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Computation of optimal cycle mean in a directed weighted graph has many applications in program
analysis, performance verification in particular. In this paper we propose a data-parallel algorithmic
solution to the problem and show how the computation of optimal cycle mean can be efficiently
accelerated by means of CUDA technology. We show how the problem of computation of optimal
cycle mean is decomposed into a sequence of data-parallel graph computation primitives and show
how these primitives can be implemented and optimized for CUDA computation. Finally, we report a
fivefold experimental speed up on graphs representing models of distributed systems when compared
to best sequential algorithms.

1 Introduction

High quality implementation of complex computer systems, e.g. complex embedded systems, is a major
challenge today and the computer industry struggles with how to efficiently engineer these systems.
Implementations of these systems raise complex parallelism and scheduling issues, which are in practice
solved by hand or, at best, by using emerging tools that address only a limited set of applications with
favourable properties, such as static nests of loops. One way to tackle this challenge is to use model-
driven engineering.

Model-driven engineering is a very active academic domain, driving many studies and prototype
tools, and there is an emerging industrial market with an expected growth greater than 10% per year (cf
Forrester Consulting). Model-driven performance analysis introduces performance analysis in the early
design phases and leading thus to design of more reliable and optimal system.

Inspections of graph cycles is one of the possible means to deal with performance prediction. For
example assume that transitions of a system are labelled with resource consumption that the actions these
transitions model impose on the system. Then by finding the maximal cycle mean of a graph representing
the system it is possible to approximate the worst sustainable load—the amount of resources consumed—
under which the system will operate. Unlike using Queueing networks [16] or stochastic Petri nets [20]
the computation of optimal cycle mean (OCM) allows to measure the worst expectable performance over
infinite runs.

The potential use of the OCM computation for performance analysis should be more apparent with
our running example of a client/server distributed application. Provided we are able to create a model
of this application with edge-labels representing consumption of CPU resources we intend to compute
how many clients will consume how much of the CPU of the server. Analogously, the inspection of
properties of critical cycles, and especially the computation of OCM, allows to analyse performance of
a large number of systems.
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It has been shown that the system to be analysed can be modelled as a Petri net [22], Process
graph [19] or e.g. a Data flow graph [15]. When an appropriate modelling formalism for the given
real-world system is used, the enumeration of a specific cycle property facilitates performance evalua-
tion of asynchronous systems [4], delay intensive and latency-insensitive systems [18]; rate analysis and
scheduling of embedded real-time systems [19]; time-separation analysis of concurrent systems [5] and
many others. The performance evaluation measures provided by OCM computation include resource
consumption (CPU, memory, bandwidth, etc.), worst expectable latency and other measures in specific
systems, e.g. cycle period in synchronous systems.

Many different approaches to compute OCM have been taken so far. Dasdan et al. [11] gave a com-
prehensive list of algorithms. However, it is imperative that the process of finding the cycles is not overly
expensive since many of these applications require the critical cycle to be found repeatedly [10]. To
further emphasize the necessity of having efficient algorithmic solution to this problem we present two
practical observations. The graphs representing even a small system can be exceedingly large, containing
millions of vertices. Moreover, the number of cycles can be exponential with respect to the number of
vertices thus making the trivial inspection of all cycles in the graph impractical. Yet the asymptotic com-
plexity of even the best sequential algorithms is very high, which renders the applicability of OCM-based
performance analysis limited to small systems. We intend to improve the run-time of OCM computa-
tion and consequently the applicability of OCM-based performance analysis by employment of SIMD
parallelism.

The potential of SIMD parallelism has been recently rediscovered (first efficiently employed in the
Connection Machines [13]) with the entry of affordable graphics processing units (GPU) computation.
The GPUs possess off-the-shelf data-parallel computation capability, which was soon realized by the
academic community and has led to acceleration of various scientific computations. Among these ap-
plications of SIMD parallelism were also examples of acceleration of graph algorithms: several can be
found in [12], together with thorough experimental evaluation on large sparse graphs.

Since the distributed computation of OCM algorithms has led to rather moderate results [6], we
attempt to utilize the massive parallelism of modern GPUs to accelerate the OCM computation. In order
to give a lucid description of the procedure we first provide details on what limitations are imposed on the
algorithmic solution by the target architecture, i.e. the advantages and shortcomings of modern general
purpose GPUs. Subsequently, we choose among the existing algorithms the one most appropriate for
data-parallelization through careful inspection of the relative extend of the underlying graph operations.
Then we describe the translation of this algorithm and finally conduct an experimental study, comparing
our new data-parallel version with the sequential version and also with other sequential algorithms.

2 Preliminaries

In this section we briefly introduce the optimal cycle mean problem and the corresponding terminology
within the context of graph theory. As promised in the introduction, the graph theoretical exposition
of OCM is followed by an exemplary use of the formalism as a mean for performance analysis, allow-
ing computation of the worst expectable resource consumption. We also describe CUDA computation
technology and we detail on which OCM algorithmic approach would be most suitable for data-parallel
implementation. The sequential version of the selected algorithm is then thoroughly expounded.
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(b) G3: the component graph of G2.

Figure 1: Graph with strongly connected components and the corresponding component graph.

2.1 Related Graph Theory Definitions

A graph is a tuple G = (V,E), where V is a set of vertices and E ⊆ V ×V . As usual, cardinalities of
sets |V | and |E| are denoted with n and m, respectively. A path in G is a non-empty sequence of edges
π =< e1, . . . ,en > such that ∀1≤ i≤ n : ei = (vi−1,vi) ∈ E. The length of path π is denoted as |π| and
for π =< e1, . . . ,en > equals to n. A path for which v0 = vn is called a cycle. The set of all cycles of
graph G is denoted with ZG .

