
Application of Design for Verification with Concurrency
Controllers to Air Traffic Control Software ∗

Aysu Betin-Can Tevfik Bultan
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

{aysu,bultan}@cs.ucsb.edu

Mikael Lindvall Benjamin Lux Stefan Topp
Fraunhofer Center for Experimental Software Engineering

4321 Hartwick Road, Suite 500
College Park, MD 20742, USA

{mikli,blux,stopp}@fc-md.umd.edu

ABSTRACT
We present an experimental study which demonstrates that model
checking techniques can be effective in finding synchronization
errors in safety critical software when they are combined with a
design for verification approach. We apply the concurrency con-
troller design pattern to the implementation of the synchronization
operations in Java programs. This pattern enables a modular ver-
ification strategy by decoupling the behaviors of the concurrency
controllers from the behaviors of the threads that use them using
interfaces specified as finite state machines. The behavior of a con-
currency controller can be verified with respect to arbitrary num-
bers of threads using infinite state model checking techniques, and
the threads which use the controller classes can be checked for in-
terface violations using finite state model checking techniques. We
present techniques for thread isolation which enables us to analyze
each thread in the program separately during interface verification.
We conducted an experimental study investigating the effectiveness
of the presented design for verification approach on safety criti-
cal air traffic control software. In this study, we first reengineered
the Tactical Separation Assisted Flight Environment (TSAFE) soft-
ware using the concurrency controller design pattern. Then, using
fault seeding, we created 40 faulty versions of TSAFE and used
both infinite and finite state verification techniques for finding the
seeded faults. The experimental study demonstrated the effective-
ness of the presented modular verification approach and resulted
in a classification of faults that can be found using the presented
approach.

Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.4 [Software Engineering]
Software/Program Verification – Model checking, Formal methods

General Terms: Design, Verification

Keywords: model checking, concurrent programming, synchro-
nization, design patterns, interfaces

∗This work is supported by the NSF grant CCR-0341365, the
NASA funded High Dependability Computing Project through
NASA cooperative agreement NCC2-1968, and the NSF grant
CCF-0438933.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

1. INTRODUCTION
Scalability of software model checking depends on extracting

compact models from programs that hide the details that are not
relevant to the properties that are being verified. This typically re-
quires a reverse engineering step in which static analysis tools are
used to rediscover information about programs that may be known
to software developers at design time. A design for verification ap-
proach, which enables software developers to document the design
decisions that can be useful for verification, may improve the scala-
bility and therefore the applicability of model checking techniques
significantly.

In this paper we focus on a design for verification approach for
concurrent programming in Java with the goal of eliminating syn-
chronization errors from Java programs using model checking tech-
niques. Concurrent programming in Java is error-prone since it re-
quires conditional waits and notifications implemented with multi-
ple locks and multiple condition variables with associated synchro-
nized, wait, notify and notifyAll statements. Concurrent
programming using these synchronization primitives results in com-
mon errors such as nested monitor lockouts, missed or forgotten
notifications, slipped conditions, etc. [19].

The design for verification approach investigated in this paper
is based on the concurrency controller design pattern proposed in
[2]. Concurrency controller classes developed based on this pattern
specify synchronization policies for coordinating the interactions
among multiple threads. The behavior of a concurrency controller
is specified as a set of actions (forming the methods of the controller
class) where each action consists of a set of guarded commands.
The controller interface is specified as a finite state machine which
defines the order that the actions of the controller can be executed
by each thread.

We use a modular verification strategy based on the concurrency
controller pattern. During behavior verification we verify automat-
ically generated infinite state models of concurrency controllers
using the Action Language Verifier (ALV) [5] assuming that the
threads that use the controllers obey their interfaces. During inter-
face verification we verify this assumption using the explicit and
finite state model checker Java PathFinder (JPF) [28]. In our mod-
ular verification strategy the behavior and the interface verification
steps are completely decoupled. Moreover, during interface verifi-
cation there is no need to consider interleavings of different threads.
Since we are only interested in the order of calls to the controller
methods by each individual thread, and since the only interaction
among different threads is through shared objects that are protected
using the concurrency controllers, we can verify each thread in iso-
lation. In this paper, we present techniques for isolating threads
in programs with GUI components, RMI connections and network
communication. We discuss generic environment models for isolat-

14

Client

GraphicaI
Client

Server
Feed
Parser

Flight
Database

<<RMI>>

Timer

<<TCP/IP>>

User
Radar Feed

Computation

EventThread

Figure 1: TSAFE architecture.

ing both implicitly and explicitly created threads in such programs.
During thread isolation, we use a dependency analysis to identify
the input parameters that influence the synchronization behavior.

We conducted an experimental study with the goal of investi-
gating the effectiveness of the presented design for verification ap-
proach on safety critical air traffic control software. First, we reengi-
neered the Tactical Separation Assisted Flight Environment
(TSAFE) software based on the concurrency controller design pat-
tern. Then, we created 40 new versions of the TSAFE source code
by fault seeding. The faults were created to resemble the possible
errors that can arise in using the concurrency controller pattern such
as making an error while writing a guarded command or forgetting
to call a concurrency controller method before accessing a shared
object. We used both infinite and finite state verification techniques
for detecting these faults based on our modular verification strategy
supported by the concurrency controller pattern. The experimental
study demonstrated the effectiveness of this modular verification
strategy. It also resulted in improvements to our verification tech-
niques by helping us to focus on their weaknesses observed during
the experiments. During this experimental study we also developed
a classification of the faults that can be found using our framework.

2. TSAFE
The Automated Airspace Concept being developed by NASA re-

searchers automates the decision-making in air traffic control by
giving the responsibility of determining conflict free trajectories for
aircraft to a software system [13, 14]. Establishing dependability
of such complex systems is extremely difficult, yet it is essential
for automation in this domain. Earlier efforts in automating the air
traffic control system have resulted in costly failures due to the in-
ability of the contractors in making the software components highly
dependable [15]. To avoid a similar fate, the designers of the Auto-
mated Airspace Concept at NASA use a failsafe short term conflict
detection component in their system, which is responsible for de-
tecting conflicts in flight paths of the aircraft within 1 minute from
the current time. If a short term conflict is detected, this component
takes over the trajectory synthesis function to direct the aircraft to a
safe separation. Since the goal of this component is to provide fail-
safe conflict detection and resolution capability, it has to be highly
dependable, even more than the rest of the system [13, 14].

The Tactical Separation Assisted Flight Environment
(TSAFE) software is a partial implementation of this component.
Based on the design proposed by NASA researchers a version of
TSAFE was implemented at MIT [10]. Later on, as a part of the
NASA’s High Dependability Computing Project, TSAFE software
was integrated into an experimental environment at the Fraunhofer
Center for Experimental Software Engineering, Maryland [20]. The
TSAFE experimental environment contains software artifacts in-
cluding requirements specifications, design documentations, source
code (Java), as well as faults that can be seeded into various arti-
facts for several versions of TSAFE.

In our experimental study, we used a distributed client-server
version called TSAFE III that performs the following functions: 1)

Display aircraft position (i.e. indicate where the aircraft is located
at a certain time) 2) Display aircraft planned route (i.e. indicate the
route that the aircraft intends to follow according to the flight plan)
3) Display aircraft future projected route trajectory (i.e. display the
probable trajectory that the aircraft will follow) 4) Indicate confor-
mance problems (i.e. indicate whether a flight is conforming to the
planned route or blundering).

