
Verifying Time Partitioning in the DEOS ShedulingKernelJohn Penix (john.penix�nasa.gov)Computational Sienes Division, NASA Ames Researh CenterWillem Visser (wvisser�email.ar.nasa.gov) and SeungJoon ParkResearh Institute for Advaned Computer Siene, NASA Ames Researh CenterCorina P�as�areanu (porina�email.ar.nasa.gov)Kestrel Tehnologies, NASA Ames Researh CenterEri Engstrom, Aaron Larson and Niholas WeiningerHoneywell Tehnology CenterAbstrat.This paper desribes an experiment to use the Spin model heking system tosupport automated veri�ation of time partitioning in the Honeywell DEOS real-time sheduling kernel. The goal of the experiment was to investigate whether modelheking with minimal abstration ould be used to �nd a subtle implementationerror that was originally disovered and �xed during the standard formal reviewproess. The experiment involved translating a ore slie of the DEOS shedulingkernel from C++ into Promela, onstruting an abstrat \test-driver" environmentand arefully introduing several abstrations into the system to support veri�ation.Attempted veri�ation of several properties related to time-partitioning led to theredisovery of the known error in the implementation.The ase study indiated several limitations in existing tools to support modelheking of software. The most diÆult task in the original DEOS experimentwas onstruting an adequate environment to lose the system for veri�ation.The �delity of the environment was of ruial importane for ahieving meaningfulresults during model heking. In this paper, we desribe the initial environmentmodeling e�ort and a follow-on experiment with using semi-automated environmentgeneration methods. Program abstration tehniques were also ritial for enablingveri�ation of DEOS. We desribe an implementation sheme for prediate abstra-tion, an approah based on abstrat interpretation, whih was developed to supportDEOS veri�ation. 1. IntrodutionThe ost of software aspets of ight erti�ation for avionis systemshas grown signi�antly in reent years due to the inreased use andomplexity of software. This software provides advaned ontrol, om-muniation and safety features at a redued ost and weight. However,veri�ation and erti�ation of software for high levels of assuraneis extremely expensive due to the manual e�ort needed to supportthe extensive testing required by the Federal Aviation Administration 2004 Kluwer Aademi Publishers. Printed in the Netherlands.
fmsd.tex; 26/01/2004; 12:21; p.1

2(FAA) [37℄. Furthermore, the diÆulty of veri�ation and erti�ationwill ontinue to inrease due to an industry trend toward IntegrateModular Avionis (IMA) to further redue osts. IMA allows multi-ple appliations of varying ritiality levels to exeute on a sharedomputing resoure [59℄. Part of the ost savings strategy of IMA isthat software appliations will be individually erti�ed allowing themto be mix-and-mathed with avionis platforms. This is urrently notsupported by the FAA erti�ation proess whih takes the more on-servative approah of ertifying eah platform on�guration. However,this approah is well advised beause it is well known that testing isinadequate to assure that arbitrary ombinations of appliations willoperate together safely [12℄.Reduing the manual e�ort required to support erti�ation whileinreasing the levels of assurane will require signi�ant advanes insoftware veri�ation and erti�ation tehnology. We have been inves-tigating the use of model heking to support the analysis of ritialavionis software systems. Model heking is an algorithmi formalveri�ation tehnique for �nite-state onurrent systems [18, 56℄. Orig-inally applied to hardware veri�ation, model heking has beomea promising tehnique for analyzing software requirements spei�a-tions [2, 14, 15, 38℄ and software design models [1, 24, 40℄. One reasonfor this trend is that, at high levels of abstration, the salabilitylimitations of model heking an be avoided while providing usefulinformation about a system. This is onvenient beause early life-yleerrors are expensive to orret later [7℄ and an often lead to safetyritial failures [47℄. However, some software errors annot be disov-ered in the requirements and design stages. This may be beause thedetails of the system are not suÆiently elaborated to reveal prob-lems until implementation, or simply beause errors are made duringimplementation. NASA has reently su�ered from a number of soft-ware implementation problems, inluding a missing ritial setion thataused a deadlok in the Deep Spae 1 Remote Agent ontrol sys-tem [35℄ and a variable that was not re-initialized after a spurioussensor signal that led to the loss of the Mars Polar Lander [45℄. Theseerrors are symptoms of the fat that software has beome a pervasiveomponent of aerospae systems and is therefore more omplex anddiÆult to design and validate.The state of the art for �nding errors at the implementation levelare stati analysis [53, 64, 31, 28℄ and testing [6, 13℄. However, testingonly provides a small degree of behavioral overage of a system, es-peially for onurrent systems, where testing has limited ontrol overthread sheduling [70, 43℄. Stati analysis has better suess dealingwith onurreny, but it an be hallenging to obtain aurate re-
fmsd.tex; 26/01/2004; 12:21; p.2

3sults [49℄. Model heking, however, has the potential to provide moreextensive behavioral overage in two ways. First, the model heker anevaluate every possible interleaving of threads in the system. Seond,model heking an use nondeterministi environment models to losea system for veri�ation. This enables the model heker to generateall ombinations of environmental behaviors as the losed system isheked. While in pratie it is not possible to exhaustively searhthis spae of behaviors, it provides a omprehensive starting point forsystemati redution and abstration of the state spae.This paper desribes the analysis of a time partitioning property ofHoneywell's Dynami Enforement Operating System (DEOS) shedul-ing kernel, using the SPIN model heker. The goal of this experimentwas to investigate whether model heking, supported by minimal, well-de�ned abstrations, ould be used to �nd a subtle implementationerror that was originally disovered and �xed during the standard for-mal review proess. The analysis was done on a model of the systemvery similar to the original ode: there is essentially a 1-to-1 map-ping from statements in the original ode to statements in the model.Therefore, this work an be lassi�ed as one of the �rst attempts atprogram model heking (or software model heking) [3, 22, 39, 42, 68℄.The philosophy of program model heking is that programs written inpopular programming languages should be model heked diretly in a(semi-)automated fashion. The entire proess used in the investigationis shown in Figure 1. To best understand the feasibility and appliabil-ity of this approah, the proess of translating the soure ode into amodel heking language was separated from the proess of abstratingthe ode to permit tratable veri�ation. This allowed us to assess thetype and extent of abstration that might be required to apply modelheking diretly to soure ode.During this investigation, we addressed several hallenges of modelheking omplex software systems. First, in order to analyze the kernel,it was ompleted with an environment that adequately models userthreads running on the kernel, the hardware lok and the systemtimer. Seond, the state spae of the kernel is very large (exhaust-ing 4 Gigabytes of memory during veri�ation, without ompletion),so abstration was required to make veri�ation tratable. The mainontribution of this paper is to demonstrate that model heking anbe used to loate subtle errors in omplex software systems. A seondontribution is to motivate and demonstrate how tool support for en-vironment generation and data abstration an make these tehniquesmore ost-e�etive so that they may be used in pratie.The most diÆult task in the original DEOS experiment (Setion 2)was onstruting an adequate environment to lose the system for ver-
fmsd.tex; 26/01/2004; 12:21; p.3

4
Abstraction
Predicate

Model Checker
SPIN Counterexample

Analysis

DEOS Kernel

Promela Model

Completed/Abstracted Model

Yes

Property Holds

No

Environment
Modeling

Refine Model

DEOS Error

Property

Translation

Figure 1. Methodology used to investigate soure ode model heking.i�ation. The �delity of the environment turned out to be of ruialimportane for ahieving meaningful results during model heking.To redue the size of the state spae, the environment model used forveri�ation ontains a signi�ant amount of abstration with respetto the modeling of time. In this paper, we desribe the initial environ-ment modeling e�ort (Setion 3) and a follow-on experiment with usingsemi-automated environment generation methods (Setion 3.5).Systemati abstration also played a ritial role in making theveri�ation of DEOS tratable in pratie. In this paper, we desribean extension to prediate abstration, an abstration approah basedon abstrat interpretation, to allow it to be used on this ase study.Setion 4 provides an overview of the use of abstration to supportveri�ation and introdues prediate abstration. The existing workon prediate abstration has been in the ontext of simple modelingand programming languages. The main ontribution of our work is theextension of existing abstrat frameworks to support abstration ofrelationships between lasses, or interlass abstrations. We show howa spei� in�nite state programming pattern that ours frequently inpratie an be transformed to a �nite state program using prediate
fmsd.tex; 26/01/2004; 12:21; p.4

5abstration. We then demonstrate how this approah was applied toDEOS to allow tratable veri�ation (Setion 4.4).Sine our initial e�ort to analyze DEOS, a number of subsequentstudies, by ourselves and others, have been performed on DEOS with avariety of di�erent approahes. In Setion 5 we highlight these ativitiesand also look at related work in the area of program analysis via modelheking. Beause the problem of extrating models from programs hasreeived muh attention [21, 36, 22, 3, 41, 68, 65℄, we do not presentthe details of our translation [50℄ from C++ to Promela, the inputlanguage of SPIN. Finally, Setion 6 ontains onlusions and futureresearh diretions.2. Overview of Original DEOS ExperimentFor erti�ation of ritial ight software, the FAA requires that fun-tional software testing ahieve 100% overage with a strutural overagemeasure alled Modi�ed Condition/Deision Coverage (MC/DC) [58,16℄. Although MC/DC overage is quite extensive and expensive toahieve, Honeywell was still onerned that it would not be suÆient toassure omplex properties in integrated modular avionis arhitetures.This onern was based on their experiene developing and testing theDEOS operating system. During DEOS development, a subtle error inthe time partitioning implementation was not disovered by extensivetesting.To address this onern, we performed an experiment to determinewhether model heking, with only minimal abstration, ould providea systemati method for disovering this error. Honeywell provided anoverview of the basi funtionality of DEOS and a slie of the operatingsystem ontaining the budgeting and sheduling algorithms. The NASAteam then applied model heking without knowing any details of theDEOS implementation or the error. The soure ode that was analyzedwas 1500 of the approximately 10,000 lines of C++ ode whih om-promise the DEOS kernel. This setion introdues DEOS and desribesthe veri�ation experiment.2.1. DEOSDEOS is a portable miro-kernel-based real-time operating system usedin Honeywell's Primus Epi avionis produt line. DEOS supports ex-ible, integrated modular avionis appliations by providing both spaepartitioning at the proess level, and time partitioning at the threadlevel. Spae partitioning ensures that no proess an modify the mem-ory of another proess without authorization, while time partitioning
fmsd.tex; 26/01/2004; 12:21; p.5