We say that a graph is cyclic if and only if every edge is part of some cycle. Furthermore, we say that
a graph is rooted if there is a root vertex s of the graph such that all the other vertices are reachable from
it, i.e. ∀v ∈V there is a path from s to v. Should there be no such a vertex in the graph, we augment the
graph be adding a new vertex s /∈V and edges {(s,v)|∀v ∈V}.

Let G = (V,E) be a graph. A weight function is a function w : E → R that assigns a real weight
to every edge of G . We speak of weighted graph if G and w are given. Weight function naturally

extends to paths as a sum of the weights of all the edges on the path, i.e. w(π)
d f
= ∑

n
i=1 w(ei), where

π =< e1, . . . ,en >. In the case of augmented graphs we put w(e) = 0 for every newly added edge e.
Finally, let π be a cycle in a graph G weighted with a weight function w. We define cycle mean of cycle

π as µ(π)
d f
= w(π)

|π| . Minimal cycle mean for a given graph G and weight function w is then denoted with
µ∗(G ,w), where µ∗(G ,w) = min{µ(π) | π ∈ ZG }. Henceforward, we will safely drop the graph and
weight function from the notation of minimal cycle mean and will refer to minimal cycle mean simply
as to optimal cycle mean that will be denoted by µ∗.

Definition 2.1. OCM problem: For a given graph G and weight function w find the minimal cycle mean.

In order to describe further details of some OCM algorithms we introduce the notion of parametric
weight functions and strongly connected components. Given a weight function w and a real number Λ,

we define parametric weight function wΛ

d f
= w−Λ. We say that Λ is feasible for a graph G if no cycle

in the graph has negative weight with respect to wΛ. Directed graph G = (V,E) is strongly connected if
∀u,v ∈V there is a path from u to v. Graph Gs = (Vs,Es) is a maximal strongly connected component of
G if Vs ⊆ V , Es ⊆ E induced on Vs, and Vs is a maximal in V such that Gs is strongly connected. Graph
Gc = (Vc,Ec) is a component graph of G if Vc is the set of all strongly connected components of G and
e = (G1,G2) is in Ec ⊆Vc×Vc if there is an edge in G between a vertex from G1 and a vertex from G2.
An exemplary illustration of strongly connected components of a graph and its corresponding component
graph see Figure 1.

Proposition 2.2. Λ is feasible⇔ Λ≤ µ∗.

Proposition 2.3. Minimal cycle mean of G is equal to the smallest of minimal cycle means among the
strongly connected components of G .
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2.2 OCM as a Performance Analysis Measure

In order for us to be able to validate the applicability of the OCM computation as a performance analysis
measure we have extended the DIVINE model checking tool with the possibility of OCM computation.
Originally, the explicit state space, parallel model checker DIVINE has in its core an algorithm for com-
putation of accepting cycle. Preserving most of the code, especially the part generating the transition
system, we only needed to perform a few changes in the modelling language and to replace accepting
cycle detection algorithms with OCM algorithms.

DVE, the modelling language of DIVINE, allows specification of communicating processes in a very
intuitive fashion. From the general point of view the processes consist of states and we use transitions
to move from one state to another. The communication is achieved by synchronization of two transitions
from different processes: we require these two transition to be executed concurrently in the resulting
transition system. To allow performance evaluation we have added specification of cost and time to
every transition. The cost can represent consumption of some resource of computation (CPU utilization,
memory requirements, etc.) and the addition of time allows to compute the more general optimal cycle
ratio [19].

The primary motivation behind the extension of DIVINE was performance analysis of an online PDF
editor that was, in the time of writing, being developed by the Normex company. The OCM-based
analysis was used with the intention to measure the worst expectable utilization of the CPU server. For
the analysis to be as precise as possible we have devised several scenarios of the behaviour of the clients
and constructed the model as a synchronous composition of these scenarios. Specifics of the scenarios
were determined based on results of a case study among users of a similar editor and on preliminary beta
testing. The concrete findings of our analysis will be detailed in Section 4.

2.3 CUDA Computation

The Compute Unified Device Architectures (CUDA) [9], developed by NVIDIA, is a parallel program-
ming model and a software environment providing general purpose programming on Graphics Processing
Units. At the hardware level, GPU device is a collection of multiprocessors each consisting of eight scalar
processor cores, instruction unit, on-chip shared memory, and texture and constant memory caches. Ev-
ery core has a large set of local 32-bit registers but no or a very small cache (L1 cache has configurable
size of 16-48KB). The multiprocessors follow the SIMD architecture, i.e. they concurrently execute the
same program instruction on different data. Communication among multiprocessors is realized through
the shared device memory that is accessible for every processor core.

On the software side, the CUDA programming model extends the standard C/C++ programming
language with a set of parallel programming supporting primitives. A CUDA program consists of a host
code running on the CPU and a device code running on the GPU. The device code is structured into the so
called kernels. A kernel executes the same scalar sequential program in many independent data-parallel
threads.

Each multiprocessor has several fine-grain hardware thread contexts, and at any given moment, a
group of threads called a warp executes their instructions on the multiprocessors in a lock-step manner.
When several warps are scheduled on multiprocessors, memory latencies and pipeline stalls are hidden
primarily by switching to another warp. Overall the combination of out-of-order CPU and data-parallel
processing GPU allows for heterogeneous computation as illustrated in Figure 2a, where sequential host
code and parallel device code are executed in turns.