The TSAFE III implementation consists of 21,057 lines of Java
source code in 87 classes. Figure 1 shows the architecture of TSAFE
III. The server component stores the trajectories of the flights in a
flight database. The feed parser thread in the server receives up-
dates of the locations of the flights periodically from the radar feed
through a network connection and updates the trajectory database.
A computation component in the server implements the trajectory
synthesis and conformance monitoring functions. The client side
implements the display functionality in a GUI. Multiple clients can
connect to the server at the same time via RMI. A timer thread at the
server periodically prompts the clients to access the flight database
to obtain the current data.

3. CONCURRENCY CONTROLLERS
The flight database in TSAFE is accessed by multiple threads

which may cause failures in its functionality if the threads are not
properly synchronized. For example, while the thread running the
feed parser is updating the trajectory database, a thread serving an
RMI call from a client may be reading it. If such an interaction
occurs, an aircraft’s location may be displayed incorrectly on the
client GUI. Since the client GUI provides the interaction between
the human air traffic controllers and the TSAFE system, display-
ing incorrect information on it could have disastrous effects. To
prevent such synchronization problems in Java programs, Java pro-
grammers declare the methods of such classes to be synchronized.
However, this is not an efficient solution for this case. If the meth-
ods of the database are synchronized, then at any given time at most
one client thread can access the database. Since client threads never
update the database, this synchronization is unnecessary and may
slow down the GUI displays. A more appropriate synchronization
policy for such cases is to use a read-write lock. Using a read-write
lock multiple readers can access a shared resource at the same time,
but a writer can access the shared resource only alone. In order to
implement this solution in Java, a programmer 1) has to write a
class implementing the read-write lock, and 2) needs to make sure
that the appropriate methods of the read-write lock class are called
before accessing the database. The design for verification approach
we present below helps developers in eliminating faults in both of
these two steps.

In our approach, concurrent programmers use the concurrency
controller design pattern [2] and write a set of guarded commands
describing the synchronization policy without using any of the error-
prone Java synchronization statements. The Java synchronization
statements appear only in the predefined helper classes provided
by the concurrency controller pattern, and they are automatically
optimized to improve the performance.

Using the concurrency controller pattern, the reader-writer syn-
chronization policy can be implemented as a controller class. A
typical implementation of the RW controller would have one inte-
ger variable (nR) denoting the number of readers in the critical sec-
tion, and one boolean variable (busy) denoting if there is a writer in
the critical section, and four guarded commands defining four ac-
tions w enter, w exit, r enter, and r exit as shown in Figure
2. These four actions form the public methods of the RW controller
class which will be called by the threads to synchronize their access
to a shared resource. In the RW controller there is one guarded com-

15

class RWController implements RWInterface {
int nR; boolean busy; ...
w_enter = new GuardedCommand() {
public boolean guard() { return (nR == 0 && !busy); }
public void update() { busy = true; } };

w_exit = new GuardedCommand() {
public boolean guard() { return true; }
public void update() { busy = false; } };

r_enter = new GuardedCommand() {
public boolean guard() { return (!busy); }
public void update() { nR = nR+1; } };

r_exit = new GuardedCommand() {
public boolean guard() { return true; }
public void update() { nR = nR-1; } };
...

}

Figure 2: Reader-Writer controller implementation.

mand for each action; however, the concurrency controller pattern
allows declaration of multiple guarded commands for each action
(which is necessary if different updates have to be executed based
on different conditions).

When an action is called, one of the enabled guarded commands
of that action is executed. If none of the guarded commands of
an action is enabled (i.e. all the guards evaluate to false), then the
behavior is different for blocking and nonblocking actions. When
a thread calls a blocking action, if all the guards are false, then the
thread waits until it is notified by another thread. A nonblocking
action does not cause the calling thread to wait. If all the guards
are false, a nonblocking action just returns false.

Note that, the developers are not required to implement the above
semantics in Java in order to write a concurrency controller. This
semantics is already implemented in the helper classes provided
in the concurrency controller pattern. To implement a controller,
the developer only writes the guarded commands of the actions as
shown above and declares the actions as blocking or nonblocking.

The final step in the implementation of a controller is the dec-
laration of its interface. The interface of a concurrency controller
defines the acceptable call sequences to the public methods (i.e. ac-
tions) of the controller by each thread that uses the controller. These
allowed call sequences are specified using the finite state machine
implementation provided in the helper classes of the concurrency
controller pattern.

A controller interface is a Java class which has the same set of
methods as the controller itself. When a method of a controller
interface is called, it first executes an assertion which checks that
the current state is a state where the corresponding action can be
executed, and then updates the current state according to the corre-
sponding transition of the interface state machine.

The interfaces of the two concurrency controllers we used while
reengineering TSAFE are shown in Figure 3. The interface of the
RW controller has three states: IDLE, READING, and WRITING with
IDLE being the initial state. The interface state machine shows
how the interface state changes when an action is executed. The
RW controller interface, for example, states that a thread using the
RW controller can execute (i.e. call) the w exit action only after
executing the w enter action.

The controller interface is also used to specify when the methods
of the shared data objects can be executed. For example, for the

Figure 3: Controller interfaces.

RW controller, a method which updates the shared data can only be
executed in the WRITING state, a method which reads the shared
data can be executed in the READING and WRITING states, and no
method of the shared data can be executed in the IDLE state. In
the concurrency controller pattern, these constraints are specified
as assertions in a data stub class.

Reengineering TSAFE: We reengineered the TSAFE software as
follows: 1) We identified all the synchronization statements (syn-
chronized, wait, notify, notifyAll) in the TSAFE code and
we also identified the shared objects they are used to protect. 2) We
developed the concurrency controllers implementing the synchro-
nization policies required for accessing these shared objects. 3)
We replaced all the synchronization statements in the TSAFE code
with calls to the appropriate concurrency controller classes. All the
synchronization statements in the reengineered TSAFE code are in
the helper classes provided by the concurrency controller pattern.

In the reengineered TSAFE code there are two concurrency con-
troller classes. One of them is the RW controller described above.
The other one is a MUTEX controller implementing a mutex lock
with acquire and release actions. In the reengineered TSAFE
code, there are 2 instances of the RW controller and 3 instances of
the MUTEX controller protecting 6 shared objects.

Figure 4 shows a class diagram for a part of the reengineered
TSAFE code where the access to flight database is protected using
the RW controller based on the concurrency controller pattern. The
ReaderWriter is a Java interface which defines the names of the
controller actions. The RWController class contains the guarded
commands specifying the controller behavior and the RWStateMa-
chine class is the controller interface.

The RuntimeDatabase is the implementation of the flight data-
base in TSAFE. The methods of the RuntimeDatabase class were
synchronized in the original version. Figure 4 shows two of these
methods: insertFlight which updates the database by inserting
a flight, and selectFlight which is used to read the informa-
tion about a flight. In the reengineered code the methods of the
RuntimeDatabase are not synchronized. The class RuntimeData-
base Stub specifies the constraints on accessing shared data based
on the interface states of the RW controller. Note that, the shown
assert statements imply that a thread has to call w enter before
calling insertFlight and it has to call w enter or r enter be-
fore calling selectFlight.

The Action class in Figure 4 is the helper class which imple-
ments the semantics of the action execution. This class is provided
with the concurrency controller pattern, i.e., the developers do not
need to modify it. Same holds for the GuardedCommand Java in-
terface and the StateMachine class.