6
0 4020

5

preempt timerpreempt

5
timer timer

timer
5

5
timer

15
u1: 20/60

u2: 20/60

m: 5/20

idle

preempt

1010

5

60Figure 2. Thread Sheduling in DEOSensures that a thread's aess to its CPU time budget annot be im-paired by the ations of any other thread. The ombination of spaeand time partitioning makes it possible for appliations of di�erentritialities to run on the same platform at the same time, while ensur-ing that low-ritiality appliations do not interfere with the operationof high-ritiality appliations [59℄. This noninterferene guarantee re-dues system veri�ation and maintenane osts by enabling a singleappliation to be hanged and re-veri�ed without re-verifying all of theother appliations in the system. DEOS itself is erti�ed to DO-178BLevel A, the highest possible level of safety-ritial erti�ation.The DEOS sheduler enfores time partitioning using a Rate Mono-toni Analysis (RMA) sheduling poliy [62℄. RMA is a general ap-proah for assuring that various system lateny requirements an bemet during real-time thread sheduling. The basi mehanism in RMAis the assignment of high-priorities to threads with the most stringentreal-time requirements. Figure 2 shows an example DEOS shedulingtime line. In the example, the system ontains a main thread, two userthreads (hildren of the main thread) and the speial idle thread whihruns when no other threads are shedulable. The main thread runs inthe fastest period, and therefore also at the highest priority, with a bud-get of 5 out of 20 time units. The user threads run in a period 3 times aslong as the main thread, eah with a budget of 20/60 time units. In theexample, all of the threads are sheduled and appropriately alloatedtheir requested budget within their respetive periods. Threads areinterrupted when they use all of their budget (timer interrupt) or whena thread of higher priority beomes shedulable (preemption). The idlethread runs at the end of the sequene to take up the slak time in thesystem that is not requested by any thread.Many real-time operating systems are at least partially statiallysheduled, whih makes it relatively easy to analyze the possible ex-eution sequenes in the system. DEOS, however, supports fully dy-nami reation and deletion of threads and proesses at runtime. Whenthreads are reated within a proess, they reeive some budget from
fmsd.tex; 26/01/2004; 12:21; p.6

7the main thread for that proess. When they are deleted, the bud-get is returned to the main thread. DEOS also provides a rih setof thread synhronization and inter-proess ommuniation primitives.As a result of this omplexity, the number of possible interleavingsof program exeution in DEOS is enormous, and alulations suh asshedulability analyses must often be made at runtime. This makessystemati veri�ation of time partitioning a diÆult task.2.2. Model Cheking DEOSBeause there are no model hekers that take C++ as input, theDEOS ode had to be translated into the input notation for a modelheker. A methodial, 1-to-1 mapping between the ode and the modelheker input was used to separate abstration from translation to morelearly understand what abstrations were neessary. We hose theSpin model heker [40℄ sine Promela, the input language for Spin,is the losest model heking language to C++. Promela is a proessbased imperative language supporting omplex data-strutures (e.g.reords and arrays) and allows ommuniation with shared memoryand message passing. An overview of the Promela language, as usedin this paper, is provided in Setion 3.1. The translation was based onmodeling lasses as reords and using arrays of these reords to storeobjet data, similar to the tehnique used by Havelund and Pressburgerfor Java [36℄. We will not disuss the details of the translation beausethis has been subsumed by reent work in model extration [22℄ anddiret model heking [68℄. To model hek DEOS, an environment wasonstruted to model the possible behaviors of user threads, the systemlok and the system timer. Setion 3 desribes the environment thatwas onstruted for veri�ation of the kernel.Veri�ation in Spin involves systemati exeution of all possibleproess interleavings in a program. It detets assertion violations, dead-loks and supports model heking of linear temporal logi (LTL) [51,67℄ formulae. In LTL, a pattern of states is de�ned that haraterizesall possible intended behaviors of a system. We desribe LTL operatorsusing Spin's ASCII notation. LTL is a propositional logi with the stan-dard onnetives &&, ||, -> and !. It inludes three temporal operators:<>p says p holds at some point in the future, [℄p says p holds at allpoints in the future, and the binary pUq operator says that p holds atall points up to the point where q holds (p until q).The main aspet of DEOS that we were interested in verifying wasthe time partitioning property: that eah thread in the kernel is guaran-teed to have aess to its omplete CPU budget during eah shedulingperiod. Two approahes to speifying time partitioning properties in
fmsd.tex; 26/01/2004; 12:21; p.7

8
5 12 12

timer timer

0 4020

m : 5/20

u1: 20/60

u2: 20/60

timer

8

15
delete: m = 12/20

60

idle

preempt

8

preempt

Figure 3. Error senarioterms of events in the DEOS kernel were investigated. The �rst, usingassertions over program variables, was not e�etive but led to someinsight in the design [50℄. The seond approah used a liveness propertystated in terms of labeled program events referred to from within anLTL property spei�ation. This approah led to the redisovery of theknown error.To speify time partitioning using liveness, we had to identify aondition that would always our if time partitioning was maintained.We hypothesized that, in the ase where there is slak in the system(i.e. the main and user threads do not request 100% CPU utilization),the idle thread should run during every longest period1. To speify thisproperty, labels were plaed in the program to identify when the idlethread starts running and where the longest period begins and ends.The property is then spei�ed as:[℄(beginperiod -> (!endperiod U idle))meaning that it is always ([℄) the ase that, when the longest periodbegins, it will not end until (U) the idle thread runs. That is, idle willalways run between the begin and end of the longest period.Spin automatially generates a �nite state automaton that monitorsthe system for violations of the LTL property. Veri�ation is done overthe ombination of the property automaton and the system model. Thisauses a potential inrease of the state spae by a fator of 4 in thisexample, beause the property monitor has 4 states. In pratie, theinrease is approximately two fold, beause not all states are reahable.The property was heked using several DEOS on�gurations andenvironments. In a on�guration with 2 user threads and with dynamithread reation and deletion enabled, Spin reported the error senarioshown in Figure 3. In this on�guration, the main thread runs in thefastest period (period 0) with an initial budget of 19/20 time-units. Twouser threads are reated to run in the next fastest period, period 1, withbudgets of 20/60 time-units. To reate the CPU budget for eah user1 This is a neessary, not suÆient, ondition of time partitioning.
fmsd.tex; 26/01/2004; 12:21; p.8

9thread, 7/20 is taken from the main thread, leaving it with a budgetof 5/20 time-units. The total budget requested in this on�guration is55/60 time-units, leaving 5 units for the idle thread to �ll at the endof period 1.Figure 3 shows a sheduling sequene where user thread 1 deletesitself (before being interrupted) at the end of the �rst period 0. At thispoint, its budget (20/60 or 7/20 time-units) is given bak to the mainthread, giving it 12/20 units. The sheduling then ontinues normallyto the end of the period 1 boundary. At this point, Spin signals anerror beause the idle thread did not run between the two period oneboundaries. Notie that user thread 2 only ran for 16 (8+8) time unitsand not the 20 it requested, so time partitioning was violated. Theerror stems from the fat that when user thread 1 deleted itself, itimmediately returned its budget to the main thread. This leaves themain thread with a remaining budget of 24 (12+12) time-units anduser thread 2 with 20, with only 40 left in period 1. The result is thatuser thread 2 does not get all of the CPU time it requested.This was the same bug that was disovered by Honeywell duringode inspetions. This ould indiate that model heking an providea systemati and automated method for disovering errors. However,there were several problems. The state spae of the on�guration re-quired to show the bug was too large to be exhaustively veri�ed. Itwas not apparent that the model ould even be searhed exhaustivelyto a depth neessary to guarantee disovery of the error. In addition,after adding the �x to the ode, we were unable to perform exhaustiveveri�ation. To guarantee the error would be disovered and to permitexhaustive veri�ation of the �x, abstration had to be applied.3. Environment ModelingIn the original experiment the most hallenging task was developing anenvironment model to allow eÆient analysis of time partitioning. TheDEOS kernel reeives alls from threads that run on the kernel andresponds to both periodi system lok interrupts (alled system tiks)and timer interrupts from the hardware via interrupt handling routines.The �delity of the environment was of ruial importane for ahievingmeaningful results during model heking. Spei�ally, modeling timein di�erent ways led to trade-o�s between result validity and statespae size. In this setion, we introdue the Promela language of Spinand desribe the initial environment modeling e�ort. We then desribehow semi-automated tehniques for environment generation, previously
fmsd.tex; 26/01/2004; 12:21; p.9

10only tested on small examples, redued most of the e�ort involved inthe onstrution of the original environment model.3.1. Brief Overview of PromelaA Promela program onsists of a olletion of proesses that ommu-niate via bu�ered hannels and shared global variables. A proess bodyis a sequene of loal variable and hannel delarations, and statements.Proesses an be parameterized with variables, inluding hannels. Aproess P is started with the statement: run P(...). A hannel is abounded �rst-in-�rst-out bu�er. Proesses an read and write messagesof a delared type to hannels.Basi statements inlude assignment statements and hannel om-muniation statements. The skip statement is a no-operation state-ment. Statements an either be exeutable or bloked in a partiularstate. Two kinds of statements an blok: hannel ommuniations(desribed below) and boolean expressions ourring as statements.A boolean expression bloks if it evaluates to 0 and is otherwise equiv-alent to skip. Statements an be omposed sequentially, as in s1;s2,and an be grouped together using urly brakets: f...g. A omposedstatement is exeutable if its �rst statement is exeutable.A Promela if-statement has a sequene of options eah preededby a double-olon. Only one of the statements is exeuted, and onlyone where the �rst sub-statement { alled the guard { is exeutable.When several statements have exeutable guards, the hoie of thestatement is non-deterministi. When no guard is exeutable, the if{statement bloks. The speial else statement an be used at most oneas the �rst sub-statement of an option, and it will beome exeutableif all other options are non-exeutable. There is a orresponding do-statement whih is exeuted repeatedly until a break statement isenountered.Proesses ommuniate over hannels using send and reeive state-ments. For example, a proess sends the value 5 to a hannel byexeuting the statement !5, while another proess an reeive thisvalue in the variable x by exeuting ?x. If a hannel is full, then asend-statement will blok. Similarly, if the hannel is empty, a read-statement will blok. If the size of the hannel is de�ned as 0, ommu-niation is by rendezvous; the sending proess bloks until a reeivingproess reads the value, and vie versa.3.2. The DEOS KernelFigure 4 illustrates the Promela environment onstruted to modelhek the DEOS kernel. There is a box for eah onurrently exeuting
fmsd.tex; 26/01/2004; 12:21; p.10