Data structures used for CUDA accelerated computation must be designed with care. First, they
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Figure 2: a) Sequential heterogeneous computation work-flow with CUDA. b) Adjacency list represen-
tation: a graph G = (V,E) is stored as two arrays: Ai of size |V |+1 and At of size |E|.

have to allow independent thread-local data processing so that the CUDA hardware can fully utilize
its massive parallelism. And second, they have to be small so that the high latency device-memory
access and limited device-memory bandwidth are not large performance bottlenecks (also the regularity
of structures in the memory is of great importance). In our case, it is the representation of graph G to be
encoded appropriately in the first place. Note that uncompressed matrix or dynamically linked adjacency
lists violate these requirements and as such they are inappropriate for CUDA computation.

An efficient CUDA-aware computation of a graph algorithm requires the graph to be represented in
a compact, preferably vector-like, fashion. We encode the graph as an adjacency list that is represented
as two one-dimensional arrays At and Ai, similarly as in [12]. The array At keeps target vertices of all the
edges of the graph. The target vertices stored in the array are ordered according to the source vertices of
the corresponding edges. The second Ai array then keeps an index to the first array for every vertex in
the graph. Every index points to the position of the first edge (represented as a target vertex) emanating
from the corresponding vertex. See Figure 2b. If other data associated to a vertex are needed by a CUDA
kernel algorithm, then they are organized in vectors as well.

Most of known OCM algorithms require to access predecessors of a given vertex in order to perform
a kind of backward reachability. Storing backward edges together with their forward versions causes
additional nontrivial memory requirements, which might be a problem as the size of CUDA memory is
limited. We have shown how to carry out the backward reachability using only forward edges with minor
time overhead [2]. However, OCM algorithms often require the reachability procedure to perform only
on a given subgraph of the whole graph (such that it contains a single outgoing edge for every vertex).
Unfortunately, augmenting the original procedure proposed in [2] in order to follow the selected edges
only resulted in considerable slow down in computation. For that reason we were forced to explicitly
store both forward and backward edges of the graph.

As mentioned before the amount of memory on a CUDA device may limit the applicability of CUDA
accelerated algorithms to graphs with representation that would fit into the memory of the GPU. Multiple
CUDA-aware GPUs can be used to effectively extend available memory [1] for the price of extensive
modification of the source code and a certain slow down. Fortunately, the memory limitation is not that
restricting in the case of OCM algorithms as the high asymptotic complexity of individual algorithms
results in practical issues dealing with long run-times rather than a lack of memory space.
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Algorithm 1: Scanning Method of SPF Algorithms

Input: A found vertex u

1 foreach e = (u,v) ∈ E do
2 if π(u)+w(e)< π(v) then
3 π(v), p(v),S(v)← π(u)+w(e),u, found

4 S(u)← scanned

2.4 OCM Algorithms

Through the course of study of optimal properties of graph cycles a plethora of algorithms emerged.
These algorithms, while not sharing similar concepts, can be divided into several groups according to
what graph property they use to find critical cycles. Since our goal in this section is to choose one of
the algorithms which would be most suitable for data-parallel implementation we will describe all three
categories of OCM algorithms and consider their aptness for our purpose.

There are various limitations imposed on the potential algorithms should they be even considered
for SIMD acceleration. First of all, most of the data structures used should be to a very large extend
in form of vectors: stacks, queues or heaps are not possible to be effectively data-parallelized. Then
the kernels should prevalently address the whole set of vertices (or edges): limiting the computation
to a insufficiently small subset would prevent utilization of the computational power. Yet the vector-
wide operations are rather costly even on many-core architectures and the complexity of algorithms is
practically measurable in their number. Finally, there is also a non-negligible overhead of kernel calls
and thus even a very fast kernel should not be run excessively.

A strong relation can be observed between the OCM and the Shortest Path Feasibility (SPF) prob-
lems [10]. This relation should be much more apparent once we formulate the OCM problem as a linear
programming problem: µ∗ is the optimal solution of

max r subject to
d(v)≤ d((u)+(w((u,v))− r)
∀e = (u,v) ∈ E,

(1)

where d stands for distance, i.e. minimal-cost path from the source node to v. According to the previous
formulation, we can equivalently search for the maximal parameter r such that G with wr contains no
negative cycle. Following Proposition 2.2 such r is exactly the optimal cycle mean. As a result, existence
of an efficient implementation of the SPF algorithm enables an efficient solution to the OCM problem.
Furthermore, any future improvements to the SPF procedure automatically translates to improvements
in this OCM problem solution.

All SPF algorithms have a common basic step: the scanning method [8]. This method assumes
we maintain for every vertex u its potential π(u), parent p(u), and a label S(u) ∈ {unreached, found,
scanned}. Initially, only the root vertex is labelled found, all other vertices are unreached, and potential
of all vertices is set to zero. A single found vertex is then repeatedly scanned using Algorithm 1.

The scanning method repeats until there are no found vertices or until the algorithm finishes n passes.
Recall that n = |V |. Passes of an SPF algorithm are defined inductively:

0-th pass is the initialization,

i-th pass scans all vertices labelled found during the (i−1)st pass.
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If all n passes are performed, the graph inevitably contains a negative cycle.

2.4.1 Cycle-Based

The arguably most straightforward application of shortest path feasibility solution to the OCM problem
is the cycle-based approach. The idea is to maintain an upper bound Λ of the minimal cycle mean, i.e.
Λ≥ µ∗, and a cycle C such that Λ = µ(C). If Λ > µ∗ then new better upper bound Λ′ of minimal mean
cycle can be detected with the SPF algorithm provided that it uses parametric weight function wΛ. The
newly computed upper bound Λ′ is used in another iteration of the algorithm as Λ. The whole procedure
repeats until no improvement of upper bound can be found, which indicates that Λ = µ∗.