One concern in using the concurrency controller pattern could
be the efficiency of the resulting synchronization. We automati-
cally optimize the concurrency controllers using a source-to-source
transformation [2]. The optimized controller class 1) uses the spe-
cific notification pattern [6], 2) does not have any inner classes, and
3) minimizes the number of method invocations.

4. BEHAVIOR VERIFICATION
Based on the concurrency controller pattern we divide the verifi-

cation of the concurrent programs with respect to synchronization
errors into two steps: 1) Behavior verification: Verification of the
properties of the controller classes assuming that the user threads
adhere to the controller interfaces; 2) Interface verification: Verifi-
cation of the threads which use the concurrency controllers to make
sure that they access the methods of the controllers and the shared
data objects in the order specified by the controller interfaces and
the data stubs.

16

DatabaseInterface

TSAFE Client

Feed Parser

insertFlight(Flight f){
 assert(controller.inState(RWStateMachine.WRITING));
}

sharedDatabase

sharedDatabase

ReaderWriter

+w_enter()
+w_exit()
+r_enter()
+r_exit()

controller

controller

RWController
-busy: boolean
-nR: int
-act_wenter: Action
-act_wexit: Action
-act_renter: Action
-act_rexit: Action
+RWController()

RWStateMachine
+READING: int
+WRITING: int
+IDLE: int

Action
-gcVector: Vector
+blocking(): void
+nonblocking(): boolean
-GuardedExecute(): boolean

GuardedCommand

+guard(): boolean
+update(): void

owner
*

StateMachine

+transition(t:String)

int

Flight selectFlight(String aircraft){
 assert(controller.inState(RWStateMachine.READING) ||
 controller.inState(RWStateMachine.WRITING));
}

RuntimeDatabase

+insertFlight(f:Flight)
+selectFlight(aircraft:String)

+...

RuntimeDatabase_Stub

+....
+insertFlight(f:Flight)
+selectFlight(aircraft:String)

Figure 4: Synchronization of the Flight Database in TSAFE using the Concurrency Controller Pattern.

We use the Action Language Verifier (ALV) [5] for behavior ver-
ification. We automatically translate the concurrency controllers
written based on the concurrency controller pattern into Action
Language [2]. ALV supports integer, boolean and enumerated types.
This means that we have to restrict the controller variables to these
types to verify them with ALV (we use static integers as enumer-
ated variables in the controller implementations). Since variables of
the concurrency controllers only need to store the state information
required for synchronization, these basic types have been sufficient
for modeling concurrency controllers we have encountered so far.

ALV is an infinite state model checker and can verify specifi-
cations with unbounded integer variables (such as nR). This also
enables us to use an automated abstraction technique, called count-
ing abstraction, to verify the concurrency controllers with respect
to arbitrary numbers of threads [29]. The basic idea is to define an
abstract transition system in which the local states of the threads
(corresponding to the states of the interface) are abstracted away,
but the number of threads in each interface state is counted by in-
troducing a new integer variable for each interface state. For ex-
ample the w enter action in the RW controller is represented in the
Action Language as follows:

w_enter: pc=IDLE and nR=0 and !busy and busy’=true
and pc’=WRITING;

where the primed variables denote the next-state values. The enu-
merated variable (pc) keeps track of the thread state which is rep-
resented by a state of the controller interface (this is the only in-
formation we need to know about a thread to verify the controller
implementation). In the parameterized specification generated by
counting abstraction, the same action is represented as follows:

w_enter: IDLE>0 and nR=0 and !busy and busy’=true
and WRITING’=WRITING+1 and IDLE’=IDLE-1;

Note that, the local variable which encodes the thread state is
replaced with a set of integer variables, one for each state of the
thread (i.e., one for each state of the controller interface). For ex-
ample, in the parameterized specification, the integer variable IDLE
denotes the number of threads in the interface state IDLE. The ini-
tial states and the transition relation of the parameterized system
can be defined using linear arithmetic constraints on these new
variables [29]. A parameterized integer constant, numInstance,
denotes the number of threads. This parameterized constant is re-
stricted to be positive and when the specification is verified with
ALV the results hold for any valuation of this parameterized con-
stant (i.e. the results are valid for any number of threads).

Controller Properties: In order to verify the controllers with ALV
we need a list of properties to specify the correct behavior of the

Table 1: RW Controller Properties
P1 AG(busy ⇒ nR = 0)
P2 AG(busy ⇒ AF (¬busy))
P3 AG(¬busy ∧ nR = 0 ⇒ AF (busy ∨ nR > 0))
P4 ∀x AG(nR = x ∧ nR > 0 ⇒ AF (nR 6= x))
P5 AG(pc = WRITING ⇒ AF (pc = IDLE))
P6 AG(¬(pc1 = READING ∧ pc2 = WRITING))
P7 EF (pc1 = READING ∧ pc2 = READING)
P8 AG(¬(pc1 = WRITING ∧ pc2 = WRITING))
P9 AG(pc1 = READING ⇒ nR > 0)
P10 AG(pc1 = WRITING ⇒ busy)
P11 AG(WRITING > 0 ⇒ AF (WRITING = 0))
P12 AG(¬(READING > 0 ∧ WRITING > 0))
P13 EF (READING ≥ 2)
P14 AG(¬(WRITING > 1))
P15 AG(READING = nR)
P16 AG(WRITING = 1 ⇔ busy)
P17 ∀x AG(READING = x ∧ READING > 0

⇒ AF (READING 6= x))

controllers, i.e., we need the class invariants of the controller classes.
We allow the CTL properties for the controllers to be either inserted
directly to the generated Action Language specification or written
as annotations in the controller classes (which are then automati-
cally inserted into the Action Language translation).

The properties for the RW controller are shown in Table 1. The
properties P1–4 only refer to the variables of the controller class.
For example, the global property P1 states that whenever busy is
true nR must be zero. The remaining properties refer to both the
variables of the controller and also to the states of the threads. Note
that the representation of the thread state is different in the concrete
and the abstract Action Language specifications. The properties
P5–10 are for concrete specifications and refer to concrete thread
states. For example the property P5 states that whenever a thread
is in the WRITING state it will eventually reach the IDLE state. The
properties P11–17 are for the parameterized instances and refer to
the integer variables which represent the number of threads in a
particular state. For example property P15 states that at any time
the number of threads that are in the reading state is the same as the
value of the variable nR. Note that, two of the properties shown in
Table 1 contain universally quantified integer variables. We are able
to check such properties using ALV by declaring the universally
quantified variables as parameterized constants.

5. INTERFACE VERIFICATION AND
THREAD ISOLATION

During interface verification we verify each thread in the pro-
gram separately using the program checker Java Path Finder (JPF)
[28]. A thread is correct if it adheres to the interfaces of the con-
trollers and accesses the shared data protected by the controllers

17

at the allowed interface states (as specified in the data stubs). If
a thread calls the actions of a controller in a sequence that is not
defined by the interface of that controller, then the thread does not
obey the controller interface. As explained in Section 3, the meth-
ods of the controller interfaces and data stubs have assertions which
check the above criteria. If JPF reports the violation of an assertion
in a controller interface or a data stub, then we know that the thread
that is being verified is not correct. JPF outputs a counter-example
execution trace that leads to the violation of the assertion.

Here, we will introduce a simple model for distributed programs
in order to explain our interface verification technique. A dis-
tributed program DP = {P1, P2, ..., Pk} is a set of local programs
running on different machines (in Java, different JVMs), where k is
the number of machines. We assume that the local programs com-
municate with remote procedure calls. In TSAFE, these remote
procedure calls are performed with Java RMI.