11
User Thread 1

Idle Thread

Main Thread

User Thread n

System Tick Generator

Timer

create(budget,period)

finishedForPeriod

resume(id)
stop(id)

resume(1)

finishedForPeriod

stop(0)

stop(1)

delete(id)

resume(0)

start(time)

getTimeRemaining

timerInterrupt

systemTickInterrupt

coldStartKernel();

DEOS Kernel

START_A_THREAD();

START_THE_TIMER();
createMainThread();
do

//idle thread

//for idle

::fromThread?create(budget,period) ->

::fromThread?delete(id) ->
toThread!getId(id);

deleteThread(id);

START_THE_TIMER();
::fromThread?finishedForPeriod ->

START_A_THREAD();

waitUntilNextPeriod();
START_A_THREAD();
START_THE_TIMER();

::fromSystem?systemTickInterrupt ->
old = Scheduler_itsRunningThread;
Scheduler_handleSystemTickInterrupt();
if
::old != Scheduler_itsRunningThread ->

STOP_A_THREAD(old);
START_A_THREAD();
START_THE_TIMER();

::fromTimer?timerInterrupt ->

::else
fi;

// check for preemption

old = Scheduler_itsRunningThread();
Scheduler_handleTimerInterrupt();
if // special case for idle
::old != Scheduler_itsIdleThread ->

STOP_A_THREAD(old);
START_A_THREAD();

::else
fi;
START_THE_TIMER();

od;

createThread(id,period,budget);

Figure 4. DEOS Kernel and its Environmentproess: the kernel, the idle thread, the main thread, n user threadsto be sheduled by DEOS, the system tik generator and the timerproess. The dotted box around the last two is to indiate that thesystem tik generator and the timer were eventually ombined intoone proess. Rendezvous ommuniation between proesses is ahievedusing synhronous message passing, illustrated by the labeled arrowsin the �gure. Dotted arrows indiate values being returned in responseto some messages. In the following setions, we disuss the di�erentomponents of the DEOS kernel and its environment in detail.It is important to note that in the real system, there are not sepa-rate \proesses" for the DEOS kernel and the threads: there is reallyone thread of ontrol with ontext swithes initiated by kernel odeto swith threads. However, this style of sheduling did not map wellonto the Promela sheduling semantis. Therefore, the kernel (trans-
fmsd.tex; 26/01/2004; 12:21; p.11

12lated ode) and the threads (environment ode) were put into di�erentPromela proesses and ontext swaps were modeled by sending startand stop messages to the thread proesses.The kernel ode interats with its environment through a wrapperthat maps messages from the environment to methods in the trans-lated ode. The wrapper ode is shown inside the DEOS kernel box inFigure 4. After initializing the kernel and starting the idle thread andmain thread, the proess sits in a loop and reats to messages from theenvironment.The kernel an reeive three messages from a thread, diretly orre-sponding to DEOS API alls: reate, delete and finishedForPeriod(yield). The kernel an also reeive interrupt messages whih evoke theinterrupt handler methods of the kernel. The systemTikInterruptmessage is generated periodially (at the frequeny of the shedulingperiod of the highest priority threads) and indiates that a threadof higher priority than the urrently exeuting thread may beomeshedulable. A timerInterrupt message indiates that a thread hasexhausted its budget and must be stopped immediately.In response to messages, the kernel an send messages to start andstop threads and to start the timer for a spei� amount of time. Forexample, in DEOS, only the urrently running thread an delete itself,so a new thread must be sheduled in response to the delete all.If a thread is preempted, it is important to �nd out how muh timestill remains from its budget, sine it may get another hane to runwithin the urrent period. This is done by sending a getTimeRemainingmessage to the timer, and the value returned in the reply is used toupdate the thread's remaining budget data.3.3. ThreadsWe distinguish among three types of threads: the idle thread, the mainthread and user threads. The User threads have most funtionality:they an be stopped, an yield the CPU and an deide to terminate.The Promela ode for the user threads is shown in Figure 5. Mes-sages are sent as data reords over hannels, where the �rst �eld inthe reord denotes the message type. Messages have the form han-nel!message type, data, data. For message types where some data isunneessary, 0's are used as plae holders. In the �gure, a nondetermin-isti if statement is used to implement a onise environment modelwhere all possible thread behaviors are examined. Synhronization isused to ensure that when the kernel sends a resume(id) message onlythe thread with the orresponding id will reeive it2. The simpliity2 eval(id) allows synhronization only when the message data mathes id.
fmsd.tex; 26/01/2004; 12:21; p.12

13of this model an be ontrasted to the omplexity of the interruptgenerator presented in the next setion.protype UserThread(han fromSheduler, toSheduler;byte myBudget, periodIndex)f byte id;byte threadState = threadStatusNotCreated;toSheduler!reate(myBudget,periodIndex);fromSheduler?getId(id);threadState = threadStatusDormant;do::fromSheduler?resume,eval(id) ->threadState = threadStatusAtive;if::fromSheduler?stop,eval(id);::toSheduler!finishedforperiod,0,0;::toSheduler!delete,id,0 -> goto terminate;fi;threadState = threadStatusDormant;od;terminate: skip;gFigure 5. The DEOS User Thread Model.3.4. InterruptsModeling the generation of hardware lok and timer interrupts was themost diÆult part of onstruting the environment for DEOS. Promelaand Spin do not provide speial support for real-time loks, so thetimers had to be modeled expliitly. The hallenge was to determinethe level of abstration at whih real-time needed to be modeled.To verify the time partitioning features of the DEOS kernel, thetime-related interrupts had to be oordinated to avoid \impossible"behaviors. Without oordination, system tik interrupts might ourseveral times, eah indiating that 20 time units had passed, but thetimer, set for 10 time units, would never go o�. To allow the neessarylevel of oordination, the SystemTikGenerator and Timer were om-bined into one proess, shown in Figure 6. The ombined timer modelkeeps trak of the time that has been used in a period and makes surethat a system tik interrupt ours only when the appropriate amountof time has been used.Promela does not diretly support sending and reeiving messagesbased on evaluating a ondition, but this an be implemented using atwo element array of hannels, with the ondition used as the index
fmsd.tex; 26/01/2004; 12:21; p.13

14protype TIMER() fbyte Remaining time = 0;/* time remaining for thread after timer ounteddown from Start time */byte Used time = 0;/* time used in period sine last tik; must beless than or equal to uSesInFastestPeriod */byte Start time = 0;/* time the timer was started with */byte Y=0; /* time used by a thread */bool tik sine start = FALSE;bool started=FALSE;bool timer went off = FALSE;do/* Start Timer */::Shed2Timer?start,Start time ->tik sine start = FALSE;started = TRUE;timer went off = FALSE;/* Get Time Remaining */::Shed2Timer?getTimeRemaining,0 ->started = FALSE;if::tik sine start ->Timer2Shed[1℄!timeRemaining,Remaining time;::timer went off ->assert(Remaining time == 0);Timer2Shed[1℄!timeRemaining,Remaining time;::else ->/* Y: 0 <= Y <= uSesInFastestPeriod - Used time AND *//* 0 <= Y <= Start time */if::(uSesInFastestPeriod - Used time) <= Start time ->Y = uSesInFastestPeriod - Used time;::((uSesInFastestPeriod - Used time)/2) <= Start time ->Y = (uSesInFastestPeriod - Used time)/2;::Y = 0;fi;Remaining time = Start time - Y;Timer2Shed[1℄!timeRemaining,Remaining time;Used time = Used time + Y;fi;/* Timer Interrupt - hannel array trik for onditional send */::Timer2Shed[started℄!timerintrpt,0 ->Remaining time = 0;Used time = (Used time + Start time)timer went off = TRUE;/* System Tik - hannel array trik for onditional send */::Tik2Shed[((Start time+Used time)>= uSesInFastestPeriod) && started℄!tikintrpt,0 ->Y = uSesInFastestPeriod - Used time;Remaining time = Start time - Y;Used time = 0;tik sine start = TRUE;odgFigure 6. Final DEOS timer model
fmsd.tex; 26/01/2004; 12:21; p.14

15to selet whih hannel will be used for ommuniation.3 For example,for a ondition p and hannel array , a onditional send is [p℄!xand the orresponding reeive is [1℄?y. These two statements willonly synhronize if p is true (i.e. equal to 1). This tehnique was usedto ontrol whether a timer interrupt or a system tik message wouldbe sent to the kernel on the Timer2Shed hannel. A timer interruptmessage an only be sent if the timer has been started. A tik interruptmessage an only be sent when the timer has been started and theamount of time sine the previous tik interrupt is greater or equal tothe amount of time between tiks (uSesInFastestPeriod).The behavior of the timer is guided by two variables: the time re-maining from the thread's budget (Remaining time) and the amountof time elapsed sine the last tik (Used time). These variables areupdated in response to eah of the messages the timer proess anreeive as follows:Start timer - Start time is assigned the value reeived from thekernel (the thread's budget) with whih the timer is started.Timer interrupt - Indiates that the thread exhausted it's budget, sothe Remaining time must be 0. The amount of time used withinthe period is the previously used time plus the amount of time thetimer was started with (Start time).System tik - The time remaining in a thread's budget (i.e. the timeleft on the timer when the system tik ours) must be alulated.First, the amount of time the thread used is alulated, whih isthe total time in the period (uSesInFastestPeriod) minus thetime previously used in the period (Used time). The amount oftime remaining on the timer, Remaining Time, is then the amountof time the thread was started with minus the time the threadused. Furthermore, sine a system tik just ourred, Used time isreset to zero for the next period.Get time remaining - To limit the number of potential exeutionpaths and avoid state spae explosion, we limited the hoies asto the amount of time that a thread ould exeute. In ases wherethe interrupts do not onstrain the amount of time that has passedduring thread exeution, the timer nondeterministially hooseshow muh time a thread uses. It hooses from three possibilities:3 Standard onditional statements annot be used beause the ondition eval-uation and message ommand must be exeuted atomially. Spin does not allowmessages to be sent inside atomi setions beause messages indiate global stateswhere threads must be interleaved.
fmsd.tex; 26/01/2004; 12:21; p.15

