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Abstract

In this paper we present an approach to safety verification of Air-Traffic Control Systems (ATC)
using probabilistic real-time model-checking. Namely we use ATC as a case study for the formal
analysis of real time systems whose performance depends on uncertain or probabilistic behav-
iors. We construct a probabilistic timed automata model for ATC by extending the Operator
Choice Model (OCM), a model of operators’ behaviors in ATC system, with timed and prob-
abilistic assumptions. Some properties of this system are then expressed in probabilistic real
time computation tree logic (PCTL). The verification results produced by using the tool PRISM
illustrate the uses of this approach to better understand the human errors in real time systems.



Tran Thi Bich Hanh is a fellow at UNU-IIST from September 01, 2006 to June 01, 2007. She got a
BSc degree in Computer science at the University of Natural Sciences, Vietnam National Univer-
sity, Hochiminh City in 2003. She is currently a lecturer at Department of Software Engineering,
University of Natural Sciences, Vietnam National University, Hochiminh City. Her research in-
terests include Software Engineering (Formal Methods), Internet/Web technologies, Computer
Vision, and Geography Information System (GIS). E-mail: ttbhanh@fit.hcmuns.edu.vn

Dang Van Hung is a research fellow for the research project “Theories and Design Methods
for Realtime Systems” since October 1995 being on leave of absence from Institute of Informa-
tion Technology, Nghia Do, Cau Giay, Hanoi, Vietnam. He has a PhD (equivalent) degree in
Computer Science (concurrent systems) in 1988, Computer and Automation Research Institute
(SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary, and a BSc degree in Mathe-
matics (numerical methods) in 1977, Hanoi University, Hanoi, Vietnam. His research interests
include Formal Techniques of Programming, Concurrent and Distributed Computing, Design
Techniques for Real-Time systems. E-mail: dvh@iist.unu.edu

Copyright c© 2007 by UNU-IIST



Contents i

Contents

1 Introduction 1

2 Air-Traffic Control Systems 2
2.1 Overview of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Formulation of the Modeling and Verification Problem . . . . . . . . . . . . . . . 3

3 Abstract Probabilistic Timed Model 4
3.1 Probabilistic Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Probabilistic real time Computation Tree Logic . . . . . . . . . . . . . . . . . . . 6
3.3 Air-Traffic Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 PRISM Model for ATC and Verification Results 9
4.1 PRISM Model for ATC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Experimental Verification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.1 Conflict free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.2 Deadline effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Conclusion 18

Report No. 355, April 2007 UNU-IIST, P.O. Box 3058, Macao





Introduction 1

1 Introduction

Ensuring the safety for Air-Traffic Control systems (ATC) has become a crucial issue due to air
traffic increasing growth year after year. The main task in ATC is to keep a safe separation
distance between aircraft and to manage the flow of air traffic. Despite the aids of automated
parts in the system, ATC is heavily dependent upon the capabilities of human operators. Some
accidents in ATC were characterized by “human errors” with the causal factors involving percep-
tion, memory, decision making, communication and team resource management [12]. Therefore,
formal analysis is becoming central for safety verification for ATC. Formal methods [3] are based
on the use of mathematics notations with precise semantics to specify and verify complex sys-
tems. The aim is to remove ambiguities in system specifications, and develop rigorous reasoning
about the properties of these specifications. These techniques have been applied successfully in
many application domains. However safety verification for ATC contains real-time constraints
and probabilistic data because of uncertainties in the environment, such as weather conditions
and human decision errors etc. These factors encourage us to carry out a formal analysis for
ATC characterized with timing and probabilistic properties.

A formal analysis of ATC was proposed by Cerone et al. [1]. This paper presents an approach to
classifying and analyzing human error based on patterns of recurring behavior. A model with the
consideration of task failures in operators’ decision making was formalized using CSP (Hoare’s
Communicating Sequential Processes [6]). Some task failures based on top-down decomposition
of the operator’s behavior were specified as formulae in the linear temporal logic [11]. Then model
checking techniques [2] were used to verify the completeness of the decomposition. The formal
analysis proved that the initial decomposition based on the psychological analysis of the results
of the experiments conducted using an ATC simulator, was not complete. This contributed to
improve the cognitive model and define a new task failure decomposition, which was formally
proven to be complete. However due to the difficulty of model-checking analysis caused by
state explosion with the explicit representation of time in temporal logic, the analysis only
considered an abstract model in which the separation distance between aircraft is not explicitly
modeled with time. In our opinion, such an abstract model cannot capture the realistic erroneous
behaviors in ATC.

This paper presents an approach to the safety verification of ATC systems. Our approach is
illustrated with a simple conflict-detection and resolution task. We construct a probabilistic
timed automata model [9] by extending the model proposed in [1] with timed and probabilistic
assumptions. Some real-time and probabilistic properties of this system are then specified as
formulae in the probabilistic real time computation tree logic [4]. We then use the tool PRISM
for symbolic model checking for probabilistic timed automata [10] to verify and analyze these
properties.

The paper proceeds as follows. An overview of the operator’s behaviors in air-traffic control
system is described in the next section. In Section 3, we recall the necessary concepts of proba-
bilistic timed automata and probabilistic real time computation tree logic, illustrating how they
can be used to construct the abstract model. The probabilistic model checking results are then
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Air-Traffic Control Systems 2

presented in Section 4. Finally, Section 5 concludes the paper.