Each program Pi consists of a set of threads, i.e., Pi = {T1, T2,

..., Tni
} where ni is the number of threads in Pi. There are three

types of threads in a program: 1) the main thread, 2) the threads
that are created by other threads explicitly, and 3) the threads that
are created implicitly by, for example, the Java Runtime Environ-
ment. In Java, an explicit thread is created with the invocation of
the start() method of a class that extends java.lang.Thread
or implements java.lang.Runnable. In TSAFE, there are two
types of implicitly created threads: the event thread (TEv) that dis-
patches the GUI events and the threads created to serve RMI calls
(TRMI). Our interface verification approach is thread modular, i.e.,
we check each thread separately for interface violations. To this
end, we isolate each thread Ti by a conservative approximation of
the behavior of other threads in the distributed program without
modifying the code of Ti.

The threads communicate with each other through a shared store.
Based on the concurrency controller pattern, the shared store con-
tains shared data objects and controller objects. In addition to the
shared store, each thread has a local store which is accessed only by
that thread. Each thread also has a control state which represents
its program counter. The state of a thread T is represented with
the shared store and the local store and the control state of T , i.e.,
StateT ∈ Shared ×Local(T) ×Control(T).

A thread execution e = op0, op1, . . . is a sequence of opera-
tions. To simplify the discussion, we assume that these operations
are performed by method calls, which is a reasonable assumption
in object oriented programming. A thread can perform two kinds of
operations: local operations which only change the thread’s local
store and control state, and interaction operations through which
the thread interacts with its environment. The interaction opera-
tion types are 1) a read operation from the shared store, 2) a write
operation to the shared store, 3) RMI operation, 4) GUI opera-
tion, 5) file read and write operations, 6) socket operation, and 7)
thread creation operation. Another form of environment interac-
tion is through input events. The input events are GUI events (e.g.
button click event) and the incoming RMI events from the remote
programs. (We name the outgoing RMI call an RMI operation and
the incoming RMI call an RMI event.) We isolate a thread inter-
action via interaction operations with a transformation function F .
Below we define this function for the interaction operations. Then,
we discuss modeling input events with drivers.

Modeling Interaction Operations with Stubs: In a (distributed)
program implemented based on the concurrency controller pattern
the elements of shared store are implemented explicitly. These el-
ements, which are controllers and shared data protected by these
controllers, are known at the verification phase. We isolate the in-
teraction through a controller as follows. Let C denote a concur-

rency controller and let CI = (Q, q0, A, R) be the interface of C,
where Q is the set of interface states, q0 ∈ Q is the initial state,
A is the set of the controller actions, and R ⊆ Q × A × Q is
the transition relation. Although we handle nondeterministic inter-
faces, here, to simplify the discussion, we assume that there is at
most one next state for each state and action pair. We replace the
controller C in the program with CI , and at run-time we create
one CI instance per thread. Note that, although the instances of C

are shared, the instances of CI are not shared. Let T be a thread
that accesses controller C. Whenever the control state of T is at
a controller action act of C, T updates its current interface state
(cur ∈ Q) according to the transition relation R. If such transi-
tions are not defined (i.e., @q′ ∈ Q, (cur, act, q′) ∈ R) then T

does not obey the controller interface CI and an interface violation
has occurred. Formally, for each action act ∈ A we apply the trans-
formation function F(C.act(){body} : r) = CI.act(){ assert
(∃q′ ∈ Q, (cur, act, q′) ∈ R) ∧ cur := t′ ∧ (cur, act, t′) ∈
R} : r where body denotes the method body of act and r is the
return type of act. With this transformation, the internals of the
controller action (conditional waits, guarded commands, etc.) are
abstracted with the action sequencing rules the thread has to obey.
Controller interfaces are in the local store of the thread and any
interface operation only influences the Local of the thread. There-
fore, the controller is removed from the Shared.

We isolate the interaction through a shared data as follows. Let
sho ∈ Shared be a shared data object protected by the controller
C. Let C be abstracted with the controller interface CI as ex-
plained above. Consider the case where the control state of T

is at a read or write operation from sho through a method call
m(a0, a1, .., al) {body} : r,E where a0, a1, .., al is the sequence
of arguments, r is the return type of m and E is the set of excep-
tion types that can be thrown by m. Recall that, during interface
verification our goal is to check if T invokes m at an allowed inter-
face state of CI . Let Qm be the set of allowed interface states to
invoke method m. The transformation function for this read opera-
tion isF(m(a0, a1, . . . , al){body} : r, E) = m′(a0, a1, . . . , al){
assert (cur ∈ Qm) ∧ (throw choose(E) ∨ return choose
(r)) } : r,E where choose returns a nondeterministically cho-
sen value of its argument type and if its argument is a type set, a
type is chosen nondeterministically before returning a value of that
type. During the interface verification, each of these nondetermin-
istic choices are explored; hence, the stub methods conservatively
approximate the influence of other threads on T . Based on the con-
currency controller pattern, the assertion and Qm are specified by
the programmer in the data stub for sho. If this assertion fails, then
T has performed an illegal operation and an interface violation has
occurred. In our concurrency controller pattern, the stub methods
for shared data sho are encapsulated in the shared data stub class
of sho. Therefore, the abstraction of the shared data is achieved by
replacing the shared data classes with their corresponding shared
data stub classes.

These substitutions, however, is not sufficient to isolate a thread
for some distributed programs such as TSAFE. The steps above
only abstract the interaction operations 1 and 2. Here we explain
how we model the rest of the interaction operations. An RMI oper-
ation is a method call mRMI(a1, a2, .., al) : r,E. When a thread
T invokes the remote method mRMI , the thread is affected only by
the return value and the exceptions thrown by mRMI . We isolate
the thread from this operation by transforming the remote method
call mRMI(a1, a2, .., al) : r, E to a stub method call with the same
signature. This stub call returns all possible return values of type
r and throws all possible exceptions in E. With this stub method
call, we conservatively approximate the return value and exceptions

18

thrown. To apply this transformation, the remote methods have to
be identified statically. In an object oriented language, a remote
operation is performed by remote.mRMI (a1, a2, .., al) where
remote denotes the remote object. Therefore, we first identify the
remote objects and their methods, and then, we substitute each re-
mote object remote with a remote stub remote′ which includes a
stub method for each remote method of remote.

Modeling the rest of the interaction operations follows the same
principle. The interaction operation performed by the thread T with
a method call is replaced with a stub method call that overapproxi-
mates the return value and exceptions thrown. Formally, F(m(a0,

. . . , al){body} : r, E) = m′(a0, ..., al){ throw choose(E) ∨
return choose(r) } : r, E where m is an operation of type 4–7.
Unlike the remote methods, the interaction methods for 4–7 are pre-
determined. For example, in Java, the graphical methods are within
libraries such as the java.awt or javax.swing library. There-
fore, we use one-time-implemented stub methods while transform-
ing such operations. (We assume that any graphical method out-
side the graphical library eventually reaches a method within the
library. If this assumption does not hold, e.g. the thread code
implements the actual bit placement on the screen, stubs for such
methods should be generated.)