16 either it used no time, or it used all of its time (or all of the timeleft in the period, if that is smaller), or it used half of the timebetween the urrent time and the end of the period. These aseswere seleted based on intuition similar to that used in seletingboundary ases during testing, with the middle value inluded forgood measure. Experiments that varied this abstration showedthat the middle value inreased the state spae by approximatelytwofold, but did not improve error detetion.3.4.1. DisussionThe deision was made to use an abstration of time, rather than oneof the real-time extensions of SPIN (e.g. RT-SPIN [66℄ and DTSPIN[9℄), sine we believed the inherent omplexity of these tehniqueswould add an unneessary layer of ineÆieny during model hek-ing. Furthermore, the abstrations used were under-approximations (asubset) of timing behavior rather than over-approximations (a super-set)4. This deision was inuened by the fat that the property beingheked (time-partitioning) was dependent on time, and experimentswith over-approximation of timing behavior lead to many spuriouserrors. Veri�ation using an under-approximation of time does notprovide a full guarantee that properties are true. However, any errorsdeteted will be real errors, as long as any other data abstrationsthat are used do not over-approximate behavior. In Setion 4 we de-sribe a preise abstration that an be safely ombined with the timeunder-approximation to preserve errors.3.5. Environment Modeling Using LTL AssumptionsThe most diÆult part of de�ning the environment of DEOS was de-veloping the model for the interrupt generation that would allow us tohek time partitioning. Developing and validating the interrupt modelin Figure 6 took approximately 2 man-months. Also, despite our beste�orts, this model is hard to understand and maintain. Beause theseissues are serious barriers to the adoption of model heking as a tool to�nd errors in programs, automated methods for generating environmentmodels were investigated.This setion presents the appliation of the �lter-based methodsdesribed by Dwyer et al. [30, 54℄ to generate the environment thatmodels the generation of interrupts. Starting with the most generalde�nition of the environment, a set of LTL environment assumptions isestablished and used to re�ne the environment de�nition. This re�ned4 See Setion 4.1 for more preise de�nitions of over- and under-approximation.
fmsd.tex; 26/01/2004; 12:21; p.16

17protype skeleton1 TIMER() fbyte Start time;byte Remaining time;do/* SYSTEM TICK GENERATOR *//* send a tik interrupt to the sheduler */:: Tik2Shed[1℄!tikintrpt,0;/* TIMER *//* sheduler starts the timer with value Start time */:: Shed2Timer?start,Start time;/* sheduler asks for Remaining time */:: Shed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2Shed[1℄!timeRemaining,Remaining time;/* send a timer interrupt to sheduler */:: Timer2Shed[1℄!timerintrpt,0;:: skip; /* some internal, non-observable ation */odgFigure 7. Timer skeletonenvironment is used to redisover the error in DEOS. Moreover, theenvironment is preise enough suh that when used with the orretedversion of the kernel, no spurious errors are reported.The most general environment for properties stated in LTL is theuniversal environment that is apable of exeuting any sequene ofoperations in the system's interfae. Under the assume-guarantee rea-soning paradigm [52℄, assumptions about the environment an be ex-pressed in LTL and used to onstrain the behavior of the universalenvironment [54℄. In partiular, if the environment assumption � andthe guarantee are LTL formulas, one an simply hek the formula� ! . The LTL assumption an also be used to synthesize a re�nedenvironment, in whih ase � is eliminated from the formula to beheked [54℄.3.5.1. Universal Environment for the DEOS ShedulerTo build the DEOS timer model systematially, the interfae betweenthe timer and the sheduler was identi�ed and used to build the envi-ronment skeleton in Figure 7. This environment is apable of invokingany sequene of interfae operations. However, to verify time parti-
fmsd.tex; 26/01/2004; 12:21; p.17

18protype skeleton2 TIMER() fbyte lok = 0;byte Start time;byte Remaining time = 0;do/* SYSTEM TICK GENERATOR *//* send a tik interrupt to the sheduler */:: Tik2Shed[1℄!tikintrpt,0;/* reset */lok=uSesInFastestPeriod;/* TIMER *//* sheduler starts the timer with value Start time */:: Shed2Timer?start,Start time;/* estimate Remaining time */if:: Start time > lok -> Remaining time=Start time-lok;lok=0;:: Start time <= lok -> Remaining time=0;lok=lok-Start time;:: Remaining time = Start time;/* put half time option here */fi;/* sheduler asks for Remaining time */:: Shed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2Shed[1℄!timeRemaining,Remaining time;/* send a timer interrupt to sheduler */:: Timer2Shed[1℄!timerintrpt,0;odgFigure 8. Timer skeleton with Remaining time variabletioning, the model must be re�ned to apture the relationship betweenStart time and Remaining time. This was done by introduing a thirdvariable, lok, to reord the time remaining in a period.The resulting ode for the timer is shown in Figure 8. The underlyingpriniple is variable time advane [63, 10℄: at eah event, the time atwhih the next event will our is alulated. When the timer is started,depending on the amount of time the timer is started with and theamount of elapsed time in the period, the next event is predited (eithertimer or system tik interrupt) and the remaining time and elapsed timeis alulated aordingly. Spei�ally, when the timer is started witha value spei�ed in Start time, the remaining time is estimated asfollows:� If Start time is greater than the urrent value of lok, then asystem tik interrupt will our, so Remaining time for the urrent
fmsd.tex; 26/01/2004; 12:21; p.18

19protype U TIMER() fbyte lok = 0;byte Start time;byte Remaining time = 0;do/* SYSTEM TICK GENERATOR *//* send a tik interrupt to the sheduler */:: Tik2Shed[lok==0℄!tikintrpt,0;/* reset */lok=uSesInFastestPeriod;/* TIMER *//* sheduler starts the timer with value Start time */:: Shed2Timer?start,Start time -> start:skip;/* estimate Remaining time */if:: Start time > lok -> Remaining time=Start time-lok;lok=0;:: Start time <= lok -> Remaining time=0;lok=lok-Start time;:: Remaining time = Start time;/* put half time option here */fi;/* sheduler asks for Remaining time */:: Shed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2Shed[Remaining time>0℄!timeRemaining,Remaining time;timeRemainingGT0:skip;:: Timer2Shed[Remaining time==0℄!timeRemaining,0;/* send a timer interrupt to sheduler */:: Timer2Shed[1℄!timerintrpt,0 -> timerinterrupt:skip;odgFigure 9. Timer with restrited rendezvous on tikintrptthread will be greater than zero, and lok is reset to the periodduration, uSesInFastestPeriod, to indiate that it will be thebeginning of the next sheduling period.� If Start time is less than or equal to the urrent value of lok,then a timer interrupt will our, so the Remaining time for theurrent thread will be zero and the lok will be dereased.� Nondeterministially, the environment an set Remaining time tobe Start time and leave lok unhanged, whih orresponds tothe situation that the thread onsumed no time.
fmsd.tex; 26/01/2004; 12:21; p.19

203.5.2. Environment AssumptionsThe timer in Figure 8 is still too approximate, leading to spuriousounterexamples, beause period tiks and resets of the lok an ourarbitrarily. The problem is that lok should not be reset unless itsvalue is zero (as would happen in a real system lok). This environmentassumption (�1) an be enoded in LTL as follows:[℄(tikinterrupt -> !new tikinterrupt U (lok==0 || [℄!new tikinterrupt))Assumption �1 says that after a system tik interrupt ours, a newtik interrupt an not our unless the value of the lok is zero. Thisassumption an more e�etively be enoded in the timer model, byrestriting the rendezvous on tikintrpt to our only when lok iszero, as shown in the ode for U TIMER in Figure 9.Cheking the timing property using this restrited environment givesanother infeasible ounterexample: after a timer interrupt ours andthe kernel asks for the remaining time, the value returned is greaterthan zero. This would not happen in a \realisti" environment, sinea timer interrupt signi�es that there is no remaining time left for theurrent thread.This situation an be aptured by the following environment as-sumption (�2):[℄(timerinterrupt -> !timeRemainingGT0 U (start || [℄!timeRemainingGT0))This assumption states that, after a timer interrupt ours and thekernel asks for the remaining time, the environment annot return avalue greater than zero, unless the timer is started again. Notie that inFigure 9, labels were inserted (e.g., start:) to de�ne the prediates andwe split the rendezvous based on the returned value of Remaining time,e.g. prediate timeRemainingGT0 is true when the timer thread is atlabel timeRemainingGT0).When using U TIMER and assumption �2 as a �lter, i.e. when hek-ing the ombined formula:([℄(timerinterrupt -> !timeRemainingGT0 U (start || [℄!timeRemainingGT0))) ->[℄(beginperiod -> !endperiod U idle)the same error found in the original DEOS experiment is reported. Theassumption e�etively \�ltered out" traes that did not orrespond toreal exeutions of the system.

fmsd.tex; 26/01/2004; 12:21; p.20

21
12timerInterruptstart(time) timerInterrupttimeRemaining=0timeRemaining>0getTimeRemainingstart(time)

systemTikInterruptgetTimeRemainingtimeRemaining=0timerInterruptsystemTikInterruptstart(time)getTimeRemainingtimeRemaining>0timeRemaining=0 7
0systemTikInterrupt

Figure 10. Synthesized assumption graph3.5.3. ResultsThe time partitioning property was heked using both the U TIMERin Figure 9, with the LTL assumption �2 enoded in the formula be-ing heked, and, alternatively, with the environment automatiallysynthesized from �2.The synthesis proedure (desribed in detail in [54℄) uses a tableau-like method similar to the one used in SPIN for generating never laimsto hek LTL properties. The method takes an LTL formula represent-ing the environment assumption, and onstruts an automaton thatan be represented as a graph (and automatially translated to Ada,Java, or Promela). The graph is a maximal model of the environmentassumption, meaning that for every omputation whih satis�es theassumption, there is a orresponding path in the graph, and that every�nite path in the graph is the pre�x of some omputation that satis�esthe assumption.The state graph for the synthesized environment from assumption�2 is shown in Figure 10. The labels on the edges denote the allowedinterfae operations suh as rendezvous between environment and ker-nel, together with the ode to be exeuted for eah rendezvous. Forexample, the label systemTikInterrupt is a plae-holder for:Tik2Shed[lok==0℄!tikintrpt,0 -> lok=uSesInFastestPeriod;Node 0 designates the initial state. The orresponding Promela ode isa straight forward implementation of this state mahine with additionsto update lok and Remaining time as in U TIMER.
fmsd.tex; 26/01/2004; 12:21; p.21

