
AUTOMATED PLANNING AND ACTING

Malik Ghallab, Dana Nau and Paolo Traverso

Cambridge University Press, 2016

WHAT IS MEANT BY ”PLANNING ALGORITHMS”?

robotics how to move robot from one place to another without

hitting anything

focus on algorithms that generate useful motions by processing

complicated geometric models

AI search for a sequence of logical operators / actions that

transform an initial world state into a desired goal state

focus on designing systems that use decision-theoretic models

co compute appropriate actions

control theory feasible trajectories for nonlinear systems

focus on algorithms that compute feasible trajectories for

systems, with some additional coverage of feedback and

optimality

1

ROBOT MOTION PLANNING TASKS

• automotive assembly task

• moving furniture

• navigating mobile robots

2

INTRODUCTION

TERMINOLOGY

agent entity capable of interacting with its environment

action something that an agent does, such as exerting a force, a

motion, a perception or a communication

deliberation deciding which actions to undertake and how to

perform them to achieve an objective

artificial agent ≡ actor

autonomy the actor performs its intended functions without being

directly operated by a person

diversity in the tasks it can perform and the environment in which

it can operate

3

CONCEPTUAL VIEW OF AN ACTOR

Deliberation consists of reasoning with predictive models as well as

acquiring these models.

An actor may have to learn how to adapt to new situations and

tasks.

4

HIERARCHICAL AND CONTINUAL ONLINE DELIBERATION

hierarchically organized deliberation some of the actions the actor

wishes to perform do not map directly into a command

executable by its platform

continual online deliberation throughout the acting process, the

actor refines and monitors its actions; reacts to events; and

extends, updates, and repairs its plan on the basis of its

perception focused on the relevant part of the environment

5

PLANNING VERSUS ACTING

planning the purpose is to synthesize and organized set of actions

to carry out some activity

acting involves deciding how to perform the chosen actions

receding horizon scheme - in dynamic environments where

exougenous events can take place and are difficult to model and

predict; first steps are usually more reliable; plan modification and

replanning

6

ASSUMPTIONS

Deliberation assumptions are usually about how variable, dynamic,

observable, and predictable the environment is, and what the actor

knows and perceives about it while acting.

different chapters of the book make different assumptions about

time, concurrency, and uncertainty and we’ll restrict ourself to

discrete approaches

7

DESCRIPTIVE AND OPERATIONAL MODELS OF ACTIONS

descriptive models describe which state or set of possible states

may result from perforing an action; they are used by the

actor to reason about what actions may achieve the

objectives

operational models describe how to perform an action, that is,

what commands to execute in the current context

8

DESCRIPTION OF STATES FOR DELIBERATION

representational primitives that define the state of an actor and its

environment ≡ state variables

predicted states used when an actor reasons about what might

happen

observed states used when an actor reasons about how to perform

actions in some context

predicted states are in general less detailed than the observed one

9

DELIBERATION WITH

DETERMINISTIC MODELS

DELIBERATION WITH

DETERMINISTIC MODELS

STATE-VARIABLE REPRESENTATION

STATE-TRANSITION SYSTEM

a state-transition system (aka classical planning domain) is a triple

Σ = (S ,A, γ, cost) (states, actions, state transition function, cost

function)

• finite, static environment

• no explicit time, no concurenncy

• determinism, no uncertainty

computational aspects of using state-transition system

• if S and A are small enough — lookup table
• otherwise — generative representation in which there are

procedures for computing γ(s, a) given s and a
I domain-specific representation
I domain-independent representation

10

EXAMPLE

11

OBJECTS AND STATE VARIABLES

objects set of names

r1, r2, d1, . . . , p3

state variable syntactic term over objects

pos(c) is containers c’s position, which can be a robot,

another container, or nil if c is at the bottom of a pile

variable-assignement function maps objects to values

state-variable state space specified with consistency constraints

not all combinations are possible

12

ACTIONS AND ACTION TEMPLATES

if r is at a loading dock and is not already carrying anything , r

can load a container form the top o a pile

13

PLANS

• a plan π is a finite sequence of actions, π = 〈a1, . . . an〉

• planning problem is a triple P = (Σ, s0, g), where Σ is a

state-variable palnning domain, s0 is an initial state, and g is

a goal

• each node is written as a pair v = (π, s) where π is a plan

and s = γ(s0, π)

14

DELIBERATION WITH

DETERMINISTIC MODELS

FORWARD STATE-SPACE SEARCH

FORWARD-SEARCH

15

DETERMINISTIC FORWARD-SEARCH

step (i) heuristic function which estimates the minimum cost of

getting from s to a goal state

step (iii) remove from Children every (π, s) that has an ancestor

(π′, s ′) s.t. s = s ′

16

BREADTH-FIRST SEARCH

node selection select a node (π, s) ∈ Children that minimizes the

length of π

pruning remove from Frontier and Children every node (π, s) such

that Expanded contains (π′, s)

17

DEPTH-FIRST SEARCH

node selection select a node (π, s) ∈ Children that maximizes the

length of π

pruning First do cycle-checking.