For Java programs, we achieve the above abstractions for inter-
action operations 3–7 by stub class substitutions. A stub for a class
contains every accessible method declaration of that class. The
methods of a stub class are the results of the transformation func-
tion. We implemented choose with the JPF’s nondeterminism util-
ities Verify.random(int) and Verify.randomBool(). These
utilities force JPF to search exhaustively for every possible choice.
Therefore, at verification time, the nondeterminism in the code re-
sults in an exhaustive search, not in random testing. We developed
generic stubs for the file, socket, and GUI operations; and we au-
tomatically generate stubs for RMI operations. Since JPF is only
able to handle pure Java, we also replace all native calls with stubs.

Modeling Thread Initialization and Input Events with Drivers:
The counterpart of stubs in thread isolation are the drivers. Drivers
are necessary to transform each thread execution to a standalone
program execution. Recall that, there are three types of threads
in a Java program: the main thread, explicit threads, and implicit
threads. We create different types of drivers for each thread type.
The driver of the main thread nondeterministically assigns values
to the command line arguments using the nondeterminism utilities
of JPF. The drivers for the explicitly created threads simulate the
thread creation by assigning nondeterministic values during the ini-
tialization of the thread similarly. In other words, these drivers set
the initial configuration for Shared and Local.

In TSAFE, the implicitly created threads are the event thread that
dispatches the GUI events and the threads created to serve RMI
calls. An RMI thread TRMI is responsible for serving the incom-
ing RMI calls, i.e. the execution of TRMI is a sequence of remote
events. We automatically generate the driver of TRMI that overap-
proximates such executions. The driver of TRMI creates all possi-
ble event sequences, e = ev1, ev2, . . . , evj for all j ≥ 0 where evi

is an element in the set of remote events created by other programs.
Similarly, the driver of the event thread TEv overapproximates the
execution of TEv by creating all possible GUI event sequences.

The Java code for the drivers of these threads is generated auto-
matically. They consist of a single loop which simulates the input
event sequences. At each iteration of this loop one input event is
chosen nondeterministically by using Verify.random(int) and
JPF will search all possible event sequences if this loop is an infi-
nite loop. However, most of the time JPF runs out of memory if we
leave this loop as an infinite loop. Hence, the user has to limit the

number of iterations. Note that, sometimes JPF is able to search
the whole state space even for an infinite event sequence since the
state space may be finite.

If we try to verify a thread with respect to all possible inputs
from its environment provided by generic or automatically gen-
erated stubs and drivers, typically, JPF runs out of memory. We
provide a data dependency analysis to identify the input parame-
ters that may influence the thread behavior with respect to the cor-
rectness conditions discussed above. Using the results of this data
dependency analysis user has to restrict the input domains.

Data Dependency Analysis: It is possible that some of the input
parameters (or the return values) that are passed to a thread via
drivers and stubs may not influence the synchronization behavior of
a thread. We implemented a data dependency analysis to identify
the input parameters affecting the synchronization behavior.

The analysis consists of multiple backward traversals on the pro-
gram dependence graphs [22]. The starting point of each traver-
sal is determined as follows. For each method in the program,
if there are branching statements that determine whether a con-
currency controller or a shared data method is called or not, then
each of these statements is a starting point of a backward traver-
sal. These starting points are the statements that control the execu-
tion of a shared operation. and computed using the control flow of
the method. During the traversal the control and data dependency
edges are followed backwards and the visited definition sites are
collected. The visited statements are marked to avoid entering infi-
nite loops. The traversal should be interprocedural and capture the
implicit dependencies between the methods of the same class such
as the dependency between a get method and a set method of the
same class. The result of this procedure is a backward dependence
tree per starting point whose vertices are the collected definition
sites. The leaves are the influencing argument sequence elements
and a path in the tree shows how these elements control the execu-
tion of the shared operations.

We implemented this analysis using the Soot Java optimization
framework [24], which uses a 3-address representation for Java.
The analysis determines which statements, directly or indirectly,
affect the reachability of invocation of a method that belongs to
a concurrency controller or a shared data class. The analysis we
implemented is context insensitive. In the implementation, instead
of computing the program dependence graph, the control and data
dependencies are computed on the fly. To capture the implicit de-
pendencies, before the traversals, for each class field we compute
the set of methods updating its value (and the value of its elements).

The analysis results are used in the construction of drivers and
stubs. For the input parameters that do not influence the synchro-
nization behavior a constant value is given in the drivers or the
stubs. For the ones that might influence the synchronization behav-
ior there are two possibilities. If the domain of such a value is finite
(e.g. boolean) we enumerate all possible values and choose one
value using JPF’s nondeterminism utilities. Otherwise, the analy-
sis results are inspected and necessary values are provided by the
user. The value is chosen from this predetermined value set with
the Verify.random(int) utility of JPF.

We have tried to use the slicers available in the Bandera [11] and
Indus [18] toolsets in our dependency analysis. In our experiments,
however, we found that both of these tools, at the time this paper
was written, failed to capture the implicit dependencies above.

5.1 Client Component
The TSAFE’s client component is a program that consists of a

main thread and two implicitly created threads. The main thread
instantiates the GUI objects and establishes RMI connection to the

19

server component. The implicitly created threads are the event
thread and the RMI thread. When a Java program has GUI ob-
jects, a thread (called EventDispatchThread) is instantiated im-
plicitly. The RMI thread is implicitly created when there is an RMI
call from the server component to the client component.

The environment of the main thread contains only GUI compo-
nent stubs and a stub for the java.rmi.Naming class. We provide
these generic stubs as a part of our framework, i.e., they are used
as is without any modification by the user. However, there is some
user intervention necessary for the environment modeling of the
event thread and the RMI thread as explained below.

The Event Thread: We isolate the event thread with a driver and
the GUI stubs provided by our framework. The driver generation is
semi-automated. We automatically generate an event thread driver
and expect the user to perform data value assignments using the
results of the data dependency analysis explained above.

The automatically generated driver first launches the GUI com-
ponents, and finds all the visible and enabled GUI objects that have
registered event listeners. Then, it enters a loop generating the in-
put event sequence. In each iteration of the loop, the driver first
chooses one of these GUI objects and then chooses an event and
calls the listeners for that event.

During driver generation 1) the GUI component launch mecha-
nism is created by copying the relevant part from the application
code, for example, in this case, from the TSAFE client main pro-
gram, and 2) all possible user event types are identified by finding
all the different event listener types in the code.

The RMI Thread: The TSAFE’s client component has 2 RMI op-
erations and 4 RMI events. We have implemented a generator that
inspects a remote interface, which is a Java interface that extends
java.rmi.Remote, and creates one stub to model the RMI op-
erations and one driver to model the RMI thread. The generator
inspects the remote interface in the server component to collect the
RMI operations to synthesize the RMI stub. Similarly, the genera-
tor inspects the remote interface in the client component to collect
the RMI events to synthesize the RMI driver.

A driver is also responsible for initialization besides producing
all possible input event sequences. Therefore, the generator exam-
ines the concrete class implementing the remote interface. If the
concrete class looks up another RMI component (i.e. if there is a
call to Naming.lookup(String) method), the generator creates
the code for registering the RMI stub of corresponding component
to the Naming class. Then the generator puts an instantiation of
the given concrete class into the code. After the generation of the
driver, the user can modify the parameter value assignments de-
pending on the results of the dependency analysis discussed above.

As a result, the generated RMI driver for the TSAFE client first
registers an RMI stub of the TSAFE server component, and instan-
tiates the client component. Then it produces all possible event
sequences with these 4 input events.

