Parallelism: A Siren Song?

Moshe Y. Vardi

Rice University

Siren Song

Definition: “Siren Song” refers to an appeal that is hard to resist but that,
If heeded, will lead to a bad result.

An Old Vignette: The ILLIAC IV

Funded by the US Air Force in the mid 1960s
High parallelism, with up to 256 processors
11 years of development

4X over budget

When launched in 1976, it was outperformed by the Cray |, which was
commercially available!

Faster and Faster

Question: How do we speed up computing?

Wrong Answer: Moore's Law
e Moore's Law is about transistor density, not about performance!

Right Answer: It's complicated!

e Reduced transistor-switching time — but, for CMOS, this is essentially
over!
e Parallelism — many transistors working in parallel!

Leveraging Transistor Parallelism

How does transistor parallelism yield performance?

Cache memory

Bit-level parallelism: 4, 8, 16, 32, 64
Inter-instruction parallelism

— Pipelines

— Branch prediction

— Speculative execution

— QOut-of-order execution

But: We have maxed out!

Diminished ROI
Energy constraints (e.g., Intel's 2004 “Tejas Affair")

“The Future is Parallel Computing”

Fact: Processors’ speed increase is slow!

What Now?
e Parallelism on a Chip: multi-core processors, local and shared caches

e Parallelism on a Network: Beowulf cluster

— Commodity (multi-core) processors
— Ethernet and/or Infiniband communication
— Local memories, shared secondary storage

Theory of Parallel Computation

Computational Model: CRCW PRAM

Multiple processors, each with its own program

Local and shared memories, one cycle for communication
Concurrent reads, concurrent writes (with conflict resolution)
Complexity Class: NC

Polynomial number of processors

Polylogarithmic time

Example: Graph Reachability

Input: Digraph G = (V, F)
Output: Reachability Digraph G = (V, R)

Processors: P,,, : u,v,w € V - cubic
Initial: R(u,v) «— E(u,v)
Algorithm: R(u,w) <+ R(u,v) A R(v, w)

Running Time: logarithmic (NC?!)

We have: numerous NC algorithms, many sublogarithmic

What Cannot Be Parallelized?

Working Conjecture: P # NC
Corollary: P-complete problems cannot be parallelized.

e Examples: reachability games, Horn SAT

But: flimsy evidence for conjecture!

Critique

Claim: PRAM/NC theory suffers from several fundamental flaws.

e Model ignores communication costs.
e Number of processors cannot be practically scaled.
e Focus on polylogarithmic time unjustified.

e Unmotivated choice of problems.

Optimal Speedup

Definition:

o Let Seq(P,n) be the fastest known worst-case running time of a
sequential algorithm to solve a problem P of size n.

e [he best upper bound on the parallel time achievable using p processors

is O(Seq(P,n)/p).

e A parallel algorithm that achieves this running time is said to have
optimal speedup.

Example: An O((n3logn)/p) (for p < n) parallel Max-Flow algorithm
[Shiloach&Vishkin, 1982] - almost optimal!

10

Reality of Parallel Computing

Claim: Parallel programming is hard — very few success stories:

e Inter-instruction parallelism: but this technique has maxed out, due to
energy constraints

e Data parallelism: multiple processors perform the same operation on
multiple data simultaneously

Non-success Story: task parallelism (MIMD) — distributing execution
threads across different processors — too hard to coordinate multiple threads
and pass information between them — Amdahl’s Law and Gustafson’s Law

11

Data Parallelism

SIMD: Single Instruction, Multiple Data
SPMD: Single Program, Multiple Data

Examples:

o Wide registers: 4, 8, 16, 32, 64

e Vector processing: single instruction operating on arrays of data, e.g.,
multiply two arrays of floating-point numbers
— Cray-1: eight “vector registers,” sixty-four 64-bit words each.
— x86: Streaming SIMD Extensions (SSE)

e GPUs: graphics-processing units — data parallelism specialized for
graphics.

12

MapReduce

MapReduce, 2005: First successful framework of task parallelism:

e Map: Master node partitions input up into smaller sub-problems, and
distributes to worker nodes. Worker nodes may repeat, recursively.
e Process: Worker nodes process sub-problems, and pass answers back to

master nodes up the tree.
e Reduce: Master node takes answers to sub-problems and combines them

to get answer.
Example: IBM’s Watson winning in Jeopardy!

