Parallelism: A Siren Song?

Moshe Y. Vardi

Rice University

Siren Song

Definition: "Siren Song" refers to an appeal that is hard to resist but that, if heeded, will lead to a bad result.

An Old Vignette: The ILLIAC IV

- Funded by the US Air Force in the mid 1960s
- High parallelism, with up to 256 processors
- 11 years of development
- $4 X$ over budget
- When launched in 1976, it was outperformed by the Cray I, which was commercially available!

Faster and Faster

Question: How do we speed up computing?
Wrong Answer: Moore's Law

- Moore's Law is about transistor density, not about performance!

Right Answer: It's complicated!

- Reduced transistor-switching time - but, for CMOS, this is essentially over!
- Parallelism - many transistors working in parallel!

Leveraging Transistor Parallelism

How does transistor parallelism yield performance?

- Cache memory
- Bit-level parallelism: 4, 8, 16, 32, 64
- Inter-instruction parallelism
- Pipelines
- Branch prediction
- Speculative execution
- Out-of-order execution

But: We have maxed out!

- Diminished ROI
- Energy constraints (e.g., Intel's 2004 "Tejas Affair")

"The Future is Parallel Computing"

Fact: Processors' speed increase is slow!

What Now?

- Parallelism on a Chip: multi-core processors, local and shared caches
- Parallelism on a Network: Beowulf cluster
- Commodity (multi-core) processors
- Ethernet and/or Infiniband communication
- Local memories, shared secondary storage

Theory of Parallel Computation

Computational Model: CRCW PRAM

- Multiple processors, each with its own program
- Local and shared memories, one cycle for communication
- Concurrent reads, concurrent writes (with conflict resolution)

Complexity Class: NC

- Polynomial number of processors
- Polylogarithmic time

Example: Graph Reachability

Input: Digraph $G=(V, E)$
Output: Reachability Digraph $G=(V, R)$
Processors: $P_{u v w}: u, v, w \in V$ - cubic
Initial: $R(u, v) \leftarrow E(u, v)$
Algorithm: $R(u, w) \leftarrow R(u, v) \wedge R(v, w)$
Running Time: logarithmic $\left(N C^{1}\right)$

We have: numerous NC algorithms, many sublogarithmic

What Cannot Be Parallelized?

Working Conjecture: $P \neq N C$
Corollary: P-complete problems cannot be parallelized.

- Examples: reachability games, Horn SAT

But: flimsy evidence for conjecture!

Critique

Claim: PRAM/NC theory suffers from several fundamental flaws.

- Model ignores communication costs.
- Number of processors cannot be practically scaled.
- Focus on polylogarithmic time unjustified.
- Unmotivated choice of problems.

Optimal Speedup

Definition:

- Let $\operatorname{Seq}(P, n)$ be the fastest known worst-case running time of a sequential algorithm to solve a problem P of size n.
- The best upper bound on the parallel time achievable using p processors is $O(S e q(P, n) / p)$.
- A parallel algorithm that achieves this running time is said to have optimal speedup.

Example: An $O\left(\left(n^{3} \log n\right) / p\right)$ (for $p \leq n$) parallel Max-Flow algorithm [Shiloach\&Vishkin, 1982] - almost optimal!

Reality of Parallel Computing

Claim: Parallel programming is hard - very few success stories:

- Inter-instruction parallelism: but this technique has maxed out, due to energy constraints
- Data parallelism: multiple processors perform the same operation on multiple data simultaneously

Non-success Story: task parallelism (MIMD) - distributing execution threads across different processors - too hard to coordinate multiple threads and pass information between them - Amdahl's Law and Gustafson's Law

Data Parallelism

SIMD: Single Instruction, Multiple Data
SPMD: Single Program, Multiple Data

Examples:

- Wide registers: 4, 8, 16, 32, 64
- Vector processing: single instruction operating on arrays of data, e.g., multiply two arrays of floating-point numbers
- Cray-1: eight "vector registers," sixty-four 64-bit words each.
- x86: Streaming SIMD Extensions (SSE)
- GPUs: graphics-processing units - data parallelism specialized for graphics.

MapReduce

MapReduce, 2005: First successful framework of task parallelism:

- Map: Master node partitions input up into smaller sub-problems, and distributes to worker nodes. Worker nodes may repeat, recursively.
- Process: Worker nodes process sub-problems, and pass answers back to master nodes up the tree.
- Reduce: Master node takes answers to sub-problems and combines them to get answer.

Example: IBM's Watson winning in Jeopardy!
Widely available: libraries in C++, C\#, Erlang, Java, OCaml, Perl, Python, PHP, Ruby, F\#, R

Ensemble Algorithms: Embarrassing Parallelism

Basic Observation: For many problems there are many potential algorithms, but no "best" algorithm

Solution: run them all in parallel, terminating when first terminates!

