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Partially Ordered Set (poset)

m (P,C),P#0
m C is a binary relation which is reflexive, anti-symmetric, and transitive

Lattice

m let (P,C) be a poset
m if inf(x,y) and sup(x,y) exists for all x,y € P, then (P, C) is a lattice
m if inf(X), sup(X) exists for all X C P, then (P, C) is a complete lattice
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Galois Connection

m let (C, <) and (A, C) be complete lattices

m functions x: C — A,y: A — C such that
VeeCVaeA:x(c) Caec<vy(a)

X
malso A—— C
Y
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Abstracting an Iterative Computation |

m complete lattice (C, <)
B suppose we have a monotone function f: C — C
m we want to calculate (overapproximation of) smallest fixpoint of f

Ifp(f) =inflc € C|c=f(c)}
Ifp(f) < v(Ifp(f*)) = infly(a) | a € A, a = f*(a)}

m where f*: A — A approximates f
m if A is finite or has no infinite strictly ascending chains:
Ifp(f*) = ()™ (L)

m forsomen e N, Lo =inf(A)
m can be calculated iteratively
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important abstract domains have strictly ascending chains:

m intervals: [0,0] C [0,11C[0,2] C ---

5/17



Abstracting an Iterative Computation Il | &

important abstract domains have strictly ascending chains:
m intervals: [0,0] C [0, C [0,2] C - --
but infinite abstract domains are useful

m we can trade precision for tractability

5/17



e
ooo

Abstracting an Iterative Computation Il

important abstract domains have strictly ascending chains:
m intervals: [0,0] C [0, C [0,2] C - --
but infinite abstract domains are useful

m we can trade precision for tractability
m accelerate iterative computation

5/17



e
ooo

Abstracting an Iterative Computation Il

important abstract domains have strictly ascending chains:
m intervals: [0,0] C [0, C [0,2] C - --
but infinite abstract domains are useful

m we can trade precision for tractability
m accelerate iterative computation
m possibly find a element a 3 Ifp(f#)
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m let (A,C) be a poset
m (pair) widening operator: V: A x A — A
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m let (A,C) be a poset
m (pair) widening operator: V: A x A — A
m covering:Vx,y € AxCxVyandyCxVy
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m let (A,C) be a poset
m (pair) widening operator: V: A x A — A

m covering:Vx,y e AxCxVyandyCxVy
m termination: for every ascending chain {x;}i >0 the ascending chain

Yo = Xo Yi+1 =Yi V Xip

stabilizes after a finite number of terms

xVy
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m let (A,C) be a poset
m (pair) widening operator: V: A x A — A
m covering:Vx,y e AxCxVyandyCxVy
m termination: for every ascending chain {x;}i >0 the ascending chain
Yo = Xo Yir1t =Yi VXin

stabilizes after a finite number of terms
B note: V is often not symmetric

xVy
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m iterative calculation of X 1 Ifp(f*):

~

X():J_

Xip1 =X V (X1)
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Widening Il E

m iterative calculation of X 1 Ifp(f*):

Xo =L
Xip =% V 7 (Xy)
m example of V (intervals):
1 Vx=x
xV.1I=x
(Lo, uol V [, w] = [ite(ly < lg, —o0, lg), ite(ug < uy, +00, ug)]
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m iterative calculation of X 1 Ifp(f*):

~

XoZJ_

Xip1 =X V 7 (Xy)
m example of V (intervals):

1 Vx=x
xV.1I=x
[lo, uol V [L, w] = fite(ly < Lo, —o0, lp), ite(up < wy, 400, up)]

m if the bound is expanding, extrapolate to infinity
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m let (A,C) be a poset
m (pair) narrowing operator: A: A x A — A
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m let (A,C) be a poset
m (pair) narrowing operator: A: A x A — A
m bounding:Vx,y e AxCy — xC (xAy)Cy
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m let (A,C) be a poset
m (pair) narrowing operator: A: A x A — A
m bounding:Vx,y e AxCy — xC (xAy)Cy
m termination: for every descending chain {x;};>o the chain
Yo = Xo Yir1t =Yi AXip

stabilizes after a finite number of terms
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m let (A,C) be a poset
m (pair) narrowing operator: A: A x A — A
m bounding:Vx,y e AxCy — xC (xAy)Cy
m termination: for every descending chain {x;};>o the chain
Yo = Xo Yir1t =Yi AXip

stabilizes after a finite number of terms
E note: A is often not symmetric
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m iterative improving of precision of X 3 Ifp(*):
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m iterative improving of precision of X 3 Ifp(*):

2))

0=

=) R
)

Xi41 =

m obtains X such that: Ifp(fY) CX C X
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Narrowing I

m iterative improving of precision of X 3 Ifp(*):

3Z«LH =
m obtains X such that: Ifp(fY) CX C X

m example of A (intervals):