A classical implementation of the cycle-based approach is the Howard’s algorithm [14], which further
improves the approach by altering the SPF procedure. At the end of each pass it checks the parent graph,
induced by edges (p(v),v), for cycles. Existence of a cycle allows to restate Λ to a value that sets to zero
the weight of the most negative cycle. Should there be no negative cycle the improved SPF algorithm
either terminates, if all reduced weights are non-negative, or it continues with the next pass.

The cycle-based approach seems to be fairly compatible with the SIMD computation. Namely, the
SPF subroutine is a vector-wide propagation of values, the minimal cycle location on the parent graph
is also feasible to parallelize, and most importantly sequential experiments suggest that the algorithm
typically performs only very few passes of the underlying SPF subroutine.

2.4.2 Binary Search

The binary search approach is slightly more involved. It maintains both upper and lower bound Λ1 ≤
µ∗ ≤ Λ2 together with a cycle C such that µ(C) = Λ2. The SPF subroutine is repeatedly called with
parametric weight function wΛ, where Λ, as the name suggests, is set to Λ1+Λ2

2 . In case a negative cycle
ζ is found, we set C and Λ2 to ζ and µ(ζ ), respectively. Since we did not use Λ2 as a parameter we
cannot be certain of the value of the optimal cycle mean in either of SPF answers, and thus if no negative
cycle is found we set Λ1 to Λ. The termination criterion for binary search approach is Λ2−Λ1 < ε . If ε

is chosen sufficiently small, C will be the critical cycle.
The well-known implementation of binary search is due to Lawler [17], who also proved the run-time

of his algorithm to be in O(nm lg(W/ε)), where W is the maximal edge weight. Structurally, there is no
apparent reason why the Lawler’s algorithm should be inappropriate for data-parallelization, yet the fact
that the SPF subroutine requires up to n passes (and given the idea of binary search it often is necessary
to carry out all n passes) renders this particular approach unusable. This hypothesis was experimentally
confirmed once we have implemented the Lawler’s algorithms and executed preliminary tests.

2.4.3 Tree-Based

While the previous two approaches used full SPF, the tree-based approach uses the shortest path fea-
sibility subroutine only partially. Here only the lower bound Λ is maintained, initially small enough
to guarantee that all edges have positive weight under wΛ. Λ is progressively increased throughout the
algorithm in correctly chosen increments, until a cycle ζ is found such that wΛ(ζ ) = 0. Apart from Λ

we also maintain the shortest path tree T, with respect to the current wΛ. As we are working with the
augmented graph we may initiate T to consist of the edges from s to every other vertex.

The increments of Λ must be chosen with care, otherwise minimal mean cycle could be missed. A
safe strategy is to set new value of Λ to the smallest λ ≥ Λ such that there is a different T for wλ . To this
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end we assign to every vertex u a threshold, the smallest λ that would force u to change parent. Finding
the smallest among all thresholds is facilitated by a priority queue.

Again this approach is unsuitable for SIMD acceleration for several reasons. The usage of priority
queues (either heaps or Fibonacci heaps) is particularly problematic and would most likely be imple-
mented as a simple vector, with the minimum operation as parallel reduction. Also the span of operation
updating the shortest path tree is in many cases relatively small and would not fully utilize the number of
GPU cores. Much larger problem was found during experiments with sequential version demonstrating
that there are simply too many iteration of the algorithm that must be carried out one after another.

2.5 Howard’s Algorithm

Since it is the Howard’s algorithm that appears to be the one most suitable for parallelization, we will now
provide its detailed description. First, we should stress that the algorithm works on strongly connected
graphs only. There exist two approaches how to overcome this restriction. First, we can decompose
the given graph to its strongly connected components and then process the graph one component at a
time. In the sequential case we can use the Tarjan’s algorithm [23] based on the depth-first traversal
procedure which outputs the list of all strongly connected component in O(n+m) time. Hence there is
asymptotically no difference in complexity of the algorithm, although practically the difference can be
quite substantial. The second approach suggests to modify the underlying graph by adding a Hamiltonian
cycle ζH =< (v0,v1), . . .(vn−1,v0) > to the graph. With this modification the graph becomes strongly
connected and provided that weights of newly added edges are sufficiently large, the optimal cycle mean
of the graph remains unchanged.

As stated in the description of the cycle-based approach, the Howard’s algorithm (see Algorithm 2,
adopted from [6]) extends the shortest path feasibility algorithm. Indeed the main cycle on lines 7–27 up
to line 14 is in fact a scanning step of the SPF algorithm. Altough the output of the cycle on lines 9–13 is
not yet the shortest path tree, since we are approaching the optimal cycle mean from top and hence there
are cycles in our shortest path graph. To remain consistent with the established notation we will call the
graph induced on edges (v,π(v)) the policy graph.

Apart from the successor in the policy graph π(v) that must exist since we are working with strongly-
connected graphs only, we also store two values val0(v) and val1(v) with every vertex. In these two values
we keep information about the current and the following parametric length for a given vertex. In every
iteration of the out-most cycle we check whether there was a change in the policy graph, and if not we
interrupt the main cycle and return λ as the optimal cycle mean. Each λ that is used as a parameter for
the feasibility computation, is actually the mean weight of a specific cycle in both the original and the
policy graph. Hence, after every iteration of the SPF algorithm part we inspect the policy graph, locate
all cycles inside it and choose the one with minimal mean weight (line 16). Upon finding the minimal
cycle (or after choosing one of the minimal cycles), we modify the policy graph in such a way that every
vertex has a path to the minimal cycle (line 18).