22 Veri�ation was done using Spin version 3.2.5a on a SUN ULTRA 60(360 MHz) with 1G of RAM. following table gives data for eah of themodel heking runs (using U TIMER, S TIMER and the original TIMER).The table shows the total of user and system time in seonds to onvertLTL formulas to the Spin \never laim" format (tnever), the time toexeute the model heker (tMC), the memory used in veri�ation inMbytes (mem) and the number of steps in the shortest error trae.Environment tnever tMC mem error trae depthU TIMER 1:49.97 1.3 3.633 1988S TIMER 0.1 0.1 2.609 1554TIMER 0.1 0.1 2.609 1619In onformane with the data from [54℄, synthesized environmentsenable faster model heking and better use of memory. The time forgenerating the never laim with the assumption enoded into the for-mula to be heked is the dominant time. The time for environmentsynthesis is negligible, espeially onsidering synthesized environmentsan be reused aross veri�ation runs.We repeated the experiment with a new version of the DEOS kernel,with the error orreted by the developers (and with the abstrationdesribed in Setion 4). Spin exhaustively searhed the state spae andreported the following data:Environment tMC memU TIMER 1:38.1 102.289S TIMER 8.8 23.172TIMER 2.9 12.996The environments were preise enough so that no errors, real or spu-rious, were reported. The original, hand-oded environment and thesynthesized environment exhibit relatively similar uses of time andmemory, ompare against the �ltered property.3.5.4. ConlusionsThis setion shows that �lter-based environment generation is viablein pratie. The e�ort involved was relatively small, taking one person-week to aomplish, ompared to two person-months for the originalenvironment. The environment was built without looking at the odefor the kernel; only the ode for the original environment was inspeted.This seond experiment did have the advantage of looking at ode that
fmsd.tex; 26/01/2004; 12:21; p.22

23was previously analyzed. The error was known, and also the on�gura-tion of the system (i.e. at least two user threads are neessary in orderto �nd the error). However, the environment assumptions were not gen-erated from this previous experiene; they were derived systematiallyfrom the spurious ounterexamples found by Spin.The most striking advantage of the �lter-based approah is thestrutured way in whih environment assumptions are enoded. Duringthe original environment development, assumptions were disovered inmuh the same way as in the �lter-based approah, but these assump-tions were just hard-oded into the environment model in an ad-hofashion. With the �lter based approah the assumptions were �rst intro-dued as LTL (�lter) properties, and only if the implementation in theatual ode was straight-forward, were they added to the ode. An en-vironment was also synthesized diretly from the LTL �lter properties.The synthesized environment performed very similar to the hand-buildenvironment.In the following setion we address the other major barrier to theadoption of model heking in program analysis: the need for auto-mated, or semi-automated, abstration tehniques to redue the size ofthe state spae that must be analyzed.4. Program Abstration for Veri�ationIn the original experiment, the error was deteted without introduingabstrations within the DEOS ode itself (the abstration was in theenvironment). However, it was not possible to guarantee of �ndingthe error or to verify the orreted ode. Therefore, abstrations forsome parts of the DEOS ode were investigated to permit more exten-sive veri�ation. This setion provides an overview of abstration forprogram veri�ation, desribes prediate abstration and presents ex-tensions to prediate abstration to support objet-oriented programs.The appliation of prediate abstration to DEOS to enable exhaustiveveri�ation is then desribed.4.1. Program AbstrationAbstrations are used to redue the size of a program's state-spaein an attempt to overome the memory limitations of model hekingalgorithms. Abstrations an be haraterized in terms of their e�eton a property (or lass of properties) being veri�ed, or the way thatthey approximate the behavior of the system being veri�ed.An abstration is weakly preserving if a set of properties that are truein the abstrat system has orresponding properties in the onrete
fmsd.tex; 26/01/2004; 12:21; p.23

24system that are also true. An abstration is strongly preserving if aset of properties with truth-values either true or false in the abstratsystem has orresponding properties in the onrete system with thesame truth-values. An abstration is often designed to preserve a singlespei� property, making strong preservation useful in pratie. Nev-ertheless, abstrations that are only weakly preserving an be muhmore aggressive in reduing the state-spae and therefore are morepopular for veri�ation purposes. In pratie, the role of veri�ation isoften to support rapid and e�etive debugging during development andevolution. Therefore, we de�ne an abstration as error preserving if aset of properties that are false in the abstrat system has orrespondingproperties in the onrete system that are also false.A seond way to lassify abstrations is with respet to the relation-ship between the behavior of the abstrat system and the onrete sys-tem. For a reative software system, program behavior an be de�ned asthe set of possible program exeution paths5, where an exeution pathis an in�nite sequene of program states. Over-approximation ourswhen more behaviors are present in the abstrat system than were inthe original \onrete" system. The drawbak of over-approximation isthat it may add behaviors that invalidate a property in the abstratsystem that is true in the onrete system. Under-approximation o-urs when behaviors are removed when going from the onrete to theabstrat system. Program testing an be viewed as analysis of an under-approximation: a set of test ases (or a reative test driver) leads thesystem through a subset of the possible program exeutions.To ombine abstration with model heking, either an abstratstate graph is generated during model heking by exeuting the on-rete transitions over abstrated data, or the onrete transitions areabstrated statially (i.e. before model heking) and the resulting ab-strat transition system is heked. There has been work in automatingboth approahes by using deision proedures, either during state gen-eration [25, 60℄ or statially [20, 61℄. In the stati approah, whereabstrat transitions are generated, the number of alls to the deisionproedures is bound by the size (lines of ode) of the onrete system.Beause the dynami approah uses the deision proedures as the statespae is explored, it will in most ases require many more alls to thedeision proedures than the stati approah. However, the dynami ap-proah an be more preise sine it uses information about the urrentabstrat state to determine the abstrat transition. This informationan be used to eliminate potential next states that annot be eliminatedstatially, thus providing a more preise over-approximation. In the5 Also alled traes or omputations.
fmsd.tex; 26/01/2004; 12:21; p.24

25DEOS study, the stati approah was used beause it appeared morelikely to sale to large programs. The preision problem is addressed bygeneralizing the statially generated transitions to be de�ned in termsof multiple abstrat prediates, inreasing the amount of informationabout the abstrat state that an be used to de�ne the transitions [61℄.4.2. Prediate AbstrationPrediate abstration, introdued by Graf and Saidi [33℄, is a form ofover-approximation whih forms the basis of a number of automatedabstration tools [25, 60, 61, 3, 39℄. The basi idea of prediate ab-stration is to replae a onrete variable with a boolean variable thatevaluates to a given boolean formula (a prediate) over the originalvariable. This onept is easily extended to handle multiple prediatesand, more interestingly, prediates over multiple variables. For example,onsider a program with two integer variables, x and y, whih an growin�nitely. Sine this program will have an in�nite state-spae, modelheking annot be omplete in general. However, loser inspetion mayreveal that the only relationship of interest between the two variablesis whether or not they are equal. We an then de�ne a prediate torepresent this relationship, B � x = y, and use it to onstrut anabstrat transition system as follows:� wherever the ondition x = y appears in the program we replaeit with the ondition B = true and� whenever there is an operation involving x or y we replae it withan operation hanging the value of B appropriately.When generating the abstrat transition system, over-approximationan our when not enough information is available to alulate a de-terministi next ation or state in the abstrat system. For example,the operation x := x + 1 leads to over-approximation in the abstrattransition system (by introduing nondeterminism) in the ase whereB is false (x 6= y) beause the onrete result depends upon informa-tion that is not available in the abstrat state (spei�ally, whethery = x � 1). The abstrat transition system for this example showingthe e�ets of the onrete operations y := x and x := x + 1 is shownin Figure 11.System invariants an be used to onstrut more preise abstra-tions (i.e. less nondeterminism and over-approximation). For example,onsider the example program in Figure 12, whih is an extremely sim-pli�ed version of part of DEOS. In this program, x is �rst inremented
fmsd.tex; 26/01/2004; 12:21; p.25

26
x = y x 6= y?y := x + x := x+ 1� y := x 3x := x+ 1 ?x := x+ 1

Figure 11. Abstrat transition system for B � x = yint x,y,z = 0;while(true) fwhile(+)x := x + 1;if (y != x) fy := x;z := z + 1;gz := z - 1;gFigure 12. Simple example programone or more times6 and then y is updated with the value of x. Thisprogram has the property that z will always be greater than or equalto zero, beause the onditional will always exeute. This program willbe diÆult to model hek beause x and y inrement inde�nitely.Figure 13a shows an abstrat version of the program based on theprediate B � x = y, with operations as shown in Figure 11. The resultof exeuting the abstrat ode orresponding to multiple inrements ofx (the while(+) loop) is that B will be either true or false. Afterexiting this loop, if B is true, then the onditional will be skipped,and z an be deremented below zero. Therefore, this abstrat programdoes not preserve the property z � 0. However, we an use the programinvariant x � y to re�ne the abstration. This invariant an be used toeliminate the ase where x = y � 1 and allow the onrete transitionx := x + 1 to always be abstrated to B := false. That is, beause6 The shorthand while(+) indiates the loop will non-deterministially exeuteone or more times.
fmsd.tex; 26/01/2004; 12:21; p.26