2 Air-Traffic Control Systems

2.1 Overview of the system

In this paper we use the case study presented in [1] that concerns a formal analysis of erroneous
operator behavior in a conflict detection and resolution task for an air traffic control (ATC)
simulator for our verification approach. The case study is based on the Operator Choice Model
(OCM), which was designed to provide a means of simulating realistic operators’ behaviors in
complex real-world ATC systems. The OCM includes both “correct” and “incorrect” decisions,
in order to record how mistakes can arise, propagate and get corrected through simulation runs.

The basic specification of the OCM is given by the statecharts in Figure 1. The operator’s task
is decomposed into certain key activities each of which corresponds to a state in the figure, and
which are typically expected to occur sequentially. The goal of the task is to resolve all the
conflicts appearing in the system before they violate separation (i.e., aircraft get closer to one
another than their required separation distances), while not introducing any new conflict.

Attending an item

Classification Problem

Non-problem

Decision Intension

Action

Scanning Tracking

Figure 1: The Operator Choice Model

We describe those key activities as follows.

Scanning: The operator begins in the Scanning state to monitor the movement of aircraft on a
screen, looking for pairs of aircraft that have potential to violate separation. There can be
a number of potential problems to which the operator might attend. Thus, the Scanning
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Air-Traffic Control Systems 3

process represents a method for selecting one for the operator’s intention. The transition
from the Scanning back to itself shows that the operator may not notice any pair needed
to be attended to on the interface.

Classification: Once attending to a pair, the operator determines whether it is a problem
requiring action or not.

Non-problem: If the attended pair is classified as a non-problem, the operator returns to
Scanning to look for another pair to attend to.

Problem: If the attended pair is classified as a problem , the operator, while examining possible
solutions, may reclassify the pair as a non-conflict one; or he/she may proceed to decide an
action on that pair. The operator may also defer deciding an action and return to scanning
because he/she may think that the conflict has a too low priority to require immediate
attention.

Decision: The operator develops an appropriate plan to solve the problem. After action plan
is decided he can go immediately on to intention or return to scanning.

Intention: The operator selects a pair on which he/she intends to perform action, in believing
that this is the problem although this might not be the case.

Action: The operator implements the plan of action on the selected pair of aircraft, which may
be different from the one that was intended to be selected.

Tracking: After the action is taken, the environment will record the result of the action, and
update any possible changes in state that occur for each pair. It is assumed that: (1)
the number of aircraft in the system is fixed; (2) at any time a pair can be in conflict
or not; and (3) the conflict status of a pair can change only as the result of the operator
performing an action on one or the other of the aircraft in that pair. Once the environment
has been updated, the OCM continues to run from the Scanning state.

2.2 Formulation of the Modeling and Verification Problem

The OCM described above provides a basis for quantitative risk analysis of complex, interleaved
tasks. It is considered as a framework for describing the operator’s behavior in ATC. However
it still lacks a lot of information that the real ATC offers. In practice, the performance of ATC
depends very much on how much time it takes for the operator at each state of the process to
solve the problem as well as the time duration related to aircraft’s speeds and distances to the
point where a separation violation starts if no action is taken. Moreover the choice made by the
operator at every state in the process is a probabilistic choice. Therefore it is more reasonable
and efficient to characterize such an erroneous behavior as the cause of a separation violation
related to time and probability.

To capture stochastic behaviors of ATC, we present an extended model for ATC using Proba-
bilistic Timed Automata [9]. We extend the abstract model to include our assumption that it
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Abstract Probabilistic Timed Model 4

takes the operator some time to perform each activity. We will use our guess to assign proba-
bilistic data to operator’s choices at each state in the model, and will change the data during
the verification with model checking to analyze their effects on the performance of the system.
However, the precise data for the probability and timing models are specific to the domain of
application, and should be specified using realistic statistic data from domain experts.

3 Abstract Probabilistic Timed Model

In this section we recall the concepts of probabilistic timed automata [9, 8] and probabilistic
real time computation tree logic [4]. We also show how to use them to construct the abstract
model of the ATC.

3.1 Probabilistic Timed Automata

Probability distribution and Markov Decision Processes. A discrete probability dis-
tribution over a finite set S is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. The set of all

probability distributions over S is denoted by Dist(S).

A (labeled) Markov decision process M is a tuple (S, s0,L, Steps) where:

• S is a finite set of states,

• s0 ∈ S is an initial state,

• L : S → 2AP is a function assigning to each state a set of atomic propositions which are
true in that state,

• Steps : S → 2Dist(S) is a function assigning to each state s ∈ S a finite, non-empty set of
discrete probability distributions on S.