Then, to eliminate nodes that the algorithm is done with,

remove v from Expanded if it has no children in

Frontier ∪ Expanded , and do so with each of v ’s ancestors

until no more nodes are removed.

18

HILL CLIMBING (GREEDY SEARCH)

depth-first search with no backtracking

node selection select a node (π, s) ∈ Children that minimizes h(s)

pruning First do cycle-checking.

Then, assign Frontier ← ∅ so that the line (iv) of Algorithm

2.2 be the same as assigning Frontier ← Children

• heuristic function h : S → R estimates minimum cost of

getting from s to a goal state

h(s) ≈ h∗(s) = min{ cost(π) | γ(s, π) satisfies g}

• h is admissible if 0 ≤ h(s) ≤ h∗(s) for every s

no guarantee to return an optimal solution or even a solution at all

19

UNIFORM-COST SEARCH

aka Least-cost first

like breadth-first search, uniform-cost search does not use a

heuristic function

unlike breadth-first search, it does node selection using the

accumulated cost of each node

node selection select a node (π, s) ∈ Children that minimizes

cost(π)

pruning remove from Frontier and Children every node (π, s) such

that Expanded contains (π′, s)

20

A∗ SEARCH

A∗ search is similar to uniform-cost search, but uses a heuristic

function

node selection select a node (π, s) ∈ Children that minimizes

cost(π) + h(s)

pruning for each node (π, s) ∈ Children, if A∗ has more than one

plan that goes to s, then keep only the least costly one

A∗ terminates and returns a solution if one exists; if h is

admissible, then the solution is optimal

21

DEPTH-FIRST BRANCH AND BOUND

• depth-first branch and bound(DFBB) is a modified version of

depth-first search that uses a different termination test that

the one in line (ii) of Algorithm 2.2.

• instead of returning the first solution if finds, DFBB keeps

searching until Frontier is empty

• DFBB maintains two variables π∗ and c∗, which are the least

costly solution that has been found so far

• node selection and prunning are the same as in DFS

• additional pruning step occurs during node expansion: if the

selected node v has cost(π) + h(v) ≥ c∗, DFBB discards v

rather than expanding it

22

GREEDY BEST-FIRST SEARCH

for planning problems where nonoptimal solutions are acceptable

node selection select a node (π, s) ∈ Children that minimizes h(s)

pruning same as in A∗

BBFS is not guaranteed to return optimal solutions

23

ITERATIVE DEEPENING

for k = 1 to ∞ do

do a depth-first search, bactracking at every node of depth k

if the search found a solution, then return it

if the search generated no nodes of depth k , return failure

a closely related algorithm, IDA∗, uses a cost bound rather than a

depth bound

24

CHOOSING A FORWARD-SEARCH ALGORITHM

• if a nonoptimal solution is acceptable — greedy best-first

search

• if one has a good (admissibel) heuristic function — A∗

• if hte state space is too large to hold in main memory —

DFBB, IDA∗

25

HEURISTIC FUNCTIONS

• heuristic function h returns an estimate h(s) of the minimum

cost h∗(s) of getting from the state s to a goal state

• h is admissible if 0 ≤ h(s) ≤ h∗(s) for every state s

• the best-known way of producing h is relaxation

• given a planning domain Σ = (S ,A, γ) and planning problem

P = (Σ, s0, g), relaxing them means weakening some of the

constraints that restrict what the states, actions, and plans

are

• max-cost heuristic

• additive-cost heuristic

• delete-relaxation heuristics

• landmark heuristics

26

DELIBERATION WITH

DETERMINISTIC MODELS

BACKWARD SEARCH

BACKWARD SEARCH

27

DELIBERATION WITH

DETERMINISTIC MODELS

PLAN-SPACE SEARCH

PLAN-SPACE SEARCH

• planning as a constraint satisfaction problem

• use constraint-satisfaction techniques to produce solutions

• solutions can be more flexible (for example actions are

partially ordered)

28

29

30

31

32

33

DELIBERATION WITH

REFINEMENT METHODS

operational models

• dynamic environments

• imperfect informations

• overlapping actions

• nondeterminism

• hierarchy

• discrete and continuous variables

34

DELIBERATION WITH

TEMPORAL MODELS

main motivations for making time explicit in planning and acting

• modeling the duration of actions

• modeling the effects, conditions, and resources borrowed or

consumed by an action at various moments along its duration

• handling the concurency of actions

• handling goals with relative or absolute temporal constraints

• planning with actions that maintain a value while being

executed

35

explicit representation of time for the purpose of acting and

planning can be

state-oriented keeps notion of global states, time is asocciated

with transitions (timed automata)

time-oriented dynamics is represented as a collection of partial

functions of time, describing local evolutions of state variables

instead of a state, the building block is a timeline

36

r1 leaves loc1 at or after t1, and it arrives at l at or before t2

• consistency

• possibly conflicting

• separation constraint

37

38

39

DELIBERATION WITH

NONDETERMINISTIC MODELS

MOTIVATION

drops the unrealistic assumption that each action performed in one

state leads deterministically to one state

• the search space is no longer represented as a graph; it

becomes an AND/OR graph (And branch corresponds to one

action that may lead to many possible states, OR branch

corresponds to choosing which action to apply)