Example: symbolic LTL satisfiability [Rozier\&V., FM 2011]

LTL Satisfiability Checking Reduces to Model Checking

- Let f be a LTL formula over a set Prop of propositions.
- Let the system model M be universal - containing all possible traces over Prop.
- Then f is satisfiable precisely when M does not satisfy $\neg f$.

LTL Satisfiability in SMV

1. Model check $\neg f$ against a universal SMV model. MODULE main

VAR
a : boolean;
b : boolean;
c : boolean;
LTLSPEC !f
FAIRNESS TRUE
2. SMV:
(a) Negates the property, $\neg f$.
(b) Symbolically compiles f into A_{f} and conjoins with the universal model.
(c) Searches for a fair path that satisfies f.

LTL Satisfiability Checking via Symbolic Model Checking

Key: The encoding of $A_{\neg f}$ has a major impact on complexity.

Symbolic Encodings

Fact: Since 1994, there has been only one encoding for LTL-tosymbolic automata, due to Clarke, Grumberg \&Hamaguchi (CGH) - used by all symbolic model checkers

Questions:

- Can we do it differently?
- Can we do it better?

A Set of 30 Symbolic Automata Encodings

Novel encodings are combinations of four components:

1. Normal Form: BNF or NNF
2. Automaton Form: GBA or TGBA
3. Transition Form: fussy or sloppy
4. Variable Order: default, naïve, LEXP, LEXM, MCS-MIn, MCS-MAX

Note: CGH = BNF/GBA/fussy/default

Normal Forms

- BNF: ᄀ, V, next, until
- NNF:
- Add \wedge, release
- push negations all the way to atomic propositions

TGBA: A New Symbolic Automaton Form

- Requires NNF
- Avoid declaring variables for eventuality expansion rules CGH/GBA: $p \mathcal{U} q \equiv \mathrm{q} \mid\left(\mathrm{p} \& \operatorname{VAR}-\mathrm{X} _-\mathrm{p} _\mathrm{U} _\mathrm{q}\right)$
- Ensure eventualities using promise variables $p \mathcal{U} q \equiv$ ((q) | ($\mathrm{p} \& \quad$ P_-_p_U_q \& (next(VAR_-p_U_q))))
- Simpler transitions
- Fairness means promise fulfilled: FAIRNESS (! P_-p_U_q)

Sloppy: A New Transition Form

- Fussy: iff transitions-more constrained

TRANS (EL_(p\&q) = EL_p\&EL_q)

- Sloppy: if transitions-less constrained

TRANS (EL_(p\&q) -> EL_p\&EL_q)

- Requires NNF

30 Combinations

Automaton Form	Normal Form	Transition Form	Variable Order
GBA	BNF	fussy	default TGBAÏve
TGB	NNF	fussy	LEXP LEXM
sloppy	LEXM MCS-MIN MCS-MAX		

Input Formulas

Rozier \& V., 2007:

- Random Formulas: 60,000 instances
- Scalable Pattern Formulas: 8,000 instances
- Scalable Counter Formulas: 60 instances

Experimental Results

- Seven configurations are not competitive.
- NNF is the best normal form, most (but not all) of the time.
- No automaton form is best.
- No transition form is best.
- No variable order is best; LEXM is not competitive.
- A formula class typically has a best encoding, but predictions are difficult.

Tool: PANDA - implements all 30 encodings

NNF is the best normal form, most (not all) of the time

- NNF encodings were always better for all counter and pattern formulas.
- BNF encodings were optimal for a nontrivial portion of our random formulas.

TGBAs can beat CGH/CadenceSMV

No automaton form is best

- TGBA encodings are better for $C 2, R 2, U$, and $C 1$ pattern formulas.
- GBA encodings are better for R-pattern formulas, majority of random formulas.
- TGBA is better for 3-variable counters.
- GBA is better for 2-variable linear counters.

Sloppy transitions can beat CGH/CadenceSMV

No transition form is best

- Sloppy encoding is the best transition form for all pattern formulas.
- Fussy encoding is better for all counter formulas.

No variable order is best, but LEXM is worst

A Multi-Encoding Approach

New tool: PANDA - Portfolio Approach to Navigate the Design of Automata

- Multi-encoding approach:
- runs 23 PANDA encodings in parallel
- terminates when the first job completes

Bottom Line: exponential improvement in performance over current techniques

Discussion

- Parallel computing has been a siren song in computer science for almost 50 years!
- While there are some success stories, parallelism, in general, has underdelivered.

Question: What does work?
Answer: Embarrassing parallelism!

My Advice: Do not be embarrassed to pick low-hanging fruit. It is the easiest to pick!