A path ω of M is a finite or infinite sequence of states:

ω = s0
µ0−→ s1

µ1−→ s2
µ2−→ . . .

where si ∈ S, µi ∈ Steps(si) and µi(si+1) > 0. The probability measure Pr over a finite path
ω = s0s1...sn is defined as Pr(ω) = 1 if n = 0 and Pr(ω) =

∏n−1
i=0 µi(si+1) otherwise. For a

finite path ω, let last(ω) and ω(k), respectively, denote the last and the kth state in ω where k is
less than the length of ω. An adversary of a Markov decision process M is a function mapping
every finite path ω of M to a distribution µ on S such that µ ∈ Steps(last(ω)). Let Adv be a
set of all adversaries in M and Pathadv be a set of all paths over the adversary adv ∈ Adv.
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Clocks, clock valuations and zones. Let R be a time domain of non-negative reals, and
C be a finite set of clocks which take values from the time domain R. A clock valuation is a
function v : C → R that assigns a real value to each clock. Let RC denote the set of all clock
valuations. For a set of clocks X ⊆ C we use v[X := 0] to denote the clock valuation obtained
from v by assigning 0 to all of the clocks in X. For t ∈ R, the clock valuation v + t denotes the
time increment for v by assigning v(x) + t to each clock x ∈ C.

A zone is a conjunction of atomic constraints of the form x ∼ c for x ∈ C,∼∈ {≤, =,≥}, and
c ∈ N. Clock valuation v satisfies the zone ζ, written v |= ζ, if and only if ζ evaluates to true
after substituting each clock x ∈ C with the corresponding clock value from v. Let ZC denote
the set of all zones over C.

Probabilistic timed automata. A probabilistic timed automaton is a tuple

A = (S, s0, C,Σ, inv, prob)

where:

• S is a finite set of states,

• s0 ∈ S is an initial state of A,

• C is a finite set of clocks,

• Σ is a finite set of events,

• inv : S → ZC is a function mapping each state to an invariant condition,

• prob ⊆ S ×ZC × Σ×Dist(S × 2C) is the probabilistic edge relations.

The semantics of a probabilistic timed automatonA can be expressed in terms of an infinite-state
Markov decision process whose states are pairs (s, v)’s where s ∈ S and v is a clock interpretation
such that v |= inv(s). The initial state is (s0, θ) where we have θ(x) = 0 ∀x ∈ C. There are
two types of transitions from a state (s, v). (1) A state can change due to elapse of time while
the invariant condition inv(s) is satisfied. (2) A tuple (s, ζ, σ, p) ∈ prob represents a discrete
transition from the state s which is enabled by ζ to the state s′ on event σ with the probability
p(s′, λ) where λ is the set of resetting clocks.

Let Ai = (Si, si0 , Ci, Σi, invi, probi) for i ∈ {1, 2} and assume that C1 ∩ C2 = ∅. The parallel
composition of two probabilistic timed automataA1 and A2 is the probabilistic timed automaton
A1‖A2 = (S1 × S2, (s10 , s20), C1 ∪C2, Σ1 ∪Σ2, inv, prob) where inv(s1, s2) = inv1(s1)∧ inv2(s2)
for all (s1, s2) ∈ S. Tuple ((s1, s2), ζ, σ, p) ∈ prob if and only if one of the following conditions
holds:

• σ ∈ Σ1\Σ2 and there exists (s1, ζ, σ, p1) ∈ prob1 such that p = p1.µ(s2, ∅);
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• σ ∈ Σ2\Σ1 and there exists (s2, ζ, σ, p2) ∈ prob2 such that p = µ(s1, ∅).p2;

• σ ∈ Σ1 ∩ Σ2 and there exists (s1, ζ1, σ, p1) ∈ prob1 and (s2, ζ2, σ, p2) ∈ prob2 such that
ζ = ζ1 ∧ ζ2 and p = p1.p2

where µ(s′, λ) is a distribution defined as µ(s′, λ)(s, ρ) = 1 iff s = s′ and ρ = λ for all (s′, λ) ∈
Si × 2Ci , and where for any s1 ∈ S1, s2 ∈ S2, λ1 ⊆ C1 and λ2 ⊆ C2: p1.p2((s1, s2), λ1 ∪ λ2) =
p1(s1, λ1).p2(s2, λ2).

3.2 Probabilistic real time Computation Tree Logic

Probabilistic real time Computation Tree Logic (PCTL) is a logic for specifying and reasoning
about real-time and probabilistic behaviors of a system. A formula in PCTL is defined by the
following grammar:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | P./λ[φ]
φ ::= Xϕ | ϕ U≤t ϕ | ϕ W≤t ϕ

where ϕ is a state formula, φ is a path formula, ./= {<,≤, >,≥}, λ ∈ [0, 1] and t ∈ N.

The satisfaction relations s |=A f and ω |=A f , which intuitively mean that the state formula
f is true in the state s and the path ω satisfies the path formula f in the probabilistic time
automaton A, are defined as follows:

s |=A a iff a ∈ L(s)
s |=A ¬ϕ iff not s |=A ϕ
s |=A ϕ1 ∧ ϕ2 iff s |=A ϕ1 and s |=A ϕ2
s |=A P./λ[φ] iff ∀adv ∈ Adv. Pr({ω | ω ∈ Pathadv

A & ω |=A φ}) ./ λ
ω |=A X ϕ iff ω(1) |=A ϕ
ω |=A ϕ1 U≤t ϕ2 iff ∃ 0 ≤ i ≤ t. ω(i) |=A ϕ2 and ∀ 0 ≤ j < i. ω(j) |=A ϕ1
ω |=A ϕ1 W≤t ϕ2 iff ω |=A ϕ1 U≤t ϕ2 or ∀ i ≥ 0. ω(i) |=A ϕ1

