Verification of an Air-Traffic Control System with Probabilistic Real-time Model-checking

Tran Thi Bich Hanh and Dang Van Hung

28.4.2008

- introduction
- abstract probabilistic timed model
- PRISM Model for ATC
- verification results
- conclusion

probabilistic real-time model-checking

- real time systems
- uncertain or probabilistic behaviour
- case study: Air-Traffic Control Systems (ATC)
 - operator's behaviours in ATC system
- probabilistic timed automata model
 - extended Operator Choice Model (OCM)
- probabilistic real time computation tree logic (PCTL)
- verification and analysis using the tool PRISM

- task: to keep a safe separation distance and manage the flow of air traffic
- safety is a crucial issue
- human operators, human decision errors
- timing and probabilistic properties

Figure 1: The Operator Choice Model

- OCM provides a framework for describing the opertor's behaviour in ATC
- real ATC time and probability aspect:
 - how much time it takes for the operator to solve the problem
 - probabilistic choice made at every state
- time and probability is authors' guess
- precise data should be obtained using realistic statistic data from experts

Abstract Probabilistic Timed Model

Markov Decision Process - MDP

• a formalism combining nondeterminism and probability

Markov Decision Process - MDP

- a tuple (*S*, *s*₀, *L*, *Steps*)
 - S is a finite set of states
 - $s_0 \in S$ is an initial state
 - $L: S \rightarrow 2^{AP}$ is a function assigning to each state a set of atomic propositions which are true in that state
 - Steps: S → 2^{Dist(S)} is a function assigning to each state s ∈ S a finite, non-empty set of discrete probability distributions on S

a path

- probability of a finite path
- an adversary (policy, scheduler)

Clocks, clock valuations, zones

- C a finite set of clocks taking values from the time domain R - non-negative reals
- a clock valuation $v : C \rightarrow R$
- a zone is a conjunction of atomic constraints of the form x = c, $x \le c$ or $x \ge c$, where $x \in C$ and $c \in N$
- a clock valuation v satisfies the zone ζ : $v \models \zeta$
- Z_C the set of all zones over C

Probabilistic Timed Automata

- a tuple $A = (S, s_0, C, \Sigma, inv, prob)$
 - S is a finite set of states
 - $s_0 \in S$ is an initial state of A
 - C is a finite set of clocks
 - Σ is a finite set of events
 - $\textit{inv}: S \rightarrow Z_C$ is a function mapping each state to an invariant condition
 - prob ⊆ S × Z_C × Σ × Dist(S × 2^C) is the probabilistic edge relations

Semantics

- an infinite-state MDP, states are pairs (s, v), s state and v is a clock valuation satisfying inv(s)
- initial state (s, Θ) , $\Theta(x) = 0 \ \forall x \in C$
- two types of transitions:
 - state change due to elapse of time, inv(s) still satisfied
 - (s, ζ, σ, p) ∈ prob discrete transition from s, which is enabled by the zone ζ to the state s' on event σ with the probability p(s', λ), where λ is the set of resetting clocks

Probabilistic Timed Automata

• parallel composition of two probabilistic timed automata

• $\varphi ::= \mathbf{a} | \neg \varphi | \varphi \land \varphi | P_{\bowtie \lambda} [\psi]$

•
$$\psi ::= X \varphi | \varphi U_{\leq t} \varphi | \varphi W_{\leq t} \varphi$$

where φ is a state formula, ψ is a path formula, $\bowtie \in \{<, >, \leq, geq\}$, $\lambda \in [0, 1]$ and $t \in N$

- array of *N* Boolean variables to record the real state of *N* pairs of aircraft
- is/is not in conflict
- operator has to spend some time to complete each activity (state in a system)
- probability the operator makes right choice is high (0.99)
- variables expressing time and probability

Variable	Description	Value
N	number of pairs in the system	1,2,3 or 6
ts	duration of scanning	0.1 s
p_cpk_low	probability to misclassify	
	a non-conflict to a problem	
	or vice-versa	0.01

The model

Figure 2: OCM Probabilistic timed automaton

MDP

- PRISM modelling language, state-based language
- a model is a parallel composition of a number of modules which can interact with each other
- PCTL
- PRISM property specification language
- automated verification

Conflict free

with probability 1, eventually there have been no conflict in the system

 $P_{\geq 1}[true \ U \ resolved_all]$ where resolved_all := $\bigwedge_{i=1}^{N} (c_i = false)$ true, but unbounded

Deadline effect

is the probability for the system to have no conflict within tim T greater than λ ?

$$P_{\geq \lambda}[true \ U_{\leq T} \ resolved_all]$$

where resolved_all := $\bigwedge_{i=1}^{N} (c_i = false)$ analysis depending on different scenarios

Work load effect

1 conflict, varying the number N of pairs of aircraft: 1,3,6

Figure 5: Probability of resolving all conflicts - Varying number of non-conflicts

Work load effect

Figure 6: Probability of resolving all conflicts - Varying number of conflicts

Misclassification

probabilities for the operator to have misclassification within an interval [0, T]3 pairs, varying the number C of conflicts: 1,2,3

 $\textit{missclass_conflict_pk} := (\textit{ck} = \textit{true})\textit{U}_{\leq \textit{T}}\textit{non_problem_pk}$

Figure 7: Probability of misclassifying a conflict pair as a non-problem

Misclassification

 $missclass_nonconflict_pk := (ck = false)U_{\leq T} problem_p_k$

Figure 8: Probability of misclassifying a non-conflict pair as a problem

Scanning effect

effect of operator's attention to conflict on the performance of the system

2 disjunct pairs, varying the number C of conflicts: 1,2

Figure 9: Probability of resolving all conflicts - 1 conflict and 1 non-conflict

Scanning effect

effect of operator's attention to conflict on the performance of the system

2 disjunct pairs, varying the number C of conflicts: 1,2

Figure 10: Probability of resolving all conflicts - 2 conflicts

Task failure

probabilities of an operator's task failure within time T:

- The operator can not resolve all conflicts within time T
- Some operator's action produces adverse situations within time T
- The operator does not pay attention to a certain conflict within time T
- The operator does not have intention to response to a certain conflict within time T

expected time units R within which the operator causes the task failure probabilities more non-conflicts: the operator has to spend more time to make the right decision, but the probability for task failure increases.

Task failure

N	1	3	6
Radverse	501,952.54	500,644.38	498,648.07
$R_{\tau esolved_all}$	20.50	33.71	54.48
$P_{non_resolved_T} = 1 - P_{resolved_all_T}$	0.059	0.324	0.345
R _{scan_p1}	2.02	10.10	22.23
$P_{non_scan_p1_T} = 1 - P_{scan_p1_T}$	0.01	0.304	0.342
R _{response_p1}	11.29	39.95	116.75
$P_{non_response_p1_T} = 1 - P_{response_p1_T}$	0.05	0.052	0.01

Table 1: Expected time and Probability of task failures

- ATC as a case study for safety verification with PRISM
- probabilistic timed automata: simple, close to the real-world
- probabilities artificial, but the verification results still useful

Future work

• extend model, capturing the realistic behaviour of aircraft