0.6x 56 | 60 151 | 43 151 | 35 151 | 18 152 | 16 144 | 0

0.4x 54 | 60 150 | 43 147 | 35 151 | 14 150 | 13 144 | 0

0.2x 51 | 60 146 | 45 145 | 31 148 | 12 148 | 12 143 | 0

0 0 | 61 0 | 33 0 | 22 0 | 11 0 | 9 0 | 0

MARCO 51 | 51

significant difference between the Basic and the Pivot based approach was captured
in this comparison.

Another comparison can be found in Table 2 that shows the 5% trimmed sums
of outputted MSSes and MUSes (summed over all of the 294 instances), i.e. 5% of
the instances with the least outputted MSSes (MSSes) and 5% of the instances with
the most outputted MSSes (MSSes) were discarded. All variants of our algorithm
were noticeably better in MSS enumeration than MARCO. In the case of MUS
enumeration MARCO outperformed these variants of our algorithm that shrink only
some of the local MUSes, i.e. variants where S(x) = 0.6x and S(x) = 0.4x. However,
the variants with S(x) = x and S(x) = 0.8x performed better, especially the variant
with G(x) = 0.2x, S(x) = x outputted about three times more MUSes than MARCO.
In this comparison, there is already some notable difference between the Basic and
the Pivot based approach. The Pivot based approach seems to be better for MUS
enumeration whereas the Basic approach is more suitable for the MSS enumeration.
As the Pivot based approach is randomized its performance may vary if it is run
repeatedly on the same instances; result of a single run may be misleading. Therefore,
we ran all tests of the Pivot based approach repeatedly and the tables show the
average values.

Besides the number of outputted MUSes/MSSes within a given time limit, we
also compared our algorithm with MARCO in the case of complete MUS/MSS
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Table 2: The 5% trimmed sum of outputted MSSes and MUSes (summed over all
294 instances). The first number in each cell is the number of outputted MSSes, the
second is the number of outputted MUSes.

G(x)

S(x)
x 0.8x 0.6x 0.4x 0.2x 0x

B
as

ic
ap

p
ro

ac
h

x 1744 | 339 9798 | 212 9936 | 87 6942 | 0 9726 | 2 10216 | 0

0.8x 1741 | 344 9908 | 217 9756 | 94 6787 | 2 9684 | 6 9378 | 0

0.6x 1740 | 348 9859 | 224 6969 | 40 6999 | 4 9696 | 8 9436 | 0

0.4x 1877 | 436 10013 | 252 7218 | 67 7694 | 50 10420 | 39 10114 | 0

0.2x 1757 | 635 10161 | 527 7925 | 262 8196 | 101 10853 | 66 10111 | 0

0 0 | 632 0 | 554 0 | 356 0 | 107 0 | 68 0 | 0

P
iv

ot
b
as

ed
ap

p
ro

ac
h x 2535 | 349 8330 | 208 7775 | 71 6705 | 0 6725 | 0 5089 | 0

0.8x 2660 | 492 8336 | 255 7680 | 85 6961 | 4 6889 | 2 5061 | 0

0.6x 2771 | 567 8481 | 290 7779 | 92 7066 | 4 6830 | 2 5067 | 0

0.4x 2814 | 597 8418 | 388 7975 | 145 6814 | 0 6950 | 0 5302 | 0

0.2x 2763 | 837 8633 | 697 7220 | 41 6563 | 0 6409 | 0 4910 | 0

0 0 | 839 0 | 404 0 | 10 0 | 0 0 | 0 0 | 0

MARCO 749 | 215

enumeration. We used the generator of Boolean CNF formulae from [22] to generate
tractable instances with a size of 30 to 40 constraints, 15 instances per each size. The
graphs in Fig. 8 show the time comparison of MARCO and our algorithm using the
Pivot based approach (PBA) with S and G set to S(x) = 0.2x and G(x) = 0.8x. All
of the instances were tractable which means that both phases of our algorithm were
executed. Some of the MUSes and MSSes were outputed in the online manner, the
rest of them were extracted from the candidate sets in the second phase.

Summarised, our algorithm outperformed MARCO both in the online MUS/MSS
enumeration and in the complete MUS/MSS enumeration. Also, the results show
that the choice of the functions S and G greatly affect the efficiency of our algorithm.
The faster the S (G) grows, the more effort is made to output MUSes (MSSes). Also,
it may be worth to always perform at least the “easy” grows (shrinks) even if we
want to output only MUSes (MSSes), because each shrink (grow) also helps to reduce
the space of unexplored nodes.
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Figure 8: The time comparison of the MARCO and our algorithm. The chart on the
left side shows the running times and it is logarithmically scaled. The other chart
shows the difference in the running times between the two algorithms.
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4 CONCLUSION

4 Conclusion

In this thesis, we have focused on finding boundary elements in partially ordered sets,
seen as directed acyclic graphs. We have discussed the mapping of this problem to
various activities in software engineering; we have shown applications in safety and
requirements analysis. We have presented a new algorithm to solve this problem,
including several variants and heuristics. The results of the experiments that we have
made show that the efficiency of the heuristics depends on the structure of the input
graph.

We have also focused on finding boundary elements in hypercube graphs which
has an application in the area of Constraint Satisfaction Problems (CSPs). Namely,
we have aimed on the problem of online enumeration of Minimal Unsatisfiable Subsets
(MUSes) and Maximal Satisfiable Subsets (MSSes) of unsatisfiable set of constraints.
We have given a detailed list of existing approaches for solving the problem of
MUS/MSS enumeration and pinpointed their strengths and weaknesses. Subsequently
we have gradually presented our novel algorithm for online enumeration of MUSes
and MSSes. The core idea of the algorithm is based on a novel binary-search-based
approach which allows the algorithm to efficiently explore the space of all subsets of
a given set of constraints.

We have made an experimental comparison with MARCO, the state-of-the-art
algorithm for online MUS and MSS enumeration. The results show that our algorithm
is better both in online enumeration and also in the case of complete enumeration.
Our algorithm can be built on a top of any consistency solver and can employ any
implementation of the shrink and grow methods, therefore any future advance in
these areas can be reflected in the performance of our algorithm.

4.1 Future work

As a future work, we consider several improvements of both the algorithm for
finding boundary elements in general graphs and the algorithm for online MUS/MSS
enumeration. Especially a future developlment of the latter algorithm is well motivated
as there is a growing interest in the area of CSPs nowadays. One possible direction of
future research is to aim at parallel processing of the configuration space in order to
improve the performance of our approach; there are usually several disjoint unexplored
chains that can be processed concurrently.

We also want to consider more applications of our approach, such as software
product line engineering and discovering incompatibilities in component-based designs.
We also believe that our method can be applied to various other domains, such as the
parameter synthesis for biological systems [3]. We intend to explore these applications
in more detail.
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