A Graphical Representation for Biological Processes in the Stochastic pi-Calculus

Andrew Phillips, Luca Cardelli, Giuseppe Castagna

5.11.2007

Outline

- introduction
- stochastic pi-calculus
- graphical calculus
- example: bistable gene network
- conclusion

Introduction

- graphical representation for biological systems
 - static
 - dynamic
- formalism: graphical calculus
- ullet equivalent to stochastic π
- highlight existence of cycles
- animate interactions between system components
- accessibility to non-computer scientists

a variant with internal transitions and recursive definitions

System

- system $E \vdash P$
- constant environment E
- process P

Biological settings

- process P represents a molecule (gene, protein, etc.)
- an action describes what a molecule can do

Environment

$$E ::= X(m) = P$$
 Definition, $fn(P) \subseteq m$
 $\mid E_1, E_2$ Union
 $\mid \emptyset$ Empty

definition parametrized by m

Action

```
\pi ::= \tau_r Delay
| !x(n)  Output
| ?x(m)  Input
```

- delay action τ_r
 - represents a change in internal structure
 - the rate *r* characterises an exponential distribution
 - average duration of the interaction 1/r
- input and output
 - on a common channel x
 - an interaction of two molecules
 - rate(x) ... the interaction rate
- fits the biological reality well

Process

$$P, Q ::= P|Q$$
 Parallel | M Choice | $X(n)$ Instance | $\nu x P$ Restriction $M ::= \pi . P + M$ Action | 0 Null

- parallel composition $P_1 | \dots | P_M$
 - existence of M molecules in parallel
- choice $\pi_1 P_1 + \ldots + \pi_N P_N$
 - ability to react in N different ways
- definition recorded in environment
- restriction used to represent complexes with a private communication $\nu x(P|Q)$

Execution rules

generally $E \vdash P \xrightarrow{\alpha} E \vdash P'$

Graphical representation

- processes as nodes
- edges to nested process
- definition in the environment assigns a unique identifier to a node
- static visualisation only

Example of graphical representation

 $Gene(a, b) = \tau_t.(Gene(a, b)|Protein(b))+?a.\tau_u.Gene(a, b)$ $Protein(b) = !b.Protein(b) + \tau_d$

- ullet reduction equivalent to stochastic π -calculus
- the same expressive power
- each choice defined separately in the environment
- each node unique identifier
- static and also dynamic visualisation

Process

$$P, Q ::= P|Q$$
 Parallel 0 Null $X(n)$ Instance $\nu x P$ Restriction

Environment

$$\begin{array}{lll} E ::= & \textit{X}(\textit{m}) = \textit{D} & \text{Definition, fn}(\textit{P}) \subseteq \textit{m} \\ & \mid & \textit{E}_1, \textit{E}_2 & \text{Union} \\ & \mid & \emptyset & \text{Empty} \\ \textit{D} ::= & \textit{P} & \text{Process} \\ & \mid & \textit{M} & \text{Choice} \\ & \mid & \nu \textit{x} \textit{D} & \text{Restriction} \\ \textit{M} ::= & \pi . \textit{P} + \textit{M} & \text{Action} \\ & \mid & 0 & \text{Null} \end{array}$$

Graphical representation - environment

	Choice	Process	Union
Е	X(m)=v z(pi1.P1++piN.PN)	X(m)=P	E1,,EN
E	z X piN piN PN	P	E1 EN

Graphical representation - process

	Null	Parallel	Instance
P	v z 0	v z(P1//PM)	X(m)=P/-vzX(n)
P		P1 PN	z

Dynamic graphical representation of processes

	Null	Parallel	Instance
P	v z 0	v z(P1//PM)	X(m)=P/-vzX(n)
P		, , , , , , , , , , , , , , , , , , ,	X {n/m}z

- substitution token $\{n/m\}$ next to instance
- dotted edge from restricted name z to processes
- node highlighted when at least one token present and any restricted names are connected to the token – the process is "active"

Gene example of graphical representation

 $Gene(a, b) = \tau_t.(Gene(a, b)|Protein(b))+?a.\tau_u.Gene(a, b)$ $Protein(b) = !b.Protein(b) + \tau_d$

Gene example

 $Gene(a, b) = \tau_t.(Gene(a, b)|Protein(b))+?a.Blocked(a, b)$ $Blocked(a, b) = \tau_u.Gene(a, b)$ $Protein(b) = !b.Protein(b) + \tau_d$

Example of behaviour

$$1 \xrightarrow{t} 2 \xrightarrow{?a} 3 \xrightarrow{u} 2$$

Bistable Gene Network


```
 \begin{split} & \mathsf{z} \!\!=\! \mathsf{inhibit}, \, \mathsf{bind} \\ & \mathsf{a}(z) = \tau_{tA}.(A(z)|\mathsf{a}(z)) \\ & A(z) = \nu u(\tau_{d_A} \!\!+\! !\mathsf{bind}(u).A_-B(u) \!\!+\! !\mathsf{inhibit}(u).A_-b(u, \mathsf{inhibit}, \mathsf{bind})) \\ & A_-b(u, \mathsf{inhibit}, \mathsf{bind}) = ?u.A(z) \\ & A_-B(u) = \tau_{dAB} \\ & b(z) = \tau_{tB}.(B(z)|b(z)) + ?\mathsf{inhibit}(u).b_-A(u) \\ & b_-A(u) = \tau_{tB'}.(B(z)|b_-A(u)) + !u.b(z) \\ & B(z) = \tau_{dB} + ?\mathsf{bind}(u).B_-A(u) \\ & B_-A(u) = 0 \end{split}
```

Bistable Gene Network

Bistable Gene Network - First Possible Behaviour

Bistable Gene Network - First Possible Behaviour

t_a (A is transcribed first)

Bistable Gene Network - First Possible Behaviour

inhibit (A binds to gene b and inhibits production of protein B)

t_b (B is transcribed first)

t_a (A is transcribed then)

bind (protein A binds to protein B)

Conclusion

- graphical calculus
- expressive power of stochastic pi-calculus
- static and dynamic visualisation
- examples
 - bistable gene network
 - mapk cascade
- SPiM
 - tool
 - programming language
 - graph generation
 - simulation