• plans cannot be restricted to sequences of actions

• different types of solution plans - guarantee the achievement,

have some chances of success, ...

the motivation for interleaving acting with planning is even

stronger in the case of nondeterministic models

40

PLANNING DOMAIN - AND /OR GRAPH

41

PLANS AS POLICIES

planning problem a set of goal states Sg

memoryless policy partial function π that maps states into actions

γ̂(s, π) the set of states reachable from state s by a policy π

leaves(s, π) reachable states without action (leaf 6∈ Dom(π))

solution policy π with leaves(s0, π) ∩ Sg 6= ∅
safe solution policy π with ∀s ∈ γ̂(s0, π)(leaves(s, π) ∩ Sg 6= ∅)

acyclic and cyclic safe solutions

42

AND/OR GRAPH SEARCH

planning by forward search

planning by minmax search

symbolic model checking techniques

determinization techniques Consider one of the possible many

outcomes of a nondeterministi action at a time, find a plan that

works in the deterministic case. Then different nondeterminitic

outcomes of an action are considered and a new plan for that

state is computed, and finally the results are joined in a

contingent plan.

online approaches interleaving planning and acting, various

strategies

43

CONTEXT DEPENDENT POLICIES

• c. d. p. are more expresive than policies because they can take

into account the context in which a step of the plan is

executed, and the context can depend of the steps that have

been executed so far

• one could address this issue by extending the representation of

a state to include all relevant data (the history of states

visited so far)

• this might work in theory, but its implementation is not

practical

• instead, we introduce the notion of context

44

initial state s1

task:

achieve-

acyclic s2;

achieve-

acyclic s4

45

SEARCH AUTOMATA

• states of each search automaton correspond to the contexts of

the plan under construction

• search automaton is generated automatically from given task

46

PLANNING BASED ON SEARCH AUTOMATA

search automaton × planning domain

47

ACTING WITH INPUT/OUTPUT AUTOMATA

model components that interact with each other

48

CONTROL AUTOMATA

49

AUTOMATED SYNTHESIS OF CONTROL AUTOMATA

• generate control automata automatically, either offline of at

run-time

• for different types of tasks

50

DELIBERATION WITH

PROBABILITIC MODELS

MOTIVATION

• future is never entirely predictable

• models are necessarily incomplete

• complete deterministic models are often too complex and

costly to develop

51

PLANNING DOMAIN

• Markov decsion process

• nondeterministic state-transition system together with a

probability distribution and a cost distribution

52

PLANNING PROBLEM

policy is a partial function π : S ′ → A

γ̂(s, π) set of descendants of s reachable by π

leaves(s, π) states in γ̂(s, π) that have no successors with π

SSP problem set Sg of goal states

solution to the SSP problem — policy π s.t. leaves(s0, π) ∩ Sg 6= ∅
closed solution policy π providing applicable actions, if there are

any, to s0 and to its all descendants reachable by π

safe solution Pr(Sg |s0, π) = 1 1

unsafe solution 0 < Pr(Sg |s0, π) < 1

1Pr(Sg |s0, π) = liml→∞Prl(Sg |s0, π)

53

SAFE POLICY

• a policy π is safe iff ∀s ∈ γ̂(s0, π) there is a path from s to a

goal

• with a safe policy Run-Policy always reaches a goal

• with an unsafe policy Run-Policy may or may not terminate;

if it does terminate, it may reach either foal or a state with no

applicable action

54

OPTIMALITY PRINCIPLE

• V π : Dom(π)→ R+ be a value function giving the expected

sum of the cost of the actions obtained by following a safe

policy π from a sate s to a goal, V π(s) =
∑

σ Pr(σ)cost(σ)

•

V π(s) =

0 if s ∈ Sg

cost(s, π(s)) +
∑

s′∈γ(s,π(s)) Pr(s ′|s, π(s))V π(s ′) otherwise
(1)

• optimal policy V ∗ has a minimal expected cost over all

possible policies

55

POLICY ITERATION ALGORITHM

If π is a safe solution, then policy π′ is safe and ∀s V π′
(s) ≤ V π(s)

π′(s) = argmina{cost(s, a) +
∑

s′∈γ(s,π(s))

Pr(s ′|s, a) V π(s ′)

computing V π for current π: system of n linear equations with n

unknow variables or iterative method
56

VALUE ITERATION ALGORITHM

from V , a new value function can be computed with the following

equation

V ′(s) = min
a
{cost(s, a) +

∑
s′∈γ(s,a)

Pr(s ′|s, a) V (s ′)}

57

58

HEURISTIC SEARCH ALGORITHMS

heuristic search algorithms exploit the guidance of an initial value

function V0 to focus a planning proglem on a small part of the

search space

• best-fisrt search

• depth-first search

• iterative deepening search

59

	Introduction
	Deliberation with Deterministic Models
	State-variable representation
	Forward state-space search
	Backward search
	Plan-space search

	Deliberation with Refinement Methods
	Deliberation with Temporal Models
	Deliberation with Nondeterministic Models
	Deliberation with Probabilitic Models