Lines 16 and 18 would perhaps require more detailed explanation. From a property of the policy
graph (that every vertex has exactly one outgoing edge), we know that each of its connected components
consists of one cycle and potentially several paths leading to this cycle. Finding all cycles can thus be
done in linear time simply by following the successor path, marking all visited vertices. Next we need to
rebuild the policy graph so that the selected cycle would be the only cycle there and every vertex has a
path to that cycle. Moreover, it is required for the component of the minimal cycle to remain unchanged,
otherwise the SPF subprocedure would always detect an improvement. This can be achieved by two
consecutive backward reachabilities: one to demarcate the component of the minimal cycle and the other
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Algorithm 2: Howard’s Algorithm

Input : A directed, strongly-connected graph G = (V, E, w),w : E→Q
Output: λ ∈Q : λ = µ∗(G )

1 foreach v ∈V do
2 val0(v)← 0
3 π(v)← nil

4 improved← true

5 i← 0
6 λ ← 0
7 while improved do
8 improved← false

9 foreach v ∈V do
10 val((i+1) mod 2)(v)←minu∈Succ(v) {val(i mod 2)(u)+w(v,u)−λ}
11 if π(v) = nil∨ (val(i mod 2)(π(v))+w(v,π(v))−λ > val((i+1) mod 2)(v)) then
12 π(v)← u|val(i mod 2)(u)+w(v,u)−λ = val((i+1) mod 2)(v)
13 improved← true

14 i← i+1
15 if improved then
16 c← MinMeanWeightCycle(Gπ) // Gπ .|E|= |V |,∀v ∈V : deg(v) = 1
17 λ ← µG (c)

18 break all other cycles than c in Gπ so that all vertices have path to c
19 s← MinVertex(c)
20 val(i mod 2)(s)← 0
21 q.push(s)

22 while ¬q.empty() do
23 v← q.pop()
24 foreach u ∈ Pred(v) do
25 if u 6= s∧π(u) = v then
26 val(i mod 2)(u)← val(i mod 2)(v)+w(u,v)−λ

27 q.push(u)

28 return λ

one to connect also the remaining vertices to the minimal cycle.

Subsequently, we choose one vertex (line 19) on the minimal cycle and set its val to zero. It is
necessary that we always select the same vertex, assuming the same cycle is found minimal. After the
modification of the policy graph and selecting new λ , it is also necessary to modify the val values for
other vertices accordingly. This process is started by setting the val of s to zero on line 20 and carried
out by the cycle on lines 22–27, performing backward reachability from s along the edges of the policy
graph. In the next iteration of the out-most cycle we again find the policy graph (using the updated val
values. This process is iteratively applied until two consecutive policy graphs are found to be the same.
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Algorithm 3: Howard’s Algorithm – GPU (host code)

Input : A directed, strongly-connected graph G = (V, E, w),w : E→Q
Output: λ ∈Q : λ = µ∗(G )

1 while true do
2 if gTerminate← SPFPassIter(G ,val,λ ,Gπ , it) then break
3 it++
4 GpiPreprocess(Gπ ,gPredInfo)
5 elimination∗(Gπ ,gPredInfo)
6 cycleIdentification(Gπ ,gCycles)
7 reducemin(gCycles,minCycle)
8 λ ←minCycle.mean
9 setMinCycle(Gπ ,gCycles,minCycle)

10 markMinComponent∗(Gπ ,gPredInfo)
11 connectGpi∗(G ,Gπ)
12 val[it&1][minCycle.minIndex]← 0
13 GpiPreprocess(Gπ ,gPredInfo)
14 valuePropagate∗(G −1,Gπ ,val[it&1],λ ,minCycle.minIndex,gPredInfo)

15 return

3 Data-Parallel Version of Howard’s Algorithm

The actual description of our data-parallel implementation of Howard’s algorithm will be conducted in
several steps. We start by proposing a high-level work flow, where we attempt to preserve the provably
correct layout. Concurrently proposing graph primitive operations that would perform actions function-
ally equivalent to those of the original algorithm, but, wherever possible, addressing the whole vector of
values at a time. CUDA-specific implementation of these graph primitives will be detailed extensively in
the following section. Finally, we propose an extension to Howard’s algorithm which prepends a parallel
decomposition to strongly connected components to the algorithm. Then we let the algorithm perform
the OCM computation on all components concurrently.

3.1 High-Level Description

The proposed host code of our implementation is listed as Algorithm 3. It is apparent that lines 16 and 18
of Algorithm 2 that rebuild the policy graph, require much more attention in the SIMD environment as
it is the place most susceptible to inefficient processing. These two lines of CPU pseudo-code span from
line 4 to line 11 in our GPU implementation. We first describe this part of the algorithm postponing the
SPF subroutine for later discussion.

There are two calls to the GpiPreprocess kernel (on lines 4 and 13) and they both serve the same
purpose to gather information about predecessors in the policy graph. This step is merely an optimization
speeding up the kernels that perform backward reachability (or its modification) on the policy graph. It
would be possible to omit this kernel for the same reason it is possible to perform backward reachability
using only forward edges [2]. Yet the speedup gained from employing this kernel is quite considerable
even though we have to call it twice as the graph is rebuild in kernel connectGpi. The first call is



78 Computing Optimal Cycle Mean in Parallel on CUDA

required because of the elimination and markMinComponent kernel, the second call is because of
valuePropagate kernel.