1l Ax=_1
xAL=_1

[lo,uo] A h,wl = [ite(lo = —0Q, 11,10), ite(uo = 400, u1,uo)]
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m iterative improving of precision of X 3 Ifp(*):

Xi41 =

m obtains X such that: Ifp(fY) CX C X
m example of A (intervals):

LAx=1
xAL=1
[lo,uo] A h,wl = [ite(lo = —0Q, 11,10),ite(u0 = —I—oo,u1,uo)]

m prefer finite bounds
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Widening and Narrowing Example

def foo():
i=1
while i <= 100:
i=1i+1

m possible values of i at the beginning of the cycle?
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def

foo():

i=1

while i <= 100:
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possible values of i at the beginning of the cycle?
least fixed point of f:
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def

foo():

i=1

while i <= 100:
i=1i+1

possible values of i at the beginning of the cycle?
least fixed point of f:

X=fX)={(nu{i+1]ieX})n{ieZ|i<100}
with widening, on intervals:
X =(X) = (MU (Xa 1,1)) N [—oco,100]
Xo = L

X1 =[,1]
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def

foo():

i=1

while i <= 100:
i=1i+1

possible values of i at the beginning of the cycle?
least fixed point of f:

X=fX)={(nu{i+1]ieX})n{ieZ|i<100}
with widening, on intervals:
X =(X) = (MU (Xa 1,1)) N [—oco,100]
Xo = L

X1 =[,1]
Xo=[,1 v (1,7 U[22]) M [—oo,100])
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def

foo():

i=1

while i <= 100:
i=1i+1

possible values of i at the beginning of the cycle?
least fixed point of f:

X=fX)={(nu{i+1]ieX})n{ieZ|i<100}
with widening, on intervals:
X =(X) = (MU (Xa 1,1)) N [—oco,100]
Xo = L

Xi = [1,1]
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Widening and Narrowing Example E

def

foo():

i=1

while i <= 100:
i=1i+1

possible values of i at the beginning of the cycle?
least fixed point of f:

X=fX)={(nu{i+1]ieX})n{ieZ|i<100}
with widening, on intervals:

X = X)=(,1u (X [1,1)) N [—oo,100]

Xo = L
X1 =1
X, = [1,+00]

X3 =X = 1, +00]
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def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

Xo = X = [1, +00]
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Widening and Narrowing Example

def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

0 1, +o0]

>y XN

X =
1 ;A(OA(([1,1]I_|()AA(OEB[1,1]))|_|[—oo,100])
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Widening and Narrowing Example

def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

2N

0 =X =[1,400]

>N

1=1[1,400] A ((1,M L (1, +00] ®© [1,1])) M [—00,100])
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def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

2N

0 =X =[1,400]

X0

= [1,4o0] A [1,100]
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def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

Xo =X = [1, +00]
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Widening and Narrowing Example E

def foo():
i=1
while i <= 100:
i=1i+1

m improve precision with narrowing:

Xo =X = [1, +00]
X; = [1,100]
X, = X; = [1,100]

m it is not always possible to reach the least fixed point by widening +
narrowing
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_Is Widening Necessary?

m only if the abstract domain contains infinite (or too long) ascending
sequences

m can the problem be always restated with finite abstraction? no

m suppose we have a class of programs which differ in a range of a variable
computed by widening + narrowing

m the finite abstraction would need to contain all these ranges

m if the class of programs is infinite, there is no finite abstraction as precise
as widening + narrowing approach

m the bounds might not be derivable from the program text

m morein [CC92]
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How to Design Widening and Narrowing? |

m wanttodefinev,A:LxL—L

m use a finite lattice L, such that L é L:

x Vy = vy(sup{e(x), (y)})
x Ay = inf{x, y(x(y)}
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m choose a specific thresholds and accelerate unstable bounds to nearest
such threshold

m eg.{—o0,0,+oo}forintervals:

[lOIuO] \Y [l1lu1] = [Ite(o < ]'1 < 101 O: Ite(l'l < 1’0: —00, I’O))r
ite(U.o <u <00, ite(uo < U,],—i-OO,U.o)H
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How to Design Widening and Narrowing? Il B |

m choose a specific thresholds and accelerate unstable bounds to nearest
such threshold

m eg.{—o0,0,+oo}forintervals:

[lo,uo] [l],‘lL]] [Ite 0< L < 10,0 ite(h < lg, —00, 10))

(
ite(ug < w; < 0,0, ite(ug < Wy, +00,up))]
[I‘OIuO] ﬂ]lu1 |te((10 < 0 < 1) (10 = _00)111110):
ite((w <0 < ug) V (lo = +00),wy, Up)]
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m itis also possible to generalize widening (and narrowing) to work on
more previous values
m or all previous values

m set widening/set narrowing
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