Widely available: libraries in C++, C#, Erlang, Java, OCaml, Perl,
Python, PHP, Ruby, F#, R

13

Ensemble Algorithms: Embarrassing Parallelism

Basic Observation: For many problems there are many potential
algorithms, but no “best” algorithm

Solution: run them all in parallel, terminating when first terminates!

Example: symbolic LTL satisfiability [Rozier&V., FM 2011]

14

LTL Satisfiability Checking Reduces to Model Checking

e Let f be a LTL formula over a set Prop of propositions.
e Let the system model M be universal — containing all possible traces

over Prop.

e Then f is satisfiable precisely when M does not satisfy —f.

15

LTL Satisfiability in SMV

1. Model check = f against a universal SMV model.
MODULE main

VAR
a : boolean;
b : boolean;
c : boolean;
LTLSPEC !f
FATRNESS TRUE

2. SMV:
(a) Negates the property, —f.
(b) Symbolically compiles f into Ay and conjoins with the universal
model.
(c) Searches for a fair path that satisfies f.

16

LTL Satisfiability Checking via Symbolic Model Checking

f=(Uq)

nodul e mai n() {
VAR
p: bool ean;

g: bool ean;

EL X p_U q : bool ean nodul e mai n() {
DEFINES p Uqg :=q | (p & EL X p Uq); VAR
TRANS (EL_X p_ Uq = (next(S_p_UQq)) p: bool ean;
FAIRNESS ('S _p Uq | q) g: bool ean;
SPEC ! (S _p U g & EG TRUE) } FAI RNESS TRUE; }
symbolic A_; 0 universal M

l

Ay ~f—>» CadenceSMV:EMPTY?

Key: The encoding of A_f has a major impact on complexity.

17

Symbolic Encodings

Fact: Since 1994, there has been only one encoding for LTL-to-
symbolic automata, due to Clarke, Grumberg &Hamaguchi (CGH) — used
by all symbolic model checkers

Questions:

e Can we do it differently?

e Can we do it better?

18

A Set of 30 Symbolic Automata Encodings

Novel encodings are combinations of four components:

1. Normal Form: BNF or NNF
2. Automaton Form: GBA or TGBA

3. Transition Form: fussy or sloppy

4. Variable Order: default, naive, LEXP, LEXM, MCS-MIN, MCS-MAX

Note: CGH = BNF/GBA /fussy/default

19

Normal Forms

e BNF: = V, next, until

e NNF:

— Add A, release
— push negations all the way to atomic propositions

20

TGBA: A New Symbolic Automaton Form

Requires NNF

Avoid declaring variables for eventuality expansion rules
CGH/GBA: pUU gq=q | (p & VARX_p U_q)

Ensure eventualities using promise variables
pUqg= ((@ | (p& P_pUgqé& (next(VAR__p_U_q))))

Simpler transitions

Fairness means promise fulfilled: FAIRNESS (!'P__p_U_q)

21

Sloppy: A New Transition Form

e Fussy: iff transitions—more constrained
TRANS (EL_(p&q) = EL_p&EL_q)
e Sloppy: if transitions—less constrained

TRANS (EL_(p&qg) -> EL_p&EL_q)
— Requires NNF

22

30 Combinations

Automaton Normal Transition Variable Order
Form Form Form
GBA BNF fussy default
naive
fussy LEXP
LEXM
TGBA NNF sloppy | MCS-MIN

MCS-MAX

23

Input Formulas

Rozier & V., 2007:

e Random Formulas: 60,000 instances
e Scalable Pattern Formulas: 8,000 instances

e Scalable Counter Formulas: 60 instances

24

Experimental Results

e Seven configurations are not competitive.

e NNF is the best normal form, most (but not all) of the time.
e No automaton form is best.

e No transition form is best.

e No variable order is best; LEXM is not competitive.

o

A formula class typically has a best encoding, but predictions are difficult.

Tool: PANDA — implements all 30 encodings

25

NNF is the best normal form, most (not all) of the time

e NNF encodings were always better for all counter and pattern formulas.

e BNF encodings were optimal for a nontrivial portion of our random
formulas.