27bool B = true;int z = 0;while(true) fwhile(+) fif (B = true) then B := falseelse B := true or false;gif (B = false) fB := true;z := z + 1;gz := z - 1;g (a)
bool B = true;int z = 0;while(true) fwhile(+) fB := false;gif (B = false) fB := true;z := z + 1;gz := z - 1;g (b)Figure 13. Example program abstrated using riterion x = y (a) alone and (b)with invariant x � yx is always greater than or equal to y, x being inremented an neverresult in x and y being equal. The re�ned program, shown in Figure 13b,maintains the invariant on z.This example illustrates a speial ase in prediate abstration: whenthe prediate abstration does not introdue nondeterminism, over-approximation does not our and strong preservation is ahieved [60℄.In the next setion we show that a spei� lass of in�nite state pro-grams, ourring frequently in pratie, an be transformed to �nitestate programs by a prediate abstration that does not introduenondeterminism.4.3. Abstrations for Objet-Oriented ProgramsMost work on abstration has been on simple modeling or programminglanguages as both the soure and target languages for abstration.There has been reent work to apply these tehniques to C programs [42,3℄. However, to apply these tehniques to objet-oriented systems thefollowing issues must be addressed:� what kinds of abstrations will be appropriate or neessary forobjet-oriented programs� what additional omplexity is introdued into the generated ab-strat transition system (or program) to support these abstra-tions.The types of entities that an be abstrated in objet-oriented soft-ware are variables, lasses and relationships between lasses. Relation-

fmsd.tex; 26/01/2004; 12:21; p.27

28 Company Person* *employs
Employmenthire dateFigure 14. Using Assoiation Classes to Model Assoiation Attributesships between lasses inlude relationships between variables or ontrollabels in di�erent lasses, and the multipliity and variability of asso-iations between lasses. The behavior of variables and lasses an beboth under-approximated and over-approximated. Over-approximationof lasses an be ahieved by extending abstrat interpretation teh-niques for individual variables to objet-oriented languages, as imple-mented in the Bandera toolkit [22℄. In Bandera, these tehniques havebeen extended to lasses by omponent-wise abstration of eah �eldin a lass [29℄. Under-approximation tehniques for verifying objet-oriented models are primarily onerned with limiting the number ofobjets instantiated for a lass [44℄.These existing abstration tehniques do not support abstrationof relationship between lasses. We have developed a tehnique forextending prediate abstration to inlude prediates relating variablesfrom di�erent lasses [69℄. A problem enountered during that workwas determining how to maintain the objet-oriented struture of theprogram when adding abstrat prediate variables. Here, we extendour previous approah to support abstration of more general stru-tural relationships between lasses, or interlass abstrations, usingassoiations.In objet-oriented modeling and design, assoiations are used to rep-resent strutural relationships between lasses [8℄. For example, the fatthat a Person works for a Company an be modeled by an assoiationalled \employs" between the lass Person and the lass Company. Ifwe wish to inlude a hire date in the model, and there is a many-to-many relationship between ompanies and people it is not lear where

fmsd.tex; 26/01/2004; 12:21; p.28

29to put this attribute. To solve this problem an assoiation lass an beaÆliated with the assoiation, as shown in Figure 14 [8℄.To illustrate how program abstrations an be strutured aroundassoiations and assoiation lasses, we use a simpli�ed example fromDEOS. The target of our abstration is a general pattern where aounter is used to indiate that an event has ourred. This is a formof abstrat time-stamping that is ommon in onurrent programming.This pattern onsists of an Event lass ontaining a ounter and anynumber of Listener lasses whih monitor the ourrene of events bykeeping a loal opy of the event ounter and omparing the two valuesto determine if the event has ourred. A lass diagram representingthis pattern is shown in Figure 15a. The Event lass ontains odethat inrements the ounter (T0 : ount++), and the Listener lassontains statements for omparing the loal and the Event ounter(T1 : ount == last ount) as well as setting the loal ounter to theEvent ounter (T2 : last ount := ount).During model heking, this pattern leads to a large state spae be-ause the ounters inrement inde�nitely. However, the behavior of theListener (and hene the system) is only determined by whether thesetwo variables are equal, not by exat values. Therefore, a variable, p,de�ned by the abstrat prediate P � ount == last ount, is intro-dued. To represent this abstration, an assoiation lass is introduedthat enapsulates the new variable, as shown in Figure 15b.The abstrat statements that modify the abstrat variable beome:T0 : p := false, T1 : p and T2 : p := true. This is a preise ab-stration, sine similar to the example in the previous setion, thereis an invariant ount � last ount, that removes the possible nonde-terminism when ount++ is abstrated. In pratie, ount rolls over(say at MAXINT) and this may seem to invalidate our abstration.However, the orret behavior of the real system implementation alsorequires the assumption that ount does not roll over and ath upwith last ount. Therefore, this abstration does not introdue anystronger assumptions on the system than those imposed by the im-plementation, and is therefore a strongly preserving abstration of theode.Assoiation lasses an be realized by replaing the assoiation lasswith a standard lass that is assoiated with the original two lasses,and removing the original assoiation, as shown in Figure 15 [11℄.This approah leads to the reation of a new objet to represent eahabstrated assoiation. In the ase of a single prediate abstration theresult would be an objet that enapsulates only one bit. To eliminatethis overhead, a slightly di�erent approah to realizing assoiationlasses for prediates was used: the new lass enapsulates a two di-
fmsd.tex; 26/01/2004; 12:21; p.29

30
Eventount Listenerlast ount1 *

(a)Eventount Listenerlast ount1 *
EqualCountersp (b)Eventount Listenerlast ount1 *1 1EqualCountersp ()Figure 15. Using Assoiations to Represent Interlass Abstrations

fmsd.tex; 26/01/2004; 12:21; p.30

31Eventount Listenerlast ount1 11 1EqualCountersp[n,m℄Figure 16. Realizing Interlass Abstrations for Single Prediatesmensional array of bits representing the state of the entire abstratassoiation, as shown in Figure 16, where n and m are the number ofEvents and Listeners in the system [69℄ (allowing the more general aseof multiple events per listener).4.4. Abstrating DEOSIn order to allow exhaustive veri�ation of the DEOS model, it wasneessary to apply abstration to the program. The goal was to in-trodue abstration arefully and seletively to study how abstrationis applied during veri�ation. First, a simple, ad-ho abstration wasintrodued into the system. Then, this abstration was re�ned usingprediate abstration.4.4.1. Ad-ho AbstrationThe initial abstration was guided by our intuition that the system'sbehavior is yli in nature: at the end of the longest sheduling period,the system should return to a state where all threads are available tobe sheduled with all of their budget available. However, simulationsshowed extremely long traes indiating that some data was being ar-ried over these longest period boundaries. Spei�ally, the itsPeriodIddata member for the StartOfPeriodEvent lass is inremented everytime the end of the orresponding period was reahed. In addition,itsLastExeution, in the Thread lass, also inreases monotoniallyas it is periodially assigned the value of the itsPeriodId ounterfor the StartOfPeriodEvent orresponding to the thread's shedulingperiod.
fmsd.tex; 26/01/2004; 12:21; p.31

32void StartOfPeriodEvent::pulseEvent(DWORD systemTikCount) fountDown = ountDown - 1;if (ountDown == 0) fitsPeriodId = itsPeriodId + 1;...ggvoid Thread::startChargingCPUTime() f// Cahe urrent period for multiple uses here.periodIdentifiation p = itsPeriodiEvent->urrentPeriod();...// Has this thread run in this period?if (p == itsLastExeution) f// Not a new period. Use whatever budget is remaining....gelse f// New period, get fresh budgets....// Reord that we have run in this period.itsLastExeution = p;...g...gFigure 17. Slie for itsPeriodIdThe setions of the DEOS kernel ode whih involve itsPeriodIdand itsLastExeution is shown in Figure 17. These variables areused to determine whether or not a thread has exeuted in the ur-rent period; If it has not, then its budget an be safely reset. Whena thread starts running, itsLastExeution is assigned the value ofitsPeriodId (the return value of urrentPeriod(), stored in thetemporary variable p) whenever the two are not equal. Therefore,itsLastExeution will always inrease by exatly one if a thread issheduled every period. In this ase, both variable types an be replaedwith muh smaller ranges (namely bits) and still maintain the exatbehavior of the system.7 The DEOS developers assured us that theversion of DEOS being onsidered did, in fat, ensure that a threadis sheduled every period. Therefore, we hanged itsPeriodId to beinremented modulo 2. This hange allowed exhaustive analysis of theentire state spae of both the defetive and orreted version of DEOS.7 The two variables are either equal or di�erent by one, hene only one bit isrequired to represent the range of possible relationship between the variables.
fmsd.tex; 26/01/2004; 12:21; p.32

334.4.2. Prediate AbstrationIn the full DEOS system there are synhronization mehanisms, suhas events and semaphores, that may ause threads to wait for arbitraryamounts of time (whih is not possible in our slie of the system). Inthis ase, our assumption that a thread will exeute every period, andonsequently the preservation property of the abstration, breaks down.Therefore, a more general solution was required if the abstration wasto be used in a broader veri�ation ontext.It was (eventually) reognized that this part of DEOS is an instantia-tion of the abstrat time-stamping tehnique, introdued in Setion 4.3,where StartOfPeriodEvent is the Event and the Thread lasses are theListeners. The Thread lasses hek whether a new period has beenentered by omparing the itsPeriodId of the urrent period (analo-gous to ount) with their own itsLastExeution �eld (analogous tolast ount). The assoiation based prediate abstration from Se-tion 4.3 was then used to do a preise abstration of the DEOS kernelode and ombined with the under-approximating timer environment.It is interesting to note that the abstrated algorithm ould not beused as the atual DEOS implementation beause, to enable preditivesheduling, exeution time spent inside the kernel must be bounded.Updating the array of event bits is proportational to the number ofthreads in the system, whih is not bounded.5. Related Work5.1. Continued Work on DEOSAfter the original experiment, the model was expanded to analyze slak-sheduling, whih allows threads to request \slak" time not used byother threads. With no prior knowledge of Promela or Spin, a Honeywelldeveloper was able to translate and insert the slak-sheduling ode intothe Promela model within one day. On the �rst model heking run aftermaking these hanges, Spin disovered an error in the new ode. Thedeveloper had translated a slightly outdated version of the DEOS ode,and the error unovered by Spin had been disovered by Honeywellthe previous week. The developer reported that it originally took 3days to disover what was wrong, whereas with the model heker itwas easy to replay and understand the error trae. The original DEOSmodel has been expanded to be of high �delity with the urrent DEOSimplementation and is updated with major ode updates.The initial work on DEOS learly indiated that hand translationwas not a pratial approah. This motivated the development of Java
fmsd.tex; 26/01/2004; 12:21; p.33