From the description of sequential Howard’s algorithm we know that the policy graph consists of
weakly connected components, each containing a cycle and several paths leading to this cycle. In or-
der to be able to find all cycles in the policy graph in as few parallel steps as possible, we first apply
elimination to remove all vertices that do not lie on any cycle, i.e. those that are on the paths leading
to a cycle (path vertices). This kernel is called iteratively (every call removes the vertices with no prede-
cessors) until a fixpoint is found; in other words until there are no such vertices. There are more fixpoint
kernels in Algorithm 3 all marked with an asterisk. The elimination allows localization of cycles and
computation of their means in a straightforward manner (line 6): we simply follow the propagation of
edges starting from any not eliminated vertex. The minimal among them can subsequently be found by
employing parallel reduction [7] with min operation.

Upon finding the cycle with minimal mean (which for technical reasons has to be agreed on by all
vertices: line 9) we can actually start rebuilding the graph. With the first backward reachability (line 10)
we undo the elimination of the path vertices within the component of the minimal cycle, hence the second
backward reachability (line 11) is started from this component and is iteratively applied until all vertices
are connected, one breadth-first search layer at a time.

Finally, the SPF subprocedure is easy to parallelize. Using two val vectors, alternating the two in
odd and even iterations, allows us to perform all updates of values in a single parallel step (as there is no
danger of race between threads, see lines 2, 3 and 14). Also realization of the kernel valuePropagate on
line 14 that propagates the change of val from the vertex on minimal cycle with smallest index (source),
was only a minor modification of backward reachability procedure.

3.2 Graph Primitives and Data Structures

We first focus on the data structures that are used during the computation. The graph representation itself
has been described in Section 2.3. In order to keep low space profile, we store the policy graph Gπ in
a vector of n elements containing indices of the Mc array that uniquely specifies what edge leads to the
successor of a given vertex. Also the first few bits of every element are reserved to flags. For example
there is a flag marking what vertices have been removed during elimination. Cycles are stored in gCycles
using two 32-bit values, one for the index of its source vertex and second for the mean weight. Finally,
the vector gPredInfo is used to store a partial information about the predecessors within one 32-bit value.
The first 16-bits are for the number of predecessors and the last 16-bits for the local index of the first
predecessor.

While most of our kernels are only minor modifications of previously published data-parallel graph
primitives (see e.g. [2]), they are crucial for the overall efficiency of our data-parallel implementation,
and therefore, we describe some of those modifications in detail. The GpiPreprocess primitive was
devised for a simple reason: there is no efficient way to propagate along backward edges in the policy
graph. Using forward edges would require deployment of as many threads as there are unseen vertices.
Searching among backward edges those in the policy graph, on the other hand, suffers from the fact
that there are often as many edges that do not belong to the policy graph. Hence both these approaches
are approximately equally inefficient. The improvement we have proposed first passes the whole graph
G storing correctly the information about predecessors within the policy graph into gPredInfo. This
preprocessing allows to virtually skip inspection of vertices with no predecessors in the policy graph and
also to jump at the first edge that belongs to the policy graph as can be observed from the pseudo-code of
valuePropagate in Algorithm 4. There we store in the local variable counter the number of predecessor
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Algorithm 4: valuePropagate(G = (Mn,Mc),Gπ = Mπ ,val,λ ,source,gPredInfo)

1 index← threadId
2 prop← false

3 counter← gPredInfo[index].getNum()
4 pred←Mn[index+gPredInfo[index].getFirst()]
5 while counter > 0 do
6 edge←Mc[pred]
7 if index = Mc[Mπ [edge.to]] then
8 counter−−
9 if edge.to 6= source then

10 val[edge.to]← val[index]+ edge.weight−λ

11 prop← true

12 pred++

13 if prop then
14 fixPoint← false

of the vertex assigned to this thread (line 3) and can skip the cycle if counter is zero. Together with the
jump to the first actual predecessor (see line 4) this improvement alone has led to fivefold speedup of
valuePropagate including the cost of preprocessing.

Details on remaining kernels are as follows. elimination kernel is actually the trimming primitive
(see [2]) augmented similarly as the valuePropagate with the information about predecessors. A
simple while loop (it is executed only on vertices on some cycle) for identification of cycle source and
its mean is implemented in the cycleIdentification kernel. And finally the connectGpi performs
backward reachability from the component of the minimal cycle, and it utilizes a flag propagate which
marks the currently active breath-first layer. Only the threads that have a vertex with the propagate flag
do propagate and so less threads needs to be dispatched.

3.3 SCC Decomposition Extension

There are several reasons why to prepend SCC decomposition before a CUDA accelerated OCM algo-
rithm. First of all, the algorithm requires the input graph to be strongly connected and thus we have
to add the Hamiltonian cycle. Not only is this operation costly, it also adds more edges into the graph,
further prolonging the computation. Furthermore, even though the parallel algorithms for SCC decom-
position have rather high asymptotic complexity (O(n(n+m))), we were able to implement data-parallel
SCC decomposition which is considerable faster than the optimal sequential algorithm [2]. And most
importantly, it would allow the computation to be executed concurrently on all SCC components, which
further improves the running time provided that the components are much smaller than the whole graph.

