
Parallelism: A Siren Song?

Moshe Y. Vardi

Rice University

Siren Song

Definition: “Siren Song” refers to an appeal that is hard to resist but that,
if heeded, will lead to a bad result.

1

An Old Vignette: The ILLIAC IV

• Funded by the US Air Force in the mid 1960s

• High parallelism, with up to 256 processors

• 11 years of development

• 4X over budget

• When launched in 1976, it was outperformed by the Cray I, which was
commercially available!

2

Faster and Faster

Question: How do we speed up computing?

Wrong Answer: Moore’s Law

• Moore’s Law is about transistor density, not about performance!

Right Answer: It’s complicated!

• Reduced transistor-switching time – but, for CMOS, this is essentially
over!
• Parallelism – many transistors working in parallel!

3

Leveraging Transistor Parallelism

How does transistor parallelism yield performance?

• Cache memory
• Bit-level parallelism: 4, 8, 16, 32, 64
• Inter-instruction parallelism

– Pipelines
– Branch prediction
– Speculative execution
– Out-of-order execution

But: We have maxed out!

• Diminished ROI
• Energy constraints (e.g., Intel’s 2004 “Tejas Affair”)

4

“The Future is Parallel Computing”

Fact: Processors’ speed increase is slow!

What Now?

• Parallelism on a Chip: multi-core processors, local and shared caches

• Parallelism on a Network: Beowulf cluster

– Commodity (multi-core) processors
– Ethernet and/or Infiniband communication
– Local memories, shared secondary storage

5

Theory of Parallel Computation

Computational Model: CRCW PRAM

• Multiple processors, each with its own program

• Local and shared memories, one cycle for communication

• Concurrent reads, concurrent writes (with conflict resolution)

Complexity Class: NC

• Polynomial number of processors

• Polylogarithmic time

6

Example: Graph Reachability

Input: Digraph G = (V,E)
Output: Reachability Digraph G = (V,R)

Processors: Puvw : u, v, w ∈ V - cubic

Initial: R(u, v)← E(u, v)

Algorithm: R(u, w)← R(u, v) ∧R(v, w)

Running Time: logarithmic (NC1)

We have: numerous NC algorithms, many sublogarithmic

7

What Cannot Be Parallelized?

Working Conjecture: P 6= NC

Corollary: P-complete problems cannot be parallelized.

• Examples: reachability games, Horn SAT

But: flimsy evidence for conjecture!

8

Critique

Claim: PRAM/NC theory suffers from several fundamental flaws.

• Model ignores communication costs.

• Number of processors cannot be practically scaled.

• Focus on polylogarithmic time unjustified.

• Unmotivated choice of problems.

9

Optimal Speedup

Definition:

• Let Seq(P, n) be the fastest known worst-case running time of a
sequential algorithm to solve a problem P of size n.

• The best upper bound on the parallel time achievable using p processors
is O(Seq(P, n)/p).

• A parallel algorithm that achieves this running time is said to have
optimal speedup.

Example: An O((n3 log n)/p) (for p ≤ n) parallel Max-Flow algorithm
[Shiloach&Vishkin, 1982] - almost optimal!

10

Reality of Parallel Computing

Claim: Parallel programming is hard – very few success stories:

• Inter-instruction parallelism: but this technique has maxed out, due to
energy constraints

• Data parallelism: multiple processors perform the same operation on
multiple data simultaneously

Non-success Story: task parallelism (MIMD) – distributing execution
threads across different processors – too hard to coordinate multiple threads
and pass information between them – Amdahl’s Law and Gustafson’s Law

11

Data Parallelism

SIMD: Single Instruction, Multiple Data
SPMD: Single Program, Multiple Data

Examples:

• Wide registers: 4, 8, 16, 32, 64
• Vector processing: single instruction operating on arrays of data, e.g.,

multiply two arrays of floating-point numbers
– Cray-1: eight “vector registers,” sixty-four 64-bit words each.
– x86: Streaming SIMD Extensions (SSE)

• GPUs: graphics-processing units – data parallelism specialized for
graphics.

12

MapReduce

MapReduce, 2005: First successful framework of task parallelism:

• Map: Master node partitions input up into smaller sub-problems, and
distributes to worker nodes. Worker nodes may repeat, recursively.
• Process: Worker nodes process sub-problems, and pass answers back to

master nodes up the tree.
• Reduce: Master node takes answers to sub-problems and combines them

to get answer.

Example: IBM’s Watson winning in Jeopardy!

Widely available: libraries in C++, C#, Erlang, Java, OCaml, Perl,
Python, PHP, Ruby, F#, R

13

Ensemble Algorithms: Embarrassing Parallelism

Basic Observation: For many problems there are many potential
algorithms, but no “best” algorithm

Solution: run them all in parallel, terminating when first terminates!

Example: symbolic LTL satisfiability [Rozier&V., FM 2011]

14

LTL Satisfiability Checking Reduces to Model Checking

• Let f be a LTL formula over a set Prop of propositions.