34PathFinder (JPF) [68℄, a model heker that analyzes Java programsdiretly. Subsequently, we translated DEOS from C++ to Java - anafternoon's work - and have used this version to evaluate JPF andBandera. Using Bandera, bakwards dependeny analysis from the timepartitioning assertion identi�ed itsPeriodId (Setion 4.4) as a andi-date �eld for abstration. A range abstration, where values 0 and 1are onrete and all negative numbers and all numbers greater than 1map to abstrat values, was used to abstrat this �eld. Type inferenethen determined that two other �elds (itsLastExeution and p fromFigure 17) also required being abstrated to the range type. Althoughthis abstration introdued many spurious errors, JPF was diretedto only searh for \real" ounterexamples to fore the abstration tobe preise, and the time-partitioning error was found within a fewseonds [55, 29, 34℄.5.2. Related ResearhSine 1997, there has been an inreasing amount of researh applyingmodel heking to analyze programs written in popular programminglanguages. Previously, the program analysis was done by manual modelonstrution before model heking.The �rst system to automatially analyze programs with a modelheker was Verisoft [32℄. Verisoft addresses the state spae problem bysimply not storing states. It therefore relies on sheduler ontrol andguided searh to ahieve bene�ts over testing. Verisoft has been suess-fully applied in analyzing a number of large systems (see Verisoft paperin this Speial issue). A similar state-less model heker that analyzesJava programs was later developed by Stoller [65℄. We partially addressthe state-spae problem in DEOS by using under-approximation in thetimer model. In this ase we are operating similar to stateless modelheking, where there is an impliit assumption that it is not neessaryto over all states of the system to have a marked improvement overtesting.Several program model hekers are based on automated model-extration, where the program is translated into the input notation ofan existing model heker. Bandera [22℄ translates Java programs toa number of bak-end model hekers, inluding Spin [40℄, dSpin [27℄,SMV [48℄, Bogor [57℄, and JPF8. Bandera also supports abstration bytransforming the Java programs to \abstrat" Java programs whihare then translated. JCAT [26℄ translates Java to Spin and dSpin.FeaVer [42℄ translates C ode to Spin. SLAM [3℄ translates C ode to8 JPF works on byteode lass�les, hene translation here means ompile it witha Java ompiler
fmsd.tex; 26/01/2004; 12:21; p.34

35boolean programs as input for the Bebop model heker [5℄. FeaVer andSLAM inorporate abstration methods into the translation proess.FeaVer's abstration is semi-automated, while SLAM uses prediateabstration [3℄ and abstration re�nement [4℄ to automated abstrationduring model heking.To support experimentation with abstrations for objet-orientedprograms, a prototype tool was developed to automatially generateabstrated programs written in Java. Given a Java program and anabstration riteria, the tool generates an abstrat Java program interms of new abstrat variables and remaining onrete variables. Theresulting Java program, implementing the abstrat transition system,an be tested or analyzed using a Java model heker. The tool is aprototype and is not advaned enough to abstrat a Java version ofDEOS. However, it was used to abstrat part of a Java version of theRemote Agent software, allowing suessful model heking [69℄.6. Conlusions and Future WorkIn this experiment, the Spin model heker was used suessfully to re-disover a subtle error in the time partitioning of the DEOS shedulingkernel that was not unovered during extensive testing. The initial goalof the study was to show that model heking an augment struturaloverage based testing, suh as the 100% MC/DC overage requiredby the FAA erti�ation proess for avionis software. The experimentshowed that model heking, augmented by minimal abstration, ould�nd errors in real programs that MC/DC testing did not. Additionalontributions of this paper were to show that �lter-based environmentgeneration and prediate abstration for objet-oriented programs anbe used e�etively to redue the e�ort of applying model heking toreal programs.We ontinue to work on extending the appliability of prediate ab-stration and integrating it with related abstration tehniques [22, 29℄.We have also reently augmented the Java PathFinder model hekerwith the apability to do analysis by symboli exeution [46℄. Thisallows the model heker to analyze programs with symboli data,i.e. where variables do not have onrete values, by using onstraintsolving to eliminate infeasible paths. This generalizes many abstrationapproahes, but omes with several researh issues, suh as eÆientappliation of widening [23℄.In the area of environment generation, the proess must be fur-ther strutured and automated to redue the ost of applying modelheking. Although our results indiate that a �lter-based approah
fmsd.tex; 26/01/2004; 12:21; p.35

36is bene�ial, the proess of disovering new �lters to onstrain theenvironment must be improved. There is a lose relationship betweenenvironment generation in the �lter-based approah and abstrationre�nement as used during onservative abstrations (e.g. prediate ab-stration as disussed in the next setion): in both ases one starts withan over-approximation of system/environment behaviors and guidedby ounterexamples one eventually reates a suÆiently preise sys-tem/environment for analysis. Automating this proess has reeiveda great deal of attention in abstration re�nement [3, 39, 4, 17℄, butsimilar approahes in environment generation are still laking. Due tothe lose relationship between these two areas, reent improvementsin abstration re�nement should be investigated in the ontext of en-vironment generation. We have also begun to investigate methods forautomatially synthesizing environments of software omponents, suhthat the omponents satisfy given properties [19℄.Our view of environment generation is from the perspetive of astand-alone veri�ation ativity, with people, possibly other than thesoftware developers, doing the analysis by model heking. However, itan also be viewed from the perspetive of integrating model hekingwith traditional testing ativities. In this ase, the environment ouldbe onstruted by modifying an existing test-harness. However, thetehnique of using nondeterminism to over-approximate the environ-ment is a paradigm shift from traditional testing whih is based onexpliit test sequenes. Our experiene with allowing developers toreate environments for model heking is that they are inlined touse the same environment as for testing, and hene do not exploit theability of the model heker to automatially explore the environmentinput/response hoies in addition to the sheduling hoies. Therefore,for model heking to work in pratie, it may be neessary to developmethods for generalizing or onverting test drivers or test ases intoveri�ation environments.AknowledgmentsKlaus Havelund ontributed the ontent of the Promela overview; anyerrors are due to our severe editing. We thank Phil Oh, Robert Gold-man, Klaus Havelund, Charles Peheur, Mihael Lowry, Thomas Uribe,Hassen Saidi, Matt Dwyer, John Hatli�, David Dill, Satyaki Das,Jens Skakkabaek, Darren Co�er, Murali Rangarajan, Dimitra Gian-nakopoulou, Flavio Lerda, Alex Groe, Oksana Tkahuk, Cindy Kongfor numerous tehnial disussions that ontributed to this work. Wealso thank the many reviewers who have provided omments on this
fmsd.tex; 26/01/2004; 12:21; p.36

37work as it progressed. This work was funded by the NASA Informa-tion Tehnology Base Researh Program, with follow-on support fromthe Computing, Information and Communiation Tehnology Programand the Engineering for Complex Systems Program, all supported byNASA's OÆe of Aerospae Tehnology.Referenes1. R. Allen, D. Garlan, and J. Ivers. Formal modeling and analysis of the HLAomponent integration standard. In Pro. 6th SIGSOFT FSE, Lake BuenaVista, Florida, November 1998. ACM.2. J. M. Atlee and J. Gannon. State-based model heking of event-driven systemsrequirements. IEEE TSE, 19(1):24{40, January 1993.3. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstrationsfor Model Cheking C Programs. In Pro. of TACAS 2001, volume 2031 ofLNCS, Genova, Italy, April 2001. Springer-Verlag.4. T. Ball, A. Podelski, and S. K. Rajamani. Relative Completeness of AbstrationRe�nement for Software Model Cheking. In Pro. of TACAS 2002., volume2280 of LNCS, Grenoble, Frane, April 2002. Springer-Verlag.5. T. Ball and S. Rajamani. Bebop: A symboli Model Cheker for BooleanPrograms. In Pro. 7th International SPIN Workshop, volume 1885 of LNCS,Stanford University, California, USA, August 2000. Springer-Verlag.6. B. Beizer. Software Testing Tehniques. 2nd ed, Van Nostrand Reinhold, NewYork, 1990.7. B. Boehm. Software Engineering Eonomis. Prentie Hall, 1981.8. G. Booh, J. Rumbaugh, and I. Jaobson. The Uni�ed Modeling LanguageUser Guide. Addison-Wesley, 1998.9. D. Bosnaki and D. Dams. Integrating real time into Spin: A prototypeimplementation. In Pro. FORTE/PSTV XVIII, pages 423{439. Kluwer, 1998.10. E. Brinksma and A. Mader. Veri�ation and optimization of a PLC ontrolshedule. In Pro. 7th SPIN Workshop, pages 73{92. Springer-Verlag, 2000.11. B. Bruegge and A. H. Dutoit. Objet-Oriented Software Engineering: Conquer-ing Complex and Changing Systems. Prentie Hall, 2000.12. R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliabilityof life-ritial real-time software. IEEE TSE, 19(1):3{12, 1993.13. J. Falk C. Kaner and H.Q. Nguyen. Testing omputer Software. 2nd ed, Wiley,1993.14. W. Chan, R. Andersen, P. Beame, D. Jones, D. Notkin, and W. Warner. Deou-pling synhronization from loal ontrol for eÆient symboli model hekingof stateharts. In Pro. 21st International Conferene on Software Engineering,pages 142{151, Los Angeles, May 1999. ACM Press.15. W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,and J. D. Reese. Model heking large software spei�ations. IEEE TSE,24(7):498{520, July 1998.16. J.J. Chilenski and S.P. Miller. Appliability of modied ondition/deisionoverage to software testing. Software Engineering Journal, 9(5), Sep 1994.17. E. Clarke, A. Gupta, J. Kukula, and O. Strihman. SAT based Abstration-Re�nement using ILP and Mahine Learning Tehniques. In Pro. 14th
fmsd.tex; 26/01/2004; 12:21; p.37