A probabilistic timed automaton A satisfies a property expressed as a state formula f if and
only if its initial state satisfies f .

|=A f ≡ s0 |=A f

3.3 Air-Traffic Control Model

In this section, we present our ideas and methods for modeling the ATC system.
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Modeling ideas. We extend the OCM described in previous section with time and proba-
bility. The ATC system which was modeled as a parallel compositions of a number of separate
processes [1] in CSP is now integrated in one probabilistic timed automaton for easy to verify
when considering verification under several air-traffic scenarios with different number of pairs
of aircraft. We use an array c of N Boolean variables to record the real state of N pairs of
aircraft. For k ∈ [1, N ], the expression ‘c[k] = true’ indicates that the kth pair is in conflict and
‘c[k] = false’ that it is not in conflict. The results of the operator’s action are expressed as the
compositions of all possible changes in real states of all pairs which are updated synchronously.

We assume that the operator has to spend some time to complete each activity of his task
represented as a state in the system. The time taken for conflict resolution is the sum of
the durations of individual classifications plus some amount for issuing the clearance. The
probability that the operator makes a right choice at every state is maintained at a high value
(0.99). The probability that overlook task failures is a low value (0.01). The variables expressing
time and probability data in the system are shown below.

Variable Description Value(s)

N Number of pairs in the system 1, 2, 3 or 6

ts Duration of scanning 0.1s

tc Duration of classification 0.1s

tp Duration of reclassification tc

td Duration of decision 0.25s

tin Duration of intention 0.1s

ta Duration of action N ∗ tc + td

p s s Probability to not attend to any item 0.01

p s spk Probability to attend an item is varied depending on the real (1− p s s)/N
status of every pair, in general uniformed to others’ scanning
probabilities

p cpk low Probability to misclassify a non-conflict to a problem and 0.01
vise-versa

p cpk high Probability to correctly classify a pair regarding its real state 1− p cpk low

p ppk s Probability to return scanning when the pair was classified as 0.01
a problem

p ppk low Probability to reclassify a conflict to a non-problem 0.01
or proceed to decide a plan to solve a non-conflict

p ppk high Probability to proceed to decide a plan to solve a conflict 1− p ppk low
or reclassify a non-conflict to a non-problem −p ppk s

p dpk s Probability to return scanning without action plan 0.01

p dpk ipk Probability to take intention on one pair before performing an 1− p dpk s
action

p adverse pk Probability for the action which makes a non-conflict to be in 0.01
conflict

p unnecessary pk Probability for the unnecessary action on the non-conflict 0.01
and causes no effect on this pair

p noeffect n pk Probability for the action which is taken on another pair pk′ 1− p adverse pk
and causes no effect on the non-conflict pk −p unnecessary pk

p resolved pk Probability for the action which resolves the conflict into 0.99
non-conflict

p unresolved pk Probability for the action which can not resolve the conflict 0.005

p noeffect c pk Probability for the action which is taken on another pair pk′ 1− p resolved pk
and causes no effect on the conflict pk −p unresolved pk
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scanning
clk<=ts for (k=1;k<=N;k++){