• Let the system model M be universal – containing all possible traces
over Prop.

• Then f is satisfiable precisely when M does not satisfy ¬f .

15

LTL Satisfiability in SMV

1. Model check ¬f against a universal SMV model.
MODULE main

VAR
a : boolean;
b : boolean;
c : boolean;

LTLSPEC !f
FAIRNESS TRUE

2. SMV:
(a) Negates the property, ¬f .
(b) Symbolically compiles f into Af and conjoins with the universal

model.
(c) Searches for a fair path that satisfies f .

16

LTL Satisfiability Checking via Symbolic Model Checking

 FAIRNESS TRUE; }

VAR
module main() {

 p: boolean;
 q: boolean;
 EL_X__p_U_q : boolean;
 DEFINE S__p_U_q := q | (p & EL_X__p_U_q);

 FAIRNESS (!S__p_U_q | q)
 SPEC !(S__p_U_q & EG TRUE) }

 TRANS (EL_X__p_U_q = (next(S__p_U_q)))
 VAR

 q: boolean;
 p: boolean;

module main() {

AM,¬f

f = (pUq)

CadenceSMV:EMPTY?

symbolic A¬f universal M⊗

Key: The encoding of A¬f has a major impact on complexity.

17

Symbolic Encodings

Fact: Since 1994, there has been only one encoding for LTL-to-
symbolic automata, due to Clarke, Grumberg &Hamaguchi (CGH) – used
by all symbolic model checkers

Questions:

• Can we do it differently?

• Can we do it better?

18

A Set of 30 Symbolic Automata Encodings

Novel encodings are combinations of four components:

1. Normal Form: BNF or NNF

2. Automaton Form: GBA or TGBA

3. Transition Form: fussy or sloppy

4. Variable Order: default, näıve, LEXP, LEXM, MCS-MIN, MCS-MAX

Note: CGH = BNF/GBA/fussy/default

19

Normal Forms

• BNF: ¬, ∨, next, until

• NNF:

– Add ∧, release
– push negations all the way to atomic propositions

20

TGBA: A New Symbolic Automaton Form

• Requires NNF

• Avoid declaring variables for eventuality expansion rules
CGH/GBA: p U q ≡ q | (p & VAR X p U q)

• Ensure eventualities using promise variables
p U q ≡ ((q) | (p & P p U q & (next(VAR p U q))))

• Simpler transitions

• Fairness means promise fulfilled: FAIRNESS (!P p U q)

21

Sloppy: A New Transition Form

• Fussy: iff transitions–more constrained

TRANS (EL_(p&q) = EL_p&EL_q)

• Sloppy: if transitions–less constrained

TRANS (EL_(p&q) -> EL_p&EL_q)

– Requires NNF

22

30 Combinations

Automaton
Form

Normal
Form

Transition
Form

Variable Order

GBA
BNF fussy default

TGBA NNF

fussy
naı̈ve
LEXP
LEXM

sloppy MCS-MIN
MCS-MAX

23

Input Formulas

Rozier & V., 2007:

• Random Formulas: 60,000 instances

• Scalable Pattern Formulas: 8,000 instances

• Scalable Counter Formulas: 60 instances

24

Experimental Results

• Seven configurations are not competitive.
• NNF is the best normal form, most (but not all) of the time.
• No automaton form is best.
• No transition form is best.
• No variable order is best; LEXM is not competitive.
• A formula class typically has a best encoding, but predictions are difficult.

Tool: PANDA – implements all 30 encodings

25

NNF is the best normal form, most (not all) of the time

• NNF encodings were always better for all counter and pattern formulas.

• BNF encodings were optimal for a nontrivial portion of our random
formulas.

26

27

TGBAs can beat CGH/CadenceSMV

R2(n) = (..(p1 R p2) R . . .) R pn.

28

No automaton form is best

• TGBA encodings are better for C2, R2, U , and C1 pattern formulas.

• GBA encodings are better for R-pattern formulas, majority of random
formulas.

• TGBA is better for 3-variable counters.

• GBA is better for 2-variable linear counters.

29

30

Sloppy transitions can beat CGH/CadenceSMV

U(n) = (. . . (p1 U p2) U . . .) U pn.

31

No transition form is best

• Sloppy encoding is the best transition form for all pattern formulas.

• Fussy encoding is better for all counter formulas.

32

33

No variable order is best, but LEXM is worst

34

A Multi-Encoding Approach

New tool: PANDA – Portfolio Approach to Navigate the Design of
Automata

• Multi-encoding approach:

– runs 23 PANDA encodings in parallel
– terminates when the first job completes

Bottom Line: exponential improvement in performance over current
techniques

35

Discussion

• Parallel computing has been a siren song in computer science for almost
50 years!

• While there are some success stories, parallelism, in general, has under-
delivered.

Question: What does work?

Answer: Embarrassing parallelism!

My Advice: Do not be embarrassed to pick low-hanging fruit. It is the
easiest to pick!

36