5.2 Server Component
The server component has two implicitly created threads, a main

thread, and an explicitly created thread. The implicitly created
threads are the RMI thread and the event thread. The explicitly
created thread is the feed parser thread which reads messages from
a socket and updates the flight database.

The main thread creates a set of GUI components and instan-
tiates the main application. The main thread does not launch the
actual TSAFE application. The launching is done by clicking a
Launch button in the GUI. Only after this click event an RMI con-
nection and a feed socket is opened. In other words, the event
thread performs the launch.

The event thread in the server component has two responsibili-
ties. The first one is to prepare and launch TSAFE. Since this task
does not involve concurrency, we have omitted these operations
while creating the environment of the event thread. The second re-
sponsibility of this thread is to handle the events created by a timer.
Therefore, the event thread driver first finds the Timer object, and
then calls its registered listener in an infinite loop.

To isolate the RMI thread at the server component we have ap-
plied the techniques discussed above. However, due to the launch
mechanism in the server component and our objective of not mod-
ifying the application code during interface verification, we have
inserted a code that finds the launch button and sends a click event
into the RMI driver.

The feed parser thread is created at launch by the event thread.
We have separated this thread creation operation interaction with
the stub substitution discussed above. In the next section we ex-
plain how we isolated the feed parser thread.

The Feed Parser Thread: The feed parser thread is isolated from
its environment by 1) a driver that initialize its local and shared
store and 2) interaction operation models. In this section, we ex-
plain the socket operation model tailored for Java programs. The
principle in this model is the same as the general stub model.

There are two types of communication protocols: TCP and UDP.
Java provides a java.net.Socket class for TCP communications
and a java.net.DatagramSocket class for UDP communica-
tions. For TCP communications, a program reads data from a
Socket as a stream through a java.io.Reader object. (A typical
Java program reads this stream through an object of BufferedRead-
er class, which is a subclass of Reader.) We model this behavior
for TCP clients as follows. First, we replace the Socket with an
empty stub. Then, we model reading streams from a socket through
a BufferedReader (or Reader) stub. This stub returns one of the
possible string values whenever the program requests data. For
UDP communications, programs read packets from a Datagram-
Socket via a DatagramPacket. We model this behavior by using
an empty stub for DatagramSocket and a DatagramPacket stub
which returns one possible byte array value. Finally, sending data
for both communication types is modeled via the empty stubs of
OutputStream for Socket and DatagramSocket, respectively.

In TSAFE, the feed parser thread uses TCP sockets to get data
supplied by an external feed source. We have modeled this external
feed source by applying the TCP modeling methodology above. In
this model, the contents of the messages are determined by the data
dependency analysis. The analysis results have showed that only
the characters denoting the message type and the exceptions affect
the synchronization behavior.

6. EXPERIMENTS
In this study, our goal was to experimentally evaluate the effec-

tiveness of the design for verification with concurrency controllers
technology in finding synchronization errors in safety critical air
traffic control software. During this experimental study, the au-
thors were divided into two teams: 1) The University of California
at Santa Barbara (UCSB) team which consists of the developers of
the presented verification technology and 2) The Fraunhofer Cen-
ter for Experimental Engineering, Maryland (FC-MD) team which
consists of the developers of the TSAFE testbed.

First, the UCSB team reengineered the TSAFE software as de-
scribed in Section 3 and generated the drivers and the stubs for
thread isolation as explained in Section 5. The reengineering of the
TSAFE software using the concurrency controllers was done in 8
hours by one team member (5.5 hours for the server component and
2.5 hours for the client component).

20

Table 2: Faulty versions
Type Versions
CI v2, v4
CG v3, v6
CU v7, v13, v14, v16, v24, v25
CB v5, v21, v28, v34
IM v7, v8, v10, v11, v15, v22, v23, v29
ICV v1, v26, v27, v30, v31, v32, v33, v35–40
ICN v12, v17, v18, v19, v20

6.1 Fault Seeding
The UCSB team sent the reengineered TSAFE code to the FC-

MD team. The FC-MD team created modified versions of TSAFE
using fault seeding. The FC-MD team created two types of faults:
controller faults were created by modifying the controller classes
and interface faults were created by modifying the order of the calls
to the methods of the controller classes. Each modified version
contained either no faults, or one controller fault, or one interface
fault, or one controller and one interface fault.

There are four types of controller faults: 1) initialization faults
(CI) which were created by modifying the initialization statements
in the controller classes, 2) guard faults (CG) which were created
by modifying a guard in a guarded command, 3) update faults (CU)
which were created by modifying an assignment in a guarded com-
mand 4) blocking/nonblocking faults (CB) which were created by
making a nonblocking action blocking or visa versa.

Interface faults are categorized as: 1) modified-call faults (IM)
which were generated by removing, adding or swapping calls to the
methods of the controllers. 2) conditional-call faults which were
generated by adding a branch condition in front of a method call
to a controller. The conditional-call faults are further categorized
as: a) program-variable faults (ICV) in which the created branch
conditions used existing program variables. b) new-variable faults
(ICN) in which the created branch conditions used new variables
that were declared during fault creation.

After the fault seeding, the FC-MD team sent the modified ver-
sions back to the UCSB team. Table 2 shows the fault distribution
for the forty modified versions of TSAFE (v1–40). The modified
version v9 did not contain any faults. The UCSB team did not
know the faults and which types of faults were in which version (or
if there was any fault in a version). However, the UCSB team knew
about the fault classification.

6.2 Results and Discussion
We ran the experiments in three batches with 25 (v1–25), 10

(v26–35) and 5 (v36–40) modified versions. After the verification
of each batch both teams discussed the results. This allowed us to
improve the experimental setup during the study and also helped us
identify and focus on the weaknesses of the verification techniques.

As shown in Table 2, there were a total of 14 controller faults
and 26 interface faults in versions v1–40. When we verified the
controllers in versions v1–40 with ALV we found 12 faults in the
controllers. The faults that were not found by ALV were the faults
in versions v5 and v13 which were spurious faults, i.e., they are
modifications in the controller classes which do not cause any fail-
ures in the controller behavior. For example, the modification in
v13 changed an assignment in the w exit action of the RW con-
troller from busy=false to busy=!busy. However, this modifi-
cation does not cause any failures since busy is always true when
w exit is called. The modification in v5 changed the release ac-
tion in the MUTEX controller from blocking to nonblocking. Again
this modification does not change the behavior of the controller
since the guard of the release action is true, i.e., it never blocks.

Among the 26 interface faults, interface verification using JPF

identified 21 of them. Two of the faults (v22 and v33) that were not
caught by JPF were spurious faults. However, the faults in versions
v18, v19, and v20 were real faults which can cause failures but
were not found by JPF. We will discuss these faults in detail below.

Table 3 shows the performances of ALV and JPF. The first part
of the table shows the performance of ALV during behavior verifi-
cation for different controller instances and the second part shows
the performance of JPF during interface verification for different
threads. The first two columns show the memory and time con-
sumed for the verification of an instance without any faults and the
last two columns show the average memory and time consumed for
counter-example generation for the instances with faults.

ALV Performance: For behavior verification we generated three
instances of each controller: two concrete instances with 8 and 16
threads and a parameterized instance using counting abstraction
(denoted with suffixes 8, 16, and P in the table). We checked 6
properties on both the concrete and parameterized instances of the
MUTEX controller. For the RW controller we checked 10 proper-
ties on the concrete instances (P1–10 in Table 1) and 11 properties
on the parameterized instance (P1–4 and P11–17 in Table 1). Both
verification and falsification of the MUTEX controller is more effi-
cient compared to RW controller since it is a smaller specification
with less number of variables.