The technique to run a kernel on multiple regions within a graph and to restrict its effect to respective
regions was thoroughly described in [2] and we will thus concentrate on the parts related to computation
over decomposed graphs specific for our OCM algorithm. First of all the Proposition 2.3 states that
the optimal cycle mean of the whole graph needs to be found as the minimal among all components.
This observation raises two problems, first, how to choose the minimum, and second, where to store the
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Algorithm 5: Region-specific minimum voting

1 myCycle← (source,mean = (weight/length))
2 while true do
3 comCycle← cycles[myRegion]
4 if comCycle.mean≤myCycle.mean then break
5 atomicCAS(&(cycles[myRegion]),comCycle,myCycle)

component-specific λ values during the computation (which also has to be agreed on).
Selecting the minimal cycle mean during the computation on multiple regions is particularly prob-

lematic as the vertices of one component are not clustered together. It would actually require first to
split [21] the vector according to the region identification and then perform segmented reduction [7],
both complicated and expensive operations. Fortunately, we have observed that often very few cycles are
found and consequently only a few values are candidates for the minimum. Thus we were able to use the
atomicCAS operation as shown in Algorithm 5 without any significant time expense.

Also the termination needs to be modified to work on two levels. The global termination occurs
when computation is finished on all strongly connected components. But it is also important to prevent
execution of kernels on components where we have already found the OCM. Since then less threads
needs to be deployed and less candidates compete in the minimum voting. For that purpose we have
inserted a kernel that unsets the flag work for all vertices in inactive components between lines 2 and 3
of Algorithm 3. Finally, we have optimized the overall amount of work by unsetting the work flag of all
single vertex components prior to the actual OCM computation.

4 Experimental Evaluation

Since the prime objective of our research was to accelerate performance analysis based on computation
of optimal cycle mean, we have compared sequential and data-parallel algorithms mainly on models
of communicating distributed systems. The state space of all possible configurations of a given system
forms a graph with cost function (representing for example resource consumption) labelling edges of that
graph. Both modelling of the system and generation of its state space was facilitated by the enumerative
model checker DiVinE [3], extended with the capability to analyse performance of input models.

The sequential OCM algorithms Howard’s and YTO were also implemented within DiVinE. Thus
the evaluation of our GPU Howard’s algorithm is conducted by comparing its running time against these
two sequential algorithms (which are often considered to be the fastest [10]). The graph representation,
while primarily targeting the vector processing architecture of GPU, is also particularly suitable for CPU
due to its cache-efficient characteristics.

All experiments were executed on a CUDA-equipped Linux workstation with an AMD Phenom II
X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066MHz RAM and NVIDIA GeForce GTX 480 GPU with
1.5 GB of GDDR5 memory. All codes were compiled with -O3 optimization using gcc version 4.3.2 and
nvcc version 3.1 for CPU and GPU code, respectively.

Our approach to performance analysis allows us to compute quantitative characteristics of distributed
systems where clients comply to a distinct sets of behavioural patterns (scenarios of expected behaviour).
Furthermore, we can state how many clients of that particular scenario appear in the system and thus we
can estimate the load of a part of the system (a server for example) in an execution based solely on the
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Figure 3: Plot for the server-free system.
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Figure 4: Plot for the system with a server.

information of how many clients of what scenario there are. As stated in Section 2.2 we have used a
similar approach in our running example for analysis of CPU utilization in an online PDF editor (as
we could for any distributed client/server application in general). After modelling the system using the
client scenarios we have computed the maximal cycle mean in the transition system generated from the
synchronous composition of those clients. This value was equal to the worst sustainable CPU utilization
during any infinite run of the modelled system. Thus we were able to estimate the number of clients that
would be able to fully utilize the server.

In order to measure scalability of the GPU algorithm we have constructed two distributed client/server
system templates from which a user can generate system models by deciding on the number of client for
each scenario. In the first system, there is no server present and the actions of clients are left to be inter-
leaved nondeterministically. The second systems contain a server and the clients have to communicate
with the server (and only one client can access the server at a time). The OCM of such systems then
represents the average system load inflicted on the environment.

We have performed various tests on both templates to measure scalability of all the algorithms and
plotted the findings in two figures. In Figure 3 there are the results for system without a server and
in Figure 4 the results for system with a server. The x axis are in logarithmic scale and represents the
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size of the graph in n ∗m as all the sequential OCM algorithms are asymptotically in O(nm) or worse.
Actual sizes of the analysed graphs range from 50 thousand vertices and 400 thousand edges to approxi-
mately 2 million vertices and 25 million edges. The plots show very clearly that while both YTO and the
sequential Howard’s algorithm struggle with preserving their running times as the graphs grow bigger,
our GPU implementation is capable of performing the OCM computation in reasonably small time. On
larger instances the GPU rarely fails to provide a fivefold speed up compared to the better of the two se-
quential algorithms. It is worth noting that while the CPU algorithms were deterministic and in different
runs exhibited indistinguishable behaviour, the GPU implementation behaves nondeterministically due
to the nature of the massive parallelism. For that reason we executed every test ten times and the result
displayed in the plots is the median of all trials.

Although primarily targeting acceleration of OCM computation for performance analysis we feel
obliged to admit that on graphs from other applications was our data-parallel implementation much less
successful. We have conducted several experiments with US traffic network graphs, random graphs and
various graphs from the DIMACS challenge and were never able to outperform the YTO algorithm. On
these graphs the YTO performed only a very few iterations which we attach to the fact that the OCM of
these algorithms was often very close to the minimal edge weight.

5 Conclusion

We have proposed data-parallel acceleration of an OCM algorithm within several consecutive steps. First
we have evaluated all existing classes of OCM algorithms with respect to their predisposition for vec-
tor processing. Subsequently, we have described thoroughly the Howard’s algorithm which was found
most appropriate for GPU acceleration and devised its data-parallel version. Specifics of the implemen-
tation together with selected data-parallel graph primitives were then detailed, e.g. the incorporation
of SCC decomposition and the concurrent execution of the OCM algorithm on all strongly connected
components.