p_s_pk
clk=ts
clk:=0}

classification_pk
clk<=tc

problem_pk
clk<=tp non-problem_pk

decision_pk
clk<=td

intension_pk
clk<=tin

action
clk<=ta

resolved_pk

p_s_s
clk=ts
clk:=0

if c[k]=false
then p_ppk_low

else p_ppk_high
clk=tp
clk:=0

p_ppk_s
clk=tp
clk:=0

p_dpk_s
clk=td
clk:=0

p_dpk_ipk
clk=td
clk:=0

1
clk=ti
clk:=0

for (k=1;k<=N;k++){
clk=ta

tracking
clk:=0}

1
return

if c[k]=false
then p_ppk_high
else p_ppk_low

clk=tp
clk:=0

if c[k]=false
then p_cpk_low

else p_cpk_high
clk=tc
clk:=0

if c[k]=false then p_cpk_high
else p_cpk_low

clk=tc
clk:=0

1

unresolved_pkadverse_pkunnecessary_pknoeffect_pk

p_resolved_pk
c[k]=true
c[k]:=false

p_unresolved_pk
c[k]=true

p_adverse_pk
c[k]=false
c[k]:=true

p_unnecessary_pk
c[k]=false

if c[k]=false
then p_noeffect_n_pk
else p_noeffect_c_pk

1
return

1
return

1
return

1
return

Figure 2: OCM Probabilistic timed automaton

ATC model. The probabilistic timed automaton representing OCM is shown in Figures 2.
The OCM starts at the scanning state which represents the activity in which the operator is
looking for one of N pairs of aircraft which requires attention. Once a pair is selected, the
operator starts to classify it and, if it is classified as a problem, to develop a plan to solve
the problem. At this point, there are two cases depending on the value of the guard “c[k]”
on the pair. Each case corresponds to a different value of the guard and has the “opposite”
probabilistic distribution to the other. We combine them to simplify the figure. After this
activity, the operator might return to the Scanning state if it is appropriate to do so. The real
statuses c[k] of all pairs will be updated synchronously with labeled transitions tracking right
after the operator finishes his action to resolve a problem if any. For each pair of aircraft there
are two cases with three possibilities to change the real status of c[k]. For the kth pair which is
being in conflict, there are possibilities to resolve it (resolved pk) or not (unresolved pk) when
the operator has taken an action on this pair; and another possibility is when the operator has
taken an action on the different k′th pair which causes no effect on the kth pair (noeffect pk).
Similarly for the kth pair which is being in non-conflict, there is a possibility to make it to be in
conflict (adverse pk) when the operator has taken an action on this pair; the other possibilities
are when the kth pair remains in non-conflict and the operator has taken an action on the pair
(unnecessary pk), and when the kth pair remains in non-conflict and the operator has taken an
action on a different pair (noeffect pk). After tracking action’s results and status for all pairs,
the OCM returns to its initial state to start a new cycle.
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4 PRISM Model for ATC and Verification Results

4.1 PRISM Model for ATC

In this section, we give a brief explanation of our model in PRISM, a PRobabilistIc Symbolic
Model checker for automatic verification and formal analysis of probabilistic systems [5]. PRISM
supports three types of probabilistic models [7]: discrete-time Markov chains (DTMCs) for sys-
tems with simple probabilistic behavior and no concurrency, Markov decision processes (MDPs)
for systems with non-determinism and probability, and continuous-time Markov chains (CTMCs)
for systems with determinism and continuous-time. PRISM also allows models to be augmented
with costs and rewards which associate real values with certain states and certain transitions
of the model. This enables one to reason not only about the probability but also about a wide
range of quantitative measures related to the model behavior, e.g. “expected time”, “expected
energy consumption”, and “expected number of messages lost”.

Models are specified using the PRISM modeling language [13], a simple, state-based language
based on the Reactive Modules formalism. A model is a parallel composition of a number of
modules which can interact with one another. Each module contains a set of finite states and
its behaviors by all possible transitions between its states. Properties of the model are then ex-
pressed in the PRISM property specification language [13] which is based on the two probabilistic
temporal logics PCTL (probabilistic computation tree logic) for DTMCs and MDPs, and CSL
(continuous stochastic logic) for CTMCs. Then these properties can be verified automatically
by running model checking program in PRISM.

Since the PRISM modeling language does not support array, to model the system as introduced
in the previous section in PRISM, we keep the translation from our automaton model into
PRISM straightforward but divide it into a parallel compositions of at least 2 modules: a
common Scanner module and a Tracker module for each pair of aircraft. A common Scanner
represents the operator’s behaviors when looking for and attending to one pair of aircraft in
the system. Each pair of aircraft will need one specific Tracker for tracking the result and
the pair’s real status whenever the operator performs an action. Scanner and Tracker will run
sequentially. With module renaming feature supported by PRISM, we just need to describe
one module Tracker for the first pair of aircraft and then duplicate it to a number of instances
for other pairs. The array c for tracking real status of all pairs is now expressed as the local
variables ck of Trackers in which k is renamed to be a specific pair’s index. For instance, c1 is
for the first pair, and c2 is for the second pair etc. All the Trackers are kept synchronized at
every state.

The Scanner module has a data variable x with values from 1 to 5 ∗N + 3 to represent the set
of local states of Scanner process, where N is the number of pairs of aircraft in the system, 5
is the number of local states for each pair of aircraft, and 3 is the number of extra states for
common activities which are not associated with any specific pair. For example, ‘x = 5 ∗N + 1’
indicates that the operator does not have attention to any pair of aircraft in the system. When
x is assigned a value from 5∗ (k−1)+1 to 5∗ (k−1)+5, it means that the operator is currently
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attending to the kth pair and processing some activities on it. The timing behaviors of the
model are expressed as discrete transitions. Each time transition is considered as one time unit.
All the modules will be synchronized with these time transitions by using commands which are
labeled with the same time action to make time progressing simultaneously. We use DTMCs
for our modeling formalism since the model contains probability and no non-determinism, e.g at
any state there exists only one discrete probabilistic distribution over the countable state-space
of the system.

The fragment of PRISM code for the model is shown in Figure 3 and the detailed specifications
are given in the Appendix. When performing model checking in PRISM we keep the number
of pairs fixed (i.e., 1, 2, 3 or 6), but vary the number of conflicts in them to observe the effect
of “workload” on the operator’s performance. We also vary the scanning probabilities between
conflict and non-conflict pairs to investigate their relationships to the performance of the system.

4.2 Experimental Verification Results

In this section, some experimental verification results for the case study under several different
air-traffic scenarios are presented with detailed analysis.

4.2.1 Conflict free

Our first concern is to resolve all conflicts appearing in the system while not creating any new
one, e.g “With probability 1, eventually there have been no conflict in the system.”

