
Platform Dependent Verification
Engineering Verification Tools for 21st Century

Luboš Brim and Jǐŕı Barnat

Masaryk University
Czech Republic



Motivation

Complexity of developed systems is growing

Numerical computation & text processing

Database systems, computer games

Simulations of physical systems

Virtual reality

...

Parallelism and communication are essential

Correctness and reliability are critical measures.

10th PDMC, Snowbird, Utah 2/28



Flaws of concurrent systems

Concurrent systems are everywhere

Network applications, data communication protocols

Client-server systems

Multi-threaded code

...

Errors Related to Concurrency

Deadlocks

Livelocks

Underspecification

Overspecification

Assumption about execution speed

10th PDMC, Snowbird, Utah 3/28



Formal Verification

Verification Methods

Simulations, Prototyping, Testing, Formal Verification

Formal Verification Benefits

Early integration in design process.

More effective (higher coverage).

Reduction in verification time.

Reduction in development costs and time-to-market.

10th PDMC, Snowbird, Utah 4/28



Section

Press-the-button!

... a brief look at model-checking

10th PDMC, Snowbird, Utah 5/28



Model Checking

ACM Turing Award 2007

Edmund M. Clarke jr. (CMU, USA)

Allen E. Emerson (Texas at Austin, USA)

Joseph Sifakis (IMAG Grenoble, France)

Jury justification
“For their roles in developing Model-Checking
into a highly effective verification technology,
widely adopted in the hardware and software
industries.”

10th PDMC, Snowbird, Utah 6/28



Model Checking and State Space Explosion Problem

Requirements

Specification

Property

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelingFormalization

10th PDMC, Snowbird, Utah 7/28



Model Checking and State Space Explosion Problem

Verification Failure

Requirements

Specification

Property

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelingFormalization

10th PDMC, Snowbird, Utah 7/28



PDMC Workshop Series

Fight the state explosion problem by squeezing all the
power out of the contemporary hardware

10th PDMC, Snowbird, Utah 8/28



What is needed ...

Contemporary computing platforms

Distributed memory systems

Shared memory parallelism

GP GPU many-cores

External memory

. . . and combinations.

Efficient utilization requires

Parallel algorithms

Algorithm engineering

10th PDMC, Snowbird, Utah 9/28



Section

The DiVinE Story!

... platform dependent model checking with DiVinE

10th PDMC, Snowbird, Utah 10/28



The DiVinE Story: DiVinE

What is DiVinE?

Explicit-state automata-based LTL model checker.

Can exploit aggregate computing power of multiple
network-interconnected multi-cored workstations.

Where is it?

http://divine.fi.muni.cz

10th PDMC, Snowbird, Utah 11/28

http://divine.fi.muni.cz


Section

The DiVinE Story!

... parallel algorithms

10th PDMC, Snowbird, Utah 12/28



The DiVinE Story: Need for Parallel Algorithms

Automata-based LTL Model Checking

Accepting cycle detection in a directed graph.

Optimal Serial Algorithms

Rely on difficult-to-parallelize DFS-postorder.

Inefficient on parallel/distributed HW architectures and
non-flat memory hierarchies.

Parallel scalable algorithms needed!

10th PDMC, Snowbird, Utah 13/28



The DiVinE Story: Parallel Scalable Algorithms

Complexity Optimality On-The-Fly

Nested DFS O(N+M) Yes Yes

OWCTY Algorithm

general LTL properties O(N.(N+M)) No No

weak LTL properties O(N+M) Yes No

MAP Algorithm O(N.N.(N+M)) No Yes

MAP-OWCTY Algorithm

general LTL properties O(N.(N+M)) No Yes

weak LTL properties O(N+M) Yes Yes

BLEDGE Algorithm O(N.N.(N+M)) No Yes

NEGC Algorithm O(N.N.(N+M)) No Yes

N – number of states
M – number of transitions

10th PDMC, Snowbird, Utah 14/28



The DiVinE Story: Parallel Scalable Algorithms

Complexity Optimality On-The-Fly

Nested DFS O(N+M) Yes Yes

OWCTY Algorithm

general LTL properties O(N.(N+M)) No No

weak LTL properties O(N+M) Yes No

MAP Algorithm O(N.N.(N+M)) No Yes

MAP-OWCTY Algorithm

general LTL properties O(N.(N+M)) No Yes

weak LTL properties O(N+M) Yes Yes

BLEDGE Algorithm O(N.N.(N+M)) No Yes

NEGC Algorithm O(N.N.(N+M)) No Yes

N – number of states
M – number of transitions

10th PDMC, Snowbird, Utah 14/28



The DiVinE Story: Partial Order Reduction

Observations

Distributed memory processing should not stay isolated.