38 Conferene on Computer-Aided Veri�ation, LNCS. Springer-Verlag, July2002.18. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automati Veri�ation of Finite-State Conurrent Systems Using Temporal Logi Spei�ations. ACM Trans.on Programming Languages and Systems, 8(2):244{263, April 1986.19. J. M. Cobleigh, D. Giannakopoulou, and C. S. P�as�areanu. Learning assump-tions for ompositional veri�ation. In Pro. of TACAS 2003, volume 2619 ofLNCS. Springer-Verlag, April 2003.20. M. Col�on and T. Uribe. Generating �nite-state abstrations of reative sys-tems using deision proedures. In Pro. 10th Conferene on Computer-AidedVeri�ation, volume 1427 of LNCS. Springer-Verlag, July 1998.21. J. Corbett. Construting ompat models of onurrent Java programs. InM. Young, editor, Pro. Intl. Symposium on Software Testing and Analysis,Software Engineering Notes, pages 1{10. SIGSOFT, ACM, Marh 1998.22. J. C. Corbett, M. B. Dwyer, J. Hatli�, S. Laubah, C. S. Pasareanu, Robby,and H. Zheng. Bandera : Extrating �nite-state models from Java soure ode.In Pro. 22nd Intl. Conf. on Software Engineering. ACM Press, June 2000.23. P. Cousot and R. Cousot. Comparing the Galois onnetion and widen-ing/narrowing approahes to abstrat interpretation. In M. Bruynooghe andM. Wirsing, editors, Pro. Fourth International Symposium on ProgrammingLanguage Implementation and Logi Programming, volume 631 of LNCS, pages269{295, Leuven, Belgium, 1992. Springer-Verlag.24. Z. Dang and R. Kemmerer. Using the ASTRALModel Cheker to Analyze Mo-bile IP. In Pro. IEEE 21st International Conferene on Software Engineering,pages 132{141, Los Angeles, May 1999. ACM Press.25. S. Das, D. Dill, and S. Park. Experiene with prediate abstration. In Pro.International Conferene on Conputer-aided Veri�ation (CAV'99), volume1633 of LNCS, pages 160{171. Springer-Verlag, 1999.26. C. Demartini, R. Iosif, and R. Sist. A deadlok detetion tool for onurrentJava programs. Software Pratie and Experiene, 29(7):577{603, July 1999.27. C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynami Extension of SPIN.In Pro. 6th SPIN Workshop, volume 1680 of LNCS. Springer-Verlag, 1999.28. N. Dor, M. Rodeh, and S. Sagiv. Deteting memory errors via stati pointeranalysis (preliminary experiene). In Workshop on Program Analysis ForSoftware Tools and Engineering, pages 27{34. ACM, 1998.29. M. Dwyer, J. Hatli�, R. Joehanes, S. Laubah, C. Pasareanu, Robby,W. Visser, and H. Zheng. Tool-supported Program Abstration for Finite-stateVeri�ation. In Pro. 23rd International Conferene on Software Engineering,Toronto, Cananda., May 2001. ACM Press.30. M. Dwyer and C. Pasareanu. Filter-based model heking of partial systems.In Pro. 6th ACM SIGSOFT FSE. ACM SIGSOFT, November 1998.31. D. Evans. Stati detetion of dynami memory errors. In Conferene onProgramming Language Design and Implementation, pages 44{53. ACM, 1996.32. P. Godefroid. Model heking for programming languages using Verisoft. InSymp. on Priniples of Programming Languages, pages 174{186. ACM, 1997.33. S. Graf and H. Saidi. Constrution of abstrat state graphs with PVS. In Pro.9th International Conferene on Computer Aided Veriifation, volume 1254of LNCS, pages 72{83. Springer-Verlag, 1997.34. A. Groe and W. Visser. Model heking Java programs using struturalheuristis. In Pro. Intl. Symp. on Software Testing and Analysis. ACM Press,July 2002.
fmsd.tex; 26/01/2004; 12:21; p.38

3935. K. Havelund, M. Lowry, S. Park, C. Peheur, J. Penix, W. Visser, and J. L.White. Formal analysis of the remote agent before and after ight. In 5thNASA Langley Formal Methods Workshop. NASA, 2000.36. K. Havelund and T. Pressburger. Model heking Java programs using JavaPathFinder. Intl. Journal on Software Tools for Tehnology Transfer, 1999.37. K. J. Hayhurst, C. A. Dorsey, J. C. Knight, N. G. Leveson, and G. F. M-Cormik. Streamlining software aspets of erti�ation: Report on the SSACsurvey. Tehnial Report NASA/TM-1999-209519, NASA Langley ResearhCenter, 1999.38. C. Heitmeyer. Using abstration and model heking to detet safety violationsin requirements spei�ations. IEEE TSE, 24(11):927{948, nov 1998.39. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstration. InPro. Symp. on Priniples of Programming Languages, pages 179{190. ACM,2002.40. G. Holzmann. The model heker SPIN. IEEE TSE, 23(5):279{295, 1997.41. G. J. Holzmann and M. H. Smith. An automated veri�ation method fordistributed systems software based on model extration. IEEE TSE, 28(4):364{377, April 2002.42. G.J. Holzmann. Logi veri�ation of ansi- ode with spin. In Pro. 7thInternational SPIN Workshop, volume 1885 of LNCS, pages 131{147. SpringerVerlag, Sep. 2000.43. G. Hwang, K. Tai, and T. Hunag. Reahability testing: An approah totesting onurrent software. Journal of Software Engineering and KnowledgeEngineering, 5(4), Deember 1995.44. D. Jakson and M. Vaziri. Finding bugs with a onstraint solver. In Mary JeanHarrold, editor, Pro. International Symposium on Software Testing and Anal-ysis, Software Engineering Notes, pages 14{25, Portland, Oregon, August 2000.ACM Press.45. JPL Speial Review Board. Report on the loss of the Mars Polar Lander andDeep Spae 2 missions, Marh 2000.46. S. Khurshid, C. S. P�as�areanu, and W. Visser. Generalized symboli exeutionfor model heking and testing. In Pro. of TACAS 2003, volume 2619 ofLNCS. Springer-Verlag, April 2003.47. R. Lutz. Analyzing software requirements errors in safety-rital embedded sys-tems. In Pro. IEEE International Symposium on Requirements Engineering.IEEE Computer Soiety, January 1993.48. K.L. MMillan. Symboli Model Cheking. Kluwer Aademi, 1993.49. G. Naumovih, G. S. Avrunin, and L. A. Clarke. Data ow analysis for hekingproperties of onurrent Java programs. In Pro. 21st International Confereneon Software Engineering, pages 399{410. ACM Press, May 1999.50. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri�ationof time partitioning in the deos sheduler kernel. In Pro. 22nd InternationalConferene on Software Engineering. ACM Press, June 2000.51. A. Pnueli. The Temporal Logi of Programs. In 18th annual IEEE-CSSymposium on Foundations of Computer Siene, pages 46{57, 1977.52. A. Pnueli. In transition from global to modular temporal reasoning about pro-grams. In K. Apt, editor, Logi and Models of Conurrent Systems, volume 13,pages 123{144, New York, 1984. Springer.53. PolySpae. http://www.polyspae.om.
fmsd.tex; 26/01/2004; 12:21; p.39

4054. C. P�as�areanu, M. Dwyer, and M. Huth. Assume-guarantee model heking ofsoftware: A omparative ase study. In Pro. 6th SPIN Workshop, volume 1680of LNCS. Springer-Verlag, 1999.55. C.S. P�as�areanu, M.B. Dwyer, and W. Visser. Finding feasible ounter-exampleswhen model heking abstrated Java programs. In Pro. of TACAS 2001,volume 2031 of LNCS. Springer-Verlag, 2001.56. J.P. Queille and J. Sifakis. Spei�ation and Veri�ation of Conurrent Systemsin CESAR. In International Symposium on Programming, volume 137 of LNCS.Springer-Verlag, 1982.57. Robby, M. B. Dwyer, and J. Hatli�. Bogor: an extensible and highly-modularsoftware model heking framework. In ESEC 9/FSE 10, pages 267{276, Sep2003.58. RTCA Speial Committee 167. Software onsiderations in airborne systems andequipment erti�ation. Tehnial Report DO-178B, RTCA, In., de 1992.59. J. Rushby. Partitioning for safety and seurity: Requirements, mehanisms,and assurane. NASA Contrator Report CR-1999-209347, NASA LangleyResearh Center, June 1999. Also to be issued by the FAA.60. H. Saidi. Modular and Inremental Analysis of Conurrent Software Sys-tems. In Pro. 14th IEEE International Conferene on Automated SoftwareEngineering, pages 92{101. IEEE Computer Soiety, Otober 1999.61. H. Saidi and N. Shankar. Abstrat and model hek while you prove. In Pro.11th Conferene on Computer-Aided Veri�ation, volume 1633 of LNCS, pages443{454. Springer-Verlag, July 1999.62. Sha, Klein, and J. Goodenough. Rate monotoni anaysis for real-time systems.Foundations of Real-Time Computing, pages 129{155, 1991.63. G.S. Shedler. Regenerative Stohasti Simulation. Aademi Press, 1993.64. Mirosoft Spe and Chek Workshop, 2001. http://researh.mirosoft.om/spenhek/.65. S. D. Stoller. Model-heking multi-threaded distributed Java programs. InSPIN Model Cheking and Software Veri�ation, volume 1885 of LNCS, pages224{244. Springer-Verlag, August 2000.66. S. Tripakis and C. Couroubetis. Extending Promela and Spin for real time.In Pro. of TACAS 1996, volume LNCS 1055. Springer, 1998.67. M. Vardi. An Automata-Theoreti Approah to Linear Temporal Logi. InF. Moller and G. Birtwistle, editors, Logis for Conurreny, pages 238{266.LNCS, 1043, Springer Verlag, 1996.68. W. Visser, K. Havelund, G. Brat, and S. Park. Model heking programs. InPro. 14th IEEE International Automated Software Engineering Conferene.IEEE Computer Soiety, September 2000.69. W. Visser, S. Park, and J. Penix. Using prediate abstration to redueobjeted-oriented programs for model heking. In Mats P. E. Heimdahl, editor,Pro. Third ACM Workshop on Formal Methods in Software Pratie, pages3{12, Portland, Oregon, August 2000. ACM Press.70. C. D. Yang, A. L. Souter, and L. L. Pollok. All-du-path overage for parallelprograms. In International Symposium on Software Testing and Analysis, pages153{162. ACM Press, 1998.

fmsd.tex; 26/01/2004; 12:21; p.40