Concrete vs. Parameterized Instances: Both verification and
falsification performance for the parameterized instances are typ-
ically between the concrete cases with 8 and 16 threads. Note that,
the verification results for the parameterized instances are stronger
compared to the concrete cases since they indicate that the verified
properties hold for arbitrary number of threads. However, for fal-
sification the results of the concrete and parameterized instances
are equivalent, both of them generate a counter-example behavior
demonstrating the fault. Note that, it is possible for the concrete
instances to miss a fault. However, in our experiments we did not
observe this. Every fault that was found by the parameterized in-
stance of a controller was also found by the instance with 8 threads.
Hence, our experiments indicate that concrete instances can be used
for efficient and effective debugging of the controller behavior. Af-
ter eliminating all the faults by the concrete instances, one could
use the parameterized instances to guarantee correct behavior for
arbitrary number of threads.

JPF Performance: The second part of Table 3 shows the perfor-
mance of JPF for interface verification of each thread as explained
in Section 5. Main threads do not have access to any controllers
or shared objects so they cannot have any synchronization faults.
We still list the verification time for the main threads to indicate the
time it takes JPF to cover their state space. Typically falsification
time with JPF is better than the verification time. This is expected
since in the presence of faults JPF quits after finding the first fault
without covering the whole state space. However, in some of the
instances, JPF consumed more resources for falsification since the
inserted faults either caused the execution of a piece of code which
was not executed otherwise, or created new dependencies which
increased the range of values used in the environment. Still, over-
all, falsification performance is better than the verification perfor-
mance, especially for the more challenging verification tasks such
as the Client-Event thread and the Server-Feed thread.

Fault Categorization: One of the outcomes of this experimental
study was a clarification of the types of faults that can be verified
using the presented approach. For example, during behavior ver-
ification we only check for errors in the initialization statements,
guards, updates and blocking/nonblocking declarations. If a de-
veloper changes the predefined helper classes (such as the Action
class) and makes an error, the presented approach cannot find such

21

Table 3: Verification and falsification performance
Controller Instance Verify Falsify

M(MB) T(sec) M(MB) T(sec)
RW-8 6.36 2.36 3.26 0.34
RW-16 24.13 27.41 10.04 1.61
RW-P 12.05 8.10 5.03 1.51
MUTEX-8 0.41 0.02 0.19 0.02
MUTEX-16 1.08 0.05 0.54 0.04
MUTEX-P 0.98 0.03 0.70 0.12

Component-Thread Verify Falsify
M(MB) T(sec) M(MB) T(sec)

Client-Main 2.32 2.00 – –
Client-Event 33.09 663.21 12.2 15.63
Client-RMI 40.96 17.06 42.64 10.12
Server-Main 67.72 17.08 – –
Server-Event 10.95 6.57 9.56 6.88
Server-RMI 20.31 91.79 24.74 29.43
Server-Feed 83.49 123.12 94.72 18.51

an error. However, such errors can be avoided by using the au-
tomated optimization step since that step only uses the initializa-
tion statements, guards, updates and blocking/nonblocking decla-
rations, i.e., the parts verified during behavior verification.

Unknown Shared Objects: The developers may not realize that
some objects are shared and therefore not use concurrency con-
trollers to protect them. In that case, the presented verification ap-
proach will not be helpful since it only checks access to shared
objects identified by the developers using the data stubs. Similar
errors happen in standard Java programming when programmers
do not use the Java synchronization primitives to protect access to
shared objects. In fact, we found such an error in TSAFE where a
shared object used for RMI connection was not synchronized. We
fixed this error by introducing a mutex controller. We are working
on extending our verification framework with an escape analysis
technique to handle such situations. Escape analysis techniques are
used to identify the objects which escape from a thread’s scope and
become accessible by another thread. Such analysis can be used to
identify the objects which need to be synchronized. The analysis
techniques we investigated so far [4, 18] either do not scale to pro-
grams as big as TSAFE or identify too many objects as shared. We
think that this is a promising direction for future research.

Completeness of the Controller Properties: Another problem we
identified during the experimental study was the difficulty of list-
ing all the properties that are relevant to the behavior of a controller.
The initial set of properties we had about controllers was all about
the variables of the controllers and did not relate the interface states
to the variables of the controllers. During the experimental study
we quickly realized that we needed to specify more properties to
find all faults that can be introduced. Eventually, the set of prop-
erties we identified found all the seeded faults; however, they are
not guaranteed to find all possible faults. Our experience in this ex-
perimental study suggests that one could test the completeness of a
set of properties for a controller by inserting faults to the controller
and checking the modified controller with respect to the specified
properties as we did in this experimental study. This is similar to
mutation testing for measuring the effectiveness of a test set.

Difficulty of Finding Deep Faults: Finally, we would like to dis-
cuss the three real faults that were missed by the presented verifi-
cation approach: the interface faults in versions v18, v19, and v20.
The versions v17, v18, v19, and v20 were all created by adding
a branch condition in front of a method call to a controller. The
added branch condition tests if the value of a variable is less than
a constant. If not, the call to the controller method is skipped. The
variable in the branch condition is initialized to zero and is incre-
mented every time the control reaches the inserted branch condi-
tion. The only difference between the faults in these versions was
the constant value in the branch conditions which was 100, 1000,

10000, and 100000, for versions v17, v18, v19, and v20, respec-
tively. Interface verification with JPF identifies the fault in v17
however misses the faults in v18, v19, v20. Clearly, these are con-
voluted faults. This fault type was suggested by the UCSB team
as a way to challenge the interface verification step. These faults
demonstrate that there is a limit to the depth of the faults that can be
identified using explicit state verification techniques without run-
ning out of memory. In order to deal with this type of faults sym-
bolic analysis of the branch conditions may be necessary.

Thread Isolation: When we automatically isolate threads by gen-
erating environment models which allow maximum amount of non-
determinism, JPF runs out of memory. The user needs to provide
some guidance in limiting the input domains and the input length.
The dependency analysis we used was crucial for this task. With-
out dependency analysis it is not possible to identify what part of
the input may be relevant to the synchronization behavior. One can
approach this problem also from the design for verification perspec-
tive by developing interfaces for threads during the design phase.
We use the controller interfaces to model the environments of the
concurrency controllers and shared objects. Similarly, interfaces
can be used for modeling the environments of threads.

7. RELATED WORK
This paper builds on our earlier work on the concurrency con-

troller pattern discussed in [2]. Also, in [3], we presented a related
design pattern, called the peer controller pattern, for design and
verification of asynchronously communicating web services. The
work in [3] demonstrates that the basic principles used in the design
for verification approach discussed in this paper can be extended to
other domains. Our main contributions in the current paper are: 1)
An experimental study demonstrating the applicability of the de-
sign for verification approach to safety critical air traffic control
software and empirical results demonstrating the effectiveness of
our modular verification strategy. 2) Techniques for thread isola-
tion including a data dependency analysis and generic drivers and
stubs for modeling the environments of threads for GUI compo-
nents, RMI connections and network communication. 3) A fault
classification for identifying the types of faults that can be discov-
ered by our approach.

There have been other studies on design for verification. The
approach in [23] focuses on verification of UML models whereas
we focus on verification of programs. Use of design patterns to im-
prove the efficiency of automated verification was also proposed in
[21]. However, our interface-based modular verification technique
is different than the approach in [21].