It must combine with other techniques.

Partial Order Reduction (POR)

Key technique to fight state space explosion in explicit state
model checking.

10th PDMC, Snowbird, Utah 15/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Orders execution of independent actions among processes of the
distributed system.

Distributed system definition

Process B
b1 b2 b3

a2a1
Process A

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Orders execution of independent actions among processes of the
distributed system.

Unreduced State Space Graph

b1 b2 b3

a1

a2

b1

b1

b2

b2

b3

b3

a1 a1 a1

a2 a2 a2

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Suppose actions a1, b1 and b2 are independent.
.

Unreduced State Space Graph

b1 b2 b3

a1

a2

b1

b1

b2

b2

b3

b3

a1 a1 a1

a2 a2 a2

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

By postponing execution of selected independent action (e.g. a1)
the state space graph is reduced.

Unreduced State Space Graph

b1 b2 b3

a1

a2

b1

b1

b2

b2

b3

b3

a1 a1 a1

a2 a2 a2

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

By postponing execution of selected independent action (e.g. a1)
the state space graph is reduced.

Reduced State Space Graph

b1 b2 b3

b2

b2

b3

b3

a1 a1 a1

a2 a2 a2

b1

a1

b1

a2

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

By postponing execution of selected independent action (e.g. a1)
the state space graph is reduced.

Reduced State Space Graph

b1 b2 b3

b3

b3

a1 a1

a2 a2

a1 a1

b1

a2

b1

a2

b2

b2

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Postponed action must be eventually executed, otherwise the
reduction is incorrect.

Unreduced State Space Graph

b1 b2 b3

a1

b1 b2 b3

a1 a1 a1

b4

b4

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Postponed action must be eventually executed, otherwise the
reduction is incorrect.

Permanent Postponing Problem

b1 b2 b3

b1 b2 b3

a1 a1 a1

b4

b4

a1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Postponed action must be eventually executed, otherwise the
reduction is incorrect.

Permanent Postponing Problem

b1 b2 b3

b1 b2 b3

a1 a1

b4

b4

a1 a1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Postponed action must be eventually executed, otherwise the
reduction is incorrect.

Permanent Postponing Problem

b1 b2 b3

b1 b2 b3

a1

b4

b4

a1 a1 a1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Postponed action must be eventually executed, otherwise the
reduction is incorrect.

Permanent Postponing Problem

b1 b2 b3

b4

a1 a1 a1 a1

b3b2

b4

b1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

Infinite postponing is avoided if every cycle contains at least one
fully expanded state ⇒ cycle proviso.

Cycle with Fully Expanded State

b1 b2 b3

b1 b2 b3

a1

b4

b4

a1 a1 a1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Partial Order Reduction Principle

POR Principle

To detect the cycle, depth-first search stack is used in the
standard sequential approach.

Cycle with Fully Expanded State

b1 b2 b3

b1 b2 b3

a1

b4

b4

a1 a1 a1

10th PDMC, Snowbird, Utah 16/28



The DiVinE Story: Topological Sort Proviso Demo

Suppose a directed graph.
.

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

First, indegree is computed for every vertex.
.

13
1

2 2

22

0 1

3

2

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Vertices with zero indegree are “eliminated”.
.

13
1

2 2

2

3

1

0

2

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Again, vertices with zero indegree are “eliminated”.
.

13
1

2 2

1

2

1

2

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Vertices whose indigree has decreased, are marked and removed.
.

0 0

0

13
1

2 2 2

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

13
1

111

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

0

13
1

11

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

0

0 1

1

2

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

1

0

1

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

11

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

10

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

Repeat until all of the graph is processed.
.

0

10th PDMC, Snowbird, Utah 17/28



The DiVinE Story: Topological Sort Proviso Demo

All cycles are covered.
.

10th PDMC, Snowbird, Utah 17/28



State Space Generation with POR – Demo

Generation starts from an initial state.
.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Initial part of the state space is generated using
action-postponing principle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Topological sort proviso is applied to mark at least
one state on every cycle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Topological sort proviso is applied to mark at least
one state on every cycle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Marked states are fully re-expanded.
.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

New states are discovered outside the previously generated part of
the state space.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

New part of the reduced state space is generated using
action-postponing principle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Topological sort proviso is applied to mark at least one state on
every cycle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Marked states are fully re-expanded.
.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

New state is discovered outside the previously generated parts of
the state space.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Additional part of the reduced state space is generated using
action-postponing principle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Topological sort proviso is applied to mark at least
one state on every cycle.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

Marked states are fully re-expanded.
.