The property can be expressed in PTCL as follows:

P≥1[true U resolved all]

where resolved all :=
∧N

i=1(ci = false)

Model checking results for all configurations show that this property holds in all states. However,
this property is satisfied because time is not taken into account in the model (the time for
satisfying resolved all is unbounded), and the number of pairs is fixed. Therefore it is always
the case that all conflicts in the system are resolved eventually, and the probability for resolving
all conflicts is equal to 1. In practice, the time for resolving should be bounded, and the model
checking results this case will be shown below.
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probabilistic // DTMC

const int N = 1; // number of pairs
const int k = 0; // pair’s index starting at 0

module Scanner

x : [1..5*N+3] init 5*N+1; // local states: 5*N+1:not attending, 5*k+1..5*k+5: attending the (k + 1)th pair
clk : [0..MAX TIME] init 0; // local clock

// scan
[time] (x=5*N+1)&(clk<ts) -> (clk’=min(clk+1, t scan));
[] (x=5*N+1)&(clk>=ts) -> p s s:(x’=5*N+1)&(clk’=0)

+ p s spk:(x’=5*k+1)&(clk’=0);

// classify - spk
[time] (x=5*k+1)&(clk<tc) -> (clkp’=min(clk+1, tc));
[] (x=5*k+1)&(clk>=tc) -> ((ck=true)?p cpk low:p cpk high):(x’=5*k+2)&(clk’=0)

+ ((ck=true)?p cpk high:p cpk low):(x’=5*k+3)&(clk’=0);
. . .
// action - a
[time] (x=5*N+2)&(clk<ta) -> (clk’=min(clk+1, ta));
[tracking] (x=5*N+2)&(clk>=ta) -> (x’=5*N+3)&(clk’=0);

// return scanning
[return] (x=5*N+3) -> (x’=5*N+1);

endmodule

module Tracker
sk: [0..5] init 0;// local states (0:scanning, 1:unresolved, 2:resolved, 3:noeffect, 4:unnecessary, 5:adverse)
ck: bool init cinit; // pair’s status (false:non-conflict, true:conflict)

// unnecessary pk + adverse pk + noeffect n pk
[tracking] (sk=0)&(c1=false)&(x=5*N+3) -> p unnecessary pk:(sk’=4)&(ck’=false)

+ p adverse pk:(sk’=5)&(ck’=true)
+ p noeffect n pk:(sk’=3)&(ck’=false);

. . .
[return] (sk>0) -> (sk’=0);

endmodule

Figure 3: PRISM code representing the model
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module Timer
clk : [0..DEADLINE];
[time] (clk<DEADLINE) -> (clk’=min(clk+1, DEADLINE));
[] (clk>=DEADLINE) -> (clk’=DEADLINE);

endmodule

Figure 4: PRISM code representing Timer

4.2.2 Deadline effect

Since the expected time to resolve all the problems with probability 1 is infinite, we now inves-
tigate the probability that the system reaches a conflict-free state by a given deadline. To check
these properties, we add an extra clock (Figure 4) which is synchronized with other modules via
time labeled commands to calculate the exact time elapsing (not the number of discrete steps)
and prevent progress once the clock reaches a certain deadline.

Therefore, we want to check the property:

“is the probability for the system to have no conflict within time T greater than λ?”

The property can be expressed in PTCL as follows:

P≥λ[true U≤T resolved all]

where resolved all :=
∧N

i=1(ci = false)

The verification results by PRISM for different scenarios are as follows.

Work load effect

To observe and analyze the effect that the workload of the operator, represented as the number
of pairs of aircraft, has on the performance of the operator we vary the number N of pairs of
aircraft from 1, 3 and 6. Assume that at the beginning there is only one real conflict in the
system (C = 1). The operator will randomly pick up one pair to attend to in Scanner process.
The model checking results in Figure 5 show that the more aircraft appearing in the system,
the less effective the operator can handle the situation. He should need more time to observe
the system, which leads the probability of solving all conflicts to be lower within a given period
of time.

In the next experiment, we keep the number of pair fixed (N=3) but vary the number of conflicts
in them (C=1, 2, or 3). Figure 6 unexpectedly shows that the probability of solving all problems
is higher in the case with more conflicts than in the case with less conflicts. This explains the
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Figure 5: Probability of resolving all conflicts - Varying number of non-conflicts

effect of operator’s errors on the performance of the system. The operator may misclassify a
non-conflict as a conflict and try to take action to resolve it, or he may waste time in attending
to non-conflicts other than to conflicts.

Misclassification

To make the above experiment more informative, we calculate the probabilities for the operator
to have misclassification within an interval of time [0, T ] for the cases where there are 3 pairs of
aircraft and vary the number of conflicts in them. The properties for misclassifying a conflict
pair as a non-problem and vise-versa within time T are expressed by the following formulas
respectively.

• misclass conflict pk := (ck = true) U≤T non problem pk, where non problem pk := (x =
5× k + 2),

• misclass nonconflict pk := (ck = false) U≤T problem pk, where problem pk := (x =
5× k + 3).

Figures 7 and 8 show that the more conflicts there are in the system, the lower probabilities
for the operator to misclassify a conflict pair as a non-problem and vise-versa. However the
operator will increase his tendency to misclassify a non-conflict pair as a problem when time
passes.