26

-
o
w

Best BNF encoding vs best NNF encoding:
3-variable, 160 length random formulas

o F
)] i 7
-.E.-— i m- [
a B
E . o
@ F -
> T T
s | . 5 o
< 0O
3 10'F L g -
v -
Q B
E =
0 i []
(=1 B [
%100 Dmﬂ% DDD%
s CHaE o
e [N
L B % lfp O
L - []
Z -
= []
10" 4 ||||||||O | ||||||||1 | ||||||||2 Ll
10 10 e 19

BNF Encodings Model Analysis Times (sec)

10°

27

TGBAs can beat CGH/CadenceSMV

R2 Pattern Formulas

Q
o
o
o
3
o
©
[
=
<

10°

PANDA-gba

-
(]
)

_L
OJ

PANDA-tgba

-
(@]
=}

Median Model Analysis Time (seconds)

10"
PANDA-tgba
PANDA-gba
102 CadenceSMV

co b b b b b b b b b1
100 200 300 400 500 (?‘00 700 800 900 1000
Number of Variables

Ro(n) = (..(pt1 Rp2) R ...) R pn.

o T TTTIT

No automaton form is best

TGBA encodings are better for C2, R2, U, and C1 pattern formulas.

GBA encodings are better for R-pattern formulas, majority of random
formulas.

TGBA is better for 3-variable counters.

GBA is better for 2-variable linear counters.

29

TGBA Encodings Model Analysis Times (sec)

Best TGBA encoding vs best GBA encoding:
3-variable, 180 length random formulas

10° -
u % E@ il
n] [@
- &
ii U
- Hn L]
- O
“H % =
10° |- [0
» @D [
-
. [&
I [] 5
O 3
| Do
I O G -
o' b
ED]
o Mo
| B
(H
0 | Ll Loaaaald I Lol
10409 10' 10 10°

GBA Encodings Model Analysis Times (sec)

Sloppy transitions can beat CGH/CadenceSMV

Median Model Analysis Time (seconds)

-
(=]
W

-y
o
™o

=
=]

-
5
o

U Pattern Formulas
g CadenceSMY

PAND A-sloppy
CadenceSMV

PANDA-sloppy

200 400 600 800 1000
Number of Variables

Un)=(0G(..(p1UPp2)U ...) U pn.

31

No transition form is best

e Sloppy encoding is the best transition form for all pattern formulas.

e Fussy encoding is better for all counter formulas.

32

Best fussy encoding vs best sloppy encoding:

— — —k —
o o o o

(=) —- ra L
T T T T

—k
<

3-variable, 140 length random formulas

Sloppy Encodings Model Analysis Times (sec)

10
10°

]
L]
— D@
- an
- i
= L]
- []
| O
- O
. Ein
i L]
- 0O
- []
B L]
B]
Lol Lol Lol Lol Lol
10 10° 10’ 10° 10°

Fussy Encodings Model Analysis Times (sec)

33

No variable order is

best, but LExv IS worst

Default Encodings Model Analysis Times (sec)

Best encodings with naive vs default variable orders
3-variable, 195 length random formulas

10°
- O
-]
10°
- o O
i L O o
- 0 O (=
10° - O
: - i
0
[Yooy .
: 0
0E o : gmg@ -
E O o o
- O = O
- = n
i = .
100 Jv Il \\\\I\I L 1 \\\\HI Il \\\II\I 1 \\\I\II
10° 10 107 10° 10*

Naive Encodings Model Analysis Times (sec)

Maximum State Space Analyzed

500000

400000

300000

200000

100000

3-variable Counter Formulas
PANDA-lexp

CadenceSMV

34

New tool:
Automata

A Multi-Encoding Approach

PANDA — Portfolio Approach to Navigate the Design of

e Multi-encoding approach:

— runs 23 PANDA encodings in parallel
— terminates when the first job completes

Bottom Line: exponential improvement in performance over current

techniques

35

Discussion

e Parallel computing has been a siren song in computer science for almost
50 years!

e While there are some success stories, parallelism, in general, has under-
delivered.
Question: What does work?

Answer: Embarrassing parallelism!

My Advice: Do not be embarrassed to pick low-hanging fruit. It is the
easiest to pick!

36