10th PDMC, Snowbird, Utah 18/28



State Space Generation with POR – Demo

No new states are generated, hence the reduced state space has
been fully constructed.

10th PDMC, Snowbird, Utah 18/28



Section

The DiVinE Story!

... algorithm engineering

10th PDMC, Snowbird, Utah 19/28



The DiVinE Story: Algorithm Engineering

Algorithm engineering

“Efforts must be made to ensure that promising algorithms
discovered by the theory community are implemented, tested and
refined to the point where they can be usefully applied in practice.”

[Aho et al. [1997], Emerging Opportunities for Theoretical Computer Science]

In other words ...
... implementation matters.

10th PDMC, Snowbird, Utah 20/28



The DiVinE Story: Algorithm Engineering

Algorithm engineering

“Efforts must be made to ensure that promising algorithms
discovered by the theory community are implemented, tested and
refined to the point where they can be usefully applied in practice.”

[Aho et al. [1997], Emerging Opportunities for Theoretical Computer Science]

In other words ...
... implementation matters.

10th PDMC, Snowbird, Utah 20/28



The DiVinE Story: Message Aggregation

Principle

Individual messages

3 3 31 2 1 1 21 1

are sorted according the target and combined

1 2

1 3

Buffers are flushed when

explicitly requested by underlying algorithm, or

maximal number of messages in buffer is reached, or

node is otherwise idle (empty queue), or

messages in the buffer are too old.

⇐ expensive and useless

10th PDMC, Snowbird, Utah 21/28



The DiVinE Story: Message Aggregation

Principle

Individual messages

3 3 31 2 1 1 21 1

are sorted according the target and combined

1 2

1 3

Buffers are flushed when

explicitly requested by underlying algorithm, or

maximal number of messages in buffer is reached, or

node is otherwise idle (empty queue), or

messages in the buffer are too old. ⇐ expensive and useless

10th PDMC, Snowbird, Utah 21/28



The DiVinE Story: Flushing Buffers

I

II

IV

III

II

III

IV

I

II

III

IV

II

III

IV

10th PDMC, Snowbird, Utah 22/28



The DiVinE Story: Polling for incoming messages

in local queue

Processing states

Receive incomming

messages

Are there new

messages?

+

_

Graph Exploration Loop

States to be explored locally are taken
from a local queue.

Queue contains locally generated states
and states received from network.

When to process incoming messages?

10th PDMC, Snowbird, Utah 23/28



The DiVinE Story: Polling for incoming messages

?

in local queue

Processing states

Receive incomming

messages

Are there new

messages?

+

_

Graph Exploration Loop

States to be explored locally are taken
from a local queue.

Queue contains locally generated states
and states received from network.

When to process incoming messages?

High rate → CPU load.

Low rate → increased memory demands.

10th PDMC, Snowbird, Utah 23/28



The DiVinE Story: Performance of OWCTY Algorithm

In cooperation
with VU Amsterdam.

Cores Runtime (sec) Efficiency

1 631.7 100%

64 13.3 74%

128 7.4 67%

256 5.0 49%

10th PDMC, Snowbird, Utah 24/28



The DiVinE Story: Engineering on Other Platforms

Threading in Shared-Memory

Avoid false sharing.

Efficient memory allocation and deallocation.

Lock-free communication data structures.

Shared-Memory Memory Access

Memory access optimized hash tables.

Compact data representation.

External Memory (disks)

Delayed duplicate detection.

Recompute rather than communicate.

GP GPU Many Cores

Avoid hash-based graph partitioning.

LTL model checking as matrix-vector multiplication.
10th PDMC, Snowbird, Utah 25/28



Section

What’s Next

... some conclusions

10th PDMC, Snowbird, Utah 26/28



Conclusions

General observation

Gap between pseudo-code and implementation is widening.

Implementations need to be tuned for individual platforms.

We should learn to appreciate engineering solutions.

Explicit state verification future

Combination with static analysis and symbolic approaches.

Increased importance of techniques that trade space for time.

Platform dependent state space reductions.

10th PDMC, Snowbird, Utah 27/28



Section

The End

... thank you for your attention

10th PDMC, Snowbird, Utah 28/28