Scanning effect

To observe and analyze the effect of operator’s attention to conflicts in the Scanner process on
the performance of the system, we consider the scenario in which there are 4 aircraft. These
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Figure 6: Probability of resolving all conflicts - Varying number of conflicts

Figure 7: Probability of misclassifying a conflict pair as a non-problem
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Figure 8: Probability of misclassifying a non-conflict pair as a problem

aircraft are divided into 2 separate groups, each group is formed by one pair of aircraft. Assume
that any action which is taken on any aircraft in one group does not make any effect to the
pairs containing an aircraft in the other group. This scenario represents a case where there are
only 2 pairs of aircraft needed to monitor. We vary the number of conflicts in these 2 pairs as
well as the probabilities of choosing each pair to attend to in the Scanner process. We assume
that the operator will give much more attention to conflicts (pc) than to non-conflicts (pn) in
the case there is 1 non-conflict and 1 conflict in the system. The results in Figure 9 show that
the lower the probability of choosing non-conflict, i.e. the higher the probability of choosing
conflict, the higher the probability to resolve the problem. Again, as discussed in the previous
experiment, this explains the effect of operator’s errors on the performance of the system when
losing attention to the right pair to attend.

In the case there are only 2 conflicts in the system, the changes in probabilities of scanning each
pair do not make any effect on the system, as shown in Figure 10.

Expected Time

To make the above two experiments more informative (more detailed) we associate the following
reward structure (Figure 11) with the model when considering 0.05s as one unit of time to
calculate the maximum expected time the operator should take to resolved all problem in the
system with 2 pairs.

Model checking results in Figure 12 show that the operator will need more time to resolve the
problem if he pays more attention to the non-conflict pair. However when both pairs are conflict,
it does not matter which one is selected first.

Task failure
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Figure 9: Probability of resolving all conflicts - 1 conflict and 1 non-conflict

Figure 10: Probability of resolving all conflicts - 2 conflicts

rewards
[time] true : 0.05;

endrewards

Figure 11: PRISM code representing Rewards
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Figure 12: Expected time to resolve all conflicts

The probabilities of some operator’s task failures within a certain time T are calculated. We
consider some following task failures:

1. “The operator can not resolve all conflicts within time T”,

2. “Some operator’s action produces adverse situations within time T”,

3. “The operator does not pay attention to a certain conflict within time T”,

4. “The operator does not have intention to response to a certain conflict within time T”.

In PCTL these are expressed by the following formulas respectively:

1. Let resolved allT be (true U≤T resolved all), where resolved all :=
∧N

i=1(ci = false).
Then, non resolvedT := ¬ resolved allT ,

2. conflict createdT := (true U≤T
∨N

i=1 adverse pi), where adverse pi := (si = 5),

3. non scan pkT := ¬((ck = true) U≤T classification pk), where classification pk := (x =
5× k + 1),

4. non response pkT := ¬((ck = true) U≤T intension pk), where intension pk := (x =
5× k + 5).

We run the model checker for the cases where the number of pairs varies among N = 1, 3, 6 and
there is only 1 conflict (C = 1). At first we calculate the expected time units R within which
the operator causes the task failure, then we use the values of R together with the deadlines T
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to produce the corresponding probability (P ). Table 1 shows that when there are more non-
conflict pairs in the system, the operator may cause reversed situations earlier. The operator
has to spend more time to make the right decision but the probability for task failure increases.

N 1 3 6
Radverse 501,952.54 500,644.38 498,648.07
Rresolved all 20.50 33.71 54.48
Pnon resolvedT

= 1− Presolved allT 0.059 0.324 0.345
Rscan p1 2.02 10.10 22.23
Pnon scan p1T = 1− Pscan p1T 0.01 0.304 0.342
Rresponse p1 11.29 39.95 116.75
Pnon response p1T = 1− Presponse p1T 0.05 0.052 0.01

Table 1: Expected time and Probability of task failures

5 Conclusion

We have presented the air traffic control system as a case study for safety verification with
PRISM model-checking tool. Our model of ATC with probabilistic timed automata is simple
enough for analysis but is still close to the real-world. Although the probabilities in the model
are artificial, the verification results for the system are still useful for the system analysis. We
have presented our experimental results using our assumptions about time and probability data.
It is proved that our approach can help to better understand the human errors in safety-critical
interactive systems.

To simplify the model we just considered the time the operator spends at each state of the
process and made the assumption about the status of each pair of aircraft regardless of aircraft’s
speeds and time distances from the point where separation violation starts. For future work, we
will extend our model so that it can capture the realistic behavior of aircraft regarding aircraft’s
speeds and time duration before separation violations occur in order to precisely characterize
operator’s errors.

From this case study, we got some experiences in using the probabilistic model checker PRISM.
With the familiarity of the tool and experiences learned from this case study, it will easier for
us to apply this verification techniques for other industrial case studies. We found that the
description language of PRISM is simple but provides an intuitive way to construct complex
systems. However, the lack of array data structure in the language makes it inflexible. It will
be better if PRISM supports array and iteration structure in order to shorthand code and avoid
mistakes when explicitly modeling different codes with similar behaviors. It will help to increase
the automatic level of model checking since we just need one model and run model checking
for all configurations through setting values for parameters which are expressed as undefined
constants.
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Appendix

PRISM Code representing Air-Traffic Control System

probabilistic // DTMC

////////////////////////////////////////////////////////////////////////////////////////
// probabilities to make transitions from scanning to scanning (s) and classification the kth pair (cpk)
const double p s s = 0.01;
const double p s spk = (1 - p s s)/N;

// probabilities for classification
const double p cpk low = 0.01;
const double p cpk high = 1-p cpk low;

