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Refresh I

Partially Ordered Set (poset)

(P,v), P 6= ∅
v is a binary relation which is re�exive, anti-symmetric, and transitive

Lattice

let (P,v) be a poset
if inf(x,y) and sup(x,y) exists for all x,y ∈ P, then (P,v) is a lattice
if inf(X), sup(X) exists for all X ⊆ P, then (P,v) is a complete lattice
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Refresh II

Galois Connection

let (C,6) and (A,v) be complete lattices

functions α : C→ A, γ : A→ C such that
∀c ∈ C, ∀a ∈ A : α(c) v a⇔ c 6 γ(a)

also A C
α

γ
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Abstracting an Iterative Computation I

complete lattice (C,6)

suppose we have a monotone function f : C→ C

we want to calculate (overapproximation of) smallest �xpoint of f

lfp(f) = inf{c ∈ C | c = f(c)}

lfp(f) 6 γ(lfp(f#))

= inf{γ(a) | a ∈ A,a = f#(a)}

where f# : A→ A approximates f

ifA is �nite or has no in�nite strictly ascending chains:

lfp(f#) = (f#)n(⊥A)

for some n ∈ N,⊥A = inf(A)
can be calculated iteratively
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Abstracting an Iterative Computation II

important abstract domains have strictly ascending chains:

intervals: [0, 0] v [0, 1] v [0, 2] v · · ·

but in�nite abstract domains are useful

we can trade precision for tractability

accelerate iterative computation

possibly �nd a element a w lfp(f#)
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Widening I

let (A,v) be a poset
(pair) widening operator: O : A×A→ A

covering: ∀x,y ∈ A. x v xO y and y v xO y
termination: for every ascending chain {xi}i>0 the ascending chain

y0 = x0 yi+1 = yi O xi+1

stabilizes after a �nite number of terms
note: O is often not symmetric

xO y

sup{x,y}

x y
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Widening II

iterative calculation of x̂ w lfp(f#):

x̂0 = ⊥
x̂i+1 = x̂i O f#(x̂i)

example ofO (intervals):

⊥O x = x

xO⊥ = x

[l0,u0]O [l1,u1] = [ite(l1 < l0,−∞, l0), ite(u0 < u1,+∞,u0)]

if the bound is expanding, extrapolate to in�nity
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Narrowing I

let (A,v) be a poset
(pair) narrowing operator: M : A×A→ A

bounding: ∀x,y ∈ A. x v y =⇒ x v (xM y) v y
termination: for every descending chain {xi}i>0 the chain

y0 = x0 yi+1 = yi M xi+1

stabilizes after a �nite number of terms
note: M is often not symmetric

y

xM y

x
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Narrowing II

iterative improving of precision of x̂ w lfp(f#):

̂̂x0 = x̂̂̂xi+1 = ̂̂xi M f#(̂̂xi)

obtains ̂̂x such that: lfp(f#) v ̂̂x v x̂
example ofM (intervals):

⊥M x = ⊥
xM⊥ = ⊥

[l0,u0]M [l1,u1] = [ite(l0 = −∞, l1, l0), ite(u0 = +∞,u1,u0)]

prefer �nite bounds
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Widening and Narrowing in a Diagram

⊥

= x̂0
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Widening and Narrowing Example

def foo():
i = 1
while i <= 100:

i = i + 1

possible values of i at the beginning of the cycle?

least �xed point of f:

X = f(X) = ({1} ∪ {i+ 1 | i ∈ X}) ∩ {i ∈ Z | i 6 100}

with widening, on intervals:

X = f#(X) = ([1, 1] t (X⊕ [1, 1])) u [−∞, 100]

X̂0 = ⊥

X̂1 = X̂0 O (([1, 1] t (X̂0 ⊕ [1, 1])) u [−∞, 100])

X̂2 = O(([1, 1] t (⊕[1, 1])) u [−∞, 100])

X̂3 = X̂2 = [1,+∞]
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̂̂
X1 = [1, 100]

it is not always possible to reach the least �xed point by widening +
narrowing
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Is Widening Necessary?

only if the abstract domain contains in�nite (or too long) ascending
sequences

can the problem be always restated with �nite abstraction? no

suppose we have a class of programs which di�er in a range of a variable
computed by widening + narrowing
the �nite abstraction would need to contain all these ranges
if the class of programs is in�nite, there is no �nite abstraction as precise
as widening + narrowing approach
the bounds might not be derivable from the program text
more in [CC92]
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How to Design Widening and Narrowing? I

want to de�neO,M : L× L→ L

use a �nite lattice L̂, such that L L̂
α

γ
:

xO y = γ(sup{α(x),α(y)})

xM y = inf{x,γ(α(y)}

14 / 17



How to Design Widening and Narrowing? II

choose a speci�c thresholds and accelerate unstable bounds to nearest
such threshold

e.g. {−∞, 0,+∞} for intervals:

[l0 ,u0]O [l1 ,u1] = [ ite(0 6 l1 < l0 , 0, ite(l1 < l0 ,−∞, l0)),
ite(u0 < u1 6 0, 0, ite(u0 < u1 ,+∞,u0))]

[l0 ,u0]M [l1 ,u1] = [ ite((l0 6 0 6 l1)∨ (l0 = −∞), l1 , l0),
ite((u1 6 0 6 u0)∨ (l0 = +∞),u1 ,u0)]
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Final notes on Widening and Narrowing

it is also possible to generalize widening (and narrowing) to work on
more previous values
or all previous values

set widening/set narrowing
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