The primary motivation behind GPU implementation of OCM algorithms was the acceleration of
performance analysis of distributed communication systems. That we have evaluated experimentally
by constructing two scalable client/server systems based on distinct scenarios of the clients finding our
data-parallel algorithm capable of providing performance analysis in negligible time. Although com-
petitiveness of the GPU algorithm on other types of graphs is questionable, we have reported a steady
fivefold speed up on performance analysis graph against all other algorithms.
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[5] S. M. Burns, H. Hulgaard, T. Amon & G. Borriello (1995): An Algorithm for Exact Bounds on the Time
Separation of Events in Concurrent Systems. IEEE Transaction on Computers 44(11), pp. 1306–1317,
doi:10.1109/12.475126.

[6] J. Chaloupka (2006): Distributed Algorithms for the Minimum Mean Weight Cycle Problem. Master’s thesis,
Masaryk University, Faculty of Informatics, Brno.

[7] S. Chatterjee, G. E. Blelloch & M. Zagha (1990): Scan Primitives for Vector Computers. In: Proceedings of
the 2nd International Conference for High Performance Computing, Networking, Storage and Analysis (SC
’90), IEEE Computer Society, Los Alamitos, CA, USA, pp. 666–675.

[8] B. V. Cherkassky, L. Georgiadis, A. V. Goldberg, R. E. Tarjan & R. F. Werneck (2010): Shortest Path
Feasibility Algorithms: An Experimental Evaluation. Journal of Experimental Algorithmics 14, pp. 118–
132.

[9] (April 2011): NVIDIA CUDA Compute Unified Device Architecture - Programming Guide Version 4.0.
[10] A. Dasdan & R. K. Gupta (1997): Faster Maximum and Minimum Mean Cycle Algorithms for System Per-

formance Analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17,
pp. 889–899, doi:10.1109/43.728912.

[11] A. Dasdan, S. S. Irani & R. K. Gupta (1999): Efficient algorithms for optimum cycle mean and optimum cost
to time ratio problems. In: Proceedings of the 36th annual ACM/IEEE Design Automation Conference, DAC
’99, ACM, pp. 37–42, doi:10.1145/309847.309862.

[12] P. Harish & P. Narayanan (2007): Accelerating Large Graph Algorithms on the GPU Using CUDA. In: High
Performance Computing (HiPC’07), Lecture Notes in Computer Science 4873, Springer Berlin / Heidelberg,
pp. 197–208, doi:10.1007/978-3-540-77220-0 21.

[13] W. D. Hillis (1987): The Connection Machine. Scientific American 256(6), pp. 108–115,
doi:10.1038/scientificamerican0687-108.

[14] R. A. Howard (1960): Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA.
[15] K. Ito & K. K. Parhi (1995): Determining the Minimum Iteration Period of an Algorithm. The Journal of

VLSI Signal Processing 11(3), pp. 229–244, doi:10.1007/BF02107055.
[16] L. Kleinrock (1975): Queueing Systems, Volume 1: Theory. Wiley-Interscience, New York.
[17] E. L. Lawler (1976): Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston,

New York, NY.
[18] R. Lu & C. Koh (2006): Performance Analysis of Latency-Insensitive Systems. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems 25(3), pp. 469–483,
doi:10.1109/TCAD.2005.854636.

[19] A. Mathur, A. Dasdan & R. K. Gupta (1998): Rate Analysis for Embedded Systems. ACM Transaction on
Design Automation of Electronic Systems 3(3), pp. 408–436, doi:10.1145/293625.293631.

[20] M. K. Molloy (1982): Performance Analysis Using Stochastic Petri Nets. IEEE Transactions on Computers
31(9), pp. 913–917, doi:10.1109/TC.1982.1676110.

[21] S. Patidar & P. J. Narayanan (2009): Scalable Split and Gather Primitives for the GPU. Technical Report
IIT/TR/2009/99, Centre for Visual Information Technology, Hyderabad, INDIA.

[22] C. V. Ramamoorthy & G. S. Ho (1980): Performance Evaluation of Asynchronous Concurrent Systems Using
Petri Nets. IEEE Transaction of Software Engineering 6(5), pp. 440–449, doi:10.1109/TSE.1980.230492.

[23] R. Tarjan (1971): Depth-First Search and Linear Graph Algorithms. In: Proceedings of the 12th Annual
Symposium on Switching and Automata Theory, IEEE Computer Society, Los Alamitos, CA, USA, pp.
114–121, doi:10.1109/SWAT.1971.10.

http://dx.doi.org/10.1109/12.475126
http://dx.doi.org/10.1109/43.728912
http://dx.doi.org/10.1145/309847.309862
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://dx.doi.org/10.1038/scientificamerican0687-108
http://dx.doi.org/10.1007/BF02107055
http://dx.doi.org/10.1109/TCAD.2005.854636
http://dx.doi.org/10.1145/293625.293631
http://dx.doi.org/10.1109/TC.1982.1676110
http://dx.doi.org/10.1109/TSE.1980.230492
http://dx.doi.org/10.1109/SWAT.1971.10

	Introduction
	Preliminaries
	Related Graph Theory Definitions
	OCM as a Performance Analysis Measure
	CUDA Computation
	OCM Algorithms
	Cycle-Based
	Binary Search
	Tree-Based

	Howard's Algorithm

	Data-Parallel Version of Howard's Algorithm
	High-Level Description
	Graph Primitives and Data Structures
	SCC Decomposition Extension

	Experimental Evaluation
	Conclusion