// probabilities to make transitions from problem to scan (s), non-problem (npk) and decision (dpk)
const double p ppk s = 0.01;
const double p ppk low = 0.01;
const double p ppk high = 1-p ppk s-p ppk low;

// probabilities to make transitions from decision to scan (s) and intension (ipk)
const double p dpk s = 0.01;
const double p dpk ipk = 1-p dpk s;

////////////////////////////////////////////////////////////////////////////////////////
// time durations at each state
const int ts = 2; // duration of scanning
const int tc = 2; // duration of classification
const int tp = tc; // duration of problem
const int td = 5; // duration of decision
const int tin = 2; // duration of intension
const int ta = N*tc+td; // duration of action

////////////////////////////////////////////////////////////////////////////////////////
const int MAX TIME = 100;
const int DEADLINE = 100;
const int N = 1; // number of pairs
const int k = 0; // pair index starting at 0

module Scanner

x:[1..5*N+3] init 5*N+1; // local states (5*N+1:not attending, 5*N+2:action, 5*N+3:tracking,
// 5*k+1:classification pair kth, 5*k+2:non-problem, 5*k+3:problem, 5*k+4:decision, 5*k+5:intension)

clk:[0..MAX TIME] init 0; // local clock
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// scan
[time] (x=5*N+1)&(clk<ts) -> (clk’=min(clk+1, ts));
[] (x=5*N+1)&(clk>=ts) -> p s s:(x’=5*N+1)&(clk’=0)
+ p s spk:(x’=5*k+1)&(clks’=0);

// classify - spk
[time] (x=5*k+1)&(clk<tc) -> (clk’=min(clk+1, tc));
[] (x=5*k+1)&(clk>=tc) -> ((ck=true)? p cpk low:p cpk high):(x’=5*k+2)&(clk’=0)
+ ((ck=true)?p cpk high:p cpk low):(x’=5*k+3)&(clk’=0);

// non-problem - npk
[] (x=5*k+2) -> (x’=5*N+1)&(clk’=0);

// problem - cpk
[time] (x=5*k+3)&(clk<tp) -> (clk’=min(clk+1, tp));
[] (x=5*k+3)&(clk>=tp) -> p ppk s:(x’=5*N+1)&(clk’=0)
+ ((ck=true)?p ppk low:p ppk high):(x’=5*k+2)&(clk’=0)
+ ((ck=true)?p ppk high:p ppk low):(x’=5*k+4)&(clk’=0);

// decide - dpk
[time] (x=5*k+4)&(clk<td) -> (clk’=min(clk+1, td));
[] (x=5*k+4)&(clk>=td) -> p dpk s:(x’=5*N+1)&(clk’=0)
+ p dpk ipk:(x’=5*k+5)&(clk’=0);

// intention - ipk
[time] (x=5*k+5)&(clk<tin) -> (clk’=min(clk+1, tin));
[] (x=5*k+5)&(clk>=tin) -> (x’=5*N+2)&(clk’=0);

// action - a
[time] (x=5*N+2)&(clk<ta) -> (clk’=min(clk+1, ta));
[tracking] (x=5*N+2)&(clk>=ta) -> (x’=5*N+3)&(clk’=0);

// return scanning
[return] (x=5*N+3) -> (x’=5*N+1);

endmodule

////////////////////////////////////////////////////////////////////////////////////////
// probabilities to make transitions to unnecessary, adverse and noeffect states
const double p unnecessary pk = 0.01;
const double p adverse pk = 0.01;
const double p noeffect n pk = 1-p unnecessary pk-p adverse pk;

// probabilities to make transitions to resolved, unresolved and noeffect states
const double p resolved pk = 0.99;
const double p unresolved pk = (1-p resolved pk)/2;
const double p noeffect c pk = p unresolved pk;

// initial status of the pair
const bool cinit = true;
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module Tracker
sk:[0..5] init 0;// local states (0:scanning, 1:unresolved, 2:resolved, 3:noeffect, 4:unnecessary, 5:adverse)
ck:bool init cinit; // pair’s status (false:non-conflict, true:conflict)

// unnecessary pk + adverse pk + noeffect n pk
[tracking] (sk=0)&(ck=false)&(x=5*N+3) -> p unnecessary pk:(sk’=4)&(ck’=false)
+ p adverse pk:(sk’=5)&(ck’=true)
+ p noeffect n pk:(sk’=3)&(ck’=false);

// resolved pk + unresolved pk + noeffect c pk
[tracking] (sk=0)&(ck=true)&(x=5*N+3) -> p resolved pk:(sk’=2)&(ck’=false)
+ p unresolved pk:(sk’=1)&(ck’=true)
+ p noeffect c pk:(sk’=3)&(ck’=true);

// return to scanning
[return] (sk>0) -> (sk’=0);

endmodule

////////////////////////////////////////////////////////////////////////////////////////

module Timer
clk : [0..DEADLINE];

[time] (clk<DEADLINE) -> (clk’=min(clk+1, DEADLINE));
[] (clk>=DEADLINE) -> (clk’=DEADLINE);

endmodule

////////////////////////////////////////////////////////////////////////////////////////

rewards
[time] true : 0.05;

endrewards

////////////////////////////////////////////////////////////////////////////////////////

Report No. 355, April 2007 UNU-IIST, P.O. Box 3058, Macao