In [8] interfaces of software modules are specified as a set of
constraints, and algorithms for interface compatibility checking are
presented. In [9] type systems are extended with stateful interfaces
and interface checking is made part of type checking. We use in-
terfaces as part of a design pattern for concurrency controllers and
use finite and infinite state model checking techniques together to
verify both controller behaviors and interfaces.

Model checking finite state abstractions of programs has been
studied in [1, 7, 11]. We present a modular verification approach
where behavior and interface checking are separated based on the
interface specification provided by the programmer. Also, using
infinite state verification techniques, we are able to verify concur-
rency controller classes with respect to arbitrary number of threads.

In [17] an open reactive program is converted to a closed pro-
gram by inserting nondeterminism into the code and eliminating
procedure arguments. Unlike this work, we have restrictions on the
environment interactions caused by controllers via interfaces. The
techniques presented in [26, 27] generate environments for com-

22

ponents by using side effect and points-to analyses. Although the
techniques we discuss for thread isolation are similar to these, we
base our techniques on the controller interfaces and the design for
verification approach.

Stoller [25] transforms distributed programs communicating with
RMI into one program for model checking. Unlike this centraliza-
tion approach, we apply thread modular model checking, decouple
the remote processes, and reduce the state space.

The program dependence-based abstraction selection methodol-
ogy discussed in [11] guides the user to choose abstractions to the
variables affecting the property and the control flow. This is similar
to our approach in which the user inspects the analysis results and
chooses appropriate valuations.

The graphical user model in [12] is similar to out generic GUI
driver. That model, however, creates all types of user events after
choosing a GUI object. The actual event thread, on the other hand,
dispatches only one user event at a time. The other difference is that
our driver is used for interface verification whereas their model is
used for analyzing interaction orderings.

The thread-modular reasoning discussed in [16] verifies each
thread separately with respect to safety properties. The effects of
other threads are modeled as environment assumptions whereas we
use stubs and drivers to reflect these effects. Besides, we check the
thread behavior against the interface rules and leave the assurance
of the safety properties to behavior verification.

To avoid the error-prone usage of low-level synchronization prim-
itives, the recently released J2SE 5.0 includes a concurrency utili-
ties package. The package involves a Lock interface and a Read-
WriteLock among other utilities. Similar to our framework, de-
velopers can create their own synchronization policies by imple-
menting these interfaces. Our approach to behavior verification can
be adapted to automated verification of these custom implementa-
tions. With the concurrency utilities package, the lock acquisitions
in the programs have to be explicit as well. Interface verification
can be used to detect errors such as missing lock operations and
unprotected data access.

8. CONCLUSIONS
We presented a design for verification approach for eliminating

synchronization errors in Java programs based on a design pattern
for writing synchronization policies. The concurrency controller
pattern supports a modular verification strategy by identifying the
stateful interfaces of concurrency controllers. Based on these in-
terfaces, verification of the synchronization policies implemented
as concurrency controllers can be separated from the verification of
their correct usage by different threads. We presented techniques
for thread isolation which enables verification of each thread sep-
arately. To investigate the effectiveness of this design for verifi-
cation approach on safety critical air traffic control software we
reengineered the TSAFE software using the concurrency controller
design pattern and created modified versions of the reengineered
TSAFE code using fault seeding. The presented verification tech-
niques were able to find almost all of the seeded faults. The experi-
mental study resulted in a fault classification and helped us identify
new directions for improving the presented approach.

9. REFERENCES
[1] T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. In Proc. of SPIN
Workshop, pages 103–122, 2001.

[2] A. Betin-Can and T. Bultan. Verifiable concurrent
programming using concurrency controllers. In Proc. of ASE,
pages 248–257, 2004.

[3] A. Betin-Can, T. Bultan, and X. Fu. Design for verification
for asynchronously communicating web services. In Proc. of
the 14th Int. World Wide Web Conf., pages 750–759, 2005.

[4] J. G. Bogda. Program Analysis Alleviates Java
Synchronization. PhD thesis, University of California, Santa
Barbara, 2001.

[5] T. Bultan and T. Yavuz-Kahveci. Action language verifier. In
Proc. of ASE, pages 382–386, 2001.

[6] T. Cargill. Specific notification for Java thread
synchronization. In Proc. of the 3rd PLoP, 1996.

[7] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. In Proc. of ICSE,
pages 385–395, 2003.

[8] A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdziński,
and F. Mang. Interface compatibility checking for software
modules. In Proc. of CAV, pages 428–441, 2002.

[9] R. DeLine and M. Fahndrich. Typestates for objects. In Proc.
of ECOOP, pages 465–490, 2004.

[10] G. Dennis. TSAFE: Building a trusted computing base for air
traffic control software, Master’s Thesis, 2003.

[11] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Pasareanu, Robby, W. Visser, and H. Zheng. Tool-supported
program abstraction for finite-state verification. In Proc. of
ICSE, pages 177–187, 2001.

[12] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing
interaction orderings with model checking. In Proc. of ASE,
pages 154–163, 2004.

[13] H. Erzberger. The automated airspace concept. In Proc. of
USA/Europe Air Traffic Management R&D Seminar, 2001.

[14] H. Erzberger. Transforming the NAS: The next generation air
traffic control system. In Proc. of the 24th Int. Congress of
the Aeronautical Sciences, 2004.

[15] Advance automation system. Dep. of Transportation, Office
of Inspector General, Audit Report, AV-1998-113, 1998.

[16] C. Flanagan and S. Qadeer. Thread-modular model checking.
In Proc. of the SPIN Workshop, pages 213–224, 2003.

[17] P. Godefroid, C. Colby, and L. Jagadeesan. Automatically
closing open reactive programs. In Proc. of PLDI, pages
345–357, 1998.

[18] Indus. http://indus.projects.cis.ksu.edu.
[19] D. Lea. Concurrent Programming in Java. Addison-Wesley,

Reading, Massachusetts, 1999.
[20] M. Lindvall and et al. An evolutionary testbed for software

technology evaluation. NASA Journal of Innovations in
Systems and Software Engineering, 1(1):3–11, 2005.

[21] P. C. Mehlitz and J. Penix. Design for verification using
design patterns to build reliable systems. In Workshop on
Component-Based Soft. Eng., 2003.

[22] J. Ottenstein and L. M. Ottenstein. The program dependence
graph in a software development environment. ACM
Software Engineering Notes, pages 177–184, 1984.

[23] N. Sharygina, J. C. Browne, and R. P. Kurshan. A formal
object-oriented analysis for software reliability: Design for
verification. In Proc. of FASE, pages 318–332, 2001.

[24] Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot/.

[25] S. D. Stoller and Y. A. Liu. Transformations for model
checking distributed java programs. In Proc. of the SPIN
Workshop, pages 192–199, 2001.

[26] O. Tkachuk and M. B. Dwyer. Adapting side-effects analysis
for modular program model checking. In Proc. of ASE, pages
188–197, 2003.

[27] O. Tkachuk, M. B. Dwyer, and C. Pasareanu. Automated
environment generation for software model checking. In
Proc. of ESEC/FSE, pages 116–129, 2003.

[28] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. Automated Software Engineering
Journal, 10(2):203–232, 2003.

[29] T. Yavuz-Kahveci and T. Bultan. Specification, verification,
and synthesis of concurrency control components. In Proc. of
ISSTA, pages 169–179, 2002.